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Abstract

Documentation of the HTTP protocol includes precise
descriptions of the syntax of the protocol, but lacks sim-
ilarly precise specification of the semantics of messages
and message bodies. Semantics are stated in English
prose; while this makes the document more intuitively
accessible, it makes any sort of formal claims of cor-
rectness or interoperability difficult to derive from the
specification itself. We propose “layered types”, a for-
mal description of the interpretive semantics of HTTP
message bodies based upon the stacked type syntax.
This model allows us to formally declare semantics for
content-related HTTP headers and offers a precise way
of characterizing interoperability between current and
future protocol revisions and extensions.

1. Introduction

The fundamental premise of the web architecture is
quite straightforward: the web provides a syntactically
consistent and semantically predictable interface to ar-
bitrary network-connected resources via the exchange
of representations (documents which represent the state
of their creators) [8].

While this core is fairly straightforward, the HTTP
protocol itself [7] has integrated a variety of (largely
performance-oriented) features [10] which have been
integrated with the protocol’s syntax and specification
in a largely ad hoc manner. The result is a specification
with uneven precision, making it difficult to directly
reason about its correctness [3, 4].

One area of imprecision in the specification is with
respect to the content model, i.e., the semantics of rep-
resentations (message payloads) in their raw and de-
coded forms and the relationship between these seman-
tics and the protocol’s syntax. While Mogul has offered
an excellent intuitive content model [14] incorporated
into a standards-track RFC [15], it is not presented as a
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formalism which can be precisely and unambiguously
related to the syntax of the protocol. The purpose of
this paper is to formally define and describe the con-
tent model of the HTTP protocol, and to use this model
to establish syntax-directed semantics for HTTP mes-
sages. The increased precision simplifies the assess-
ment of the protocol’s correctness and the interoperabil-
ity between multiple revisions and extensions.

This paper is organized as follows: Section 2
presents an overview of the HTTP protocol with partic-
ular emphasis upon the definition of its data model. Sec-
tion 3 presents layered types, an unambiguous formal-
ism representing the HTTP data model; layered types
are employed in Section 4 as the basis for specifying
syntax-directed semantics for HTTP messages under
several versions of the HTTP protocol, and techniques
for assessing correctness and interoperability of HTTP
revisions and extensions are then discussed.

2. An Overview of HTTP

HTTP is a stateless client-server request-response
protocol which roughly adheres to the REST (Repre-
sentational State Transfer) architectural style [8], mean-
ing (intuitively) that clients interact with servers by ex-
changing documents which represent the state of the
applications employing the protocol. These representa-
tions may have arbitrary underlying media types (text,
audio, video, etc.) and may be encoded or transformed
in a variety of ways to support performance optimiza-
tions and other features [10].

A resource is any object which has a name (a URI)
and can be accessed through an HTTP server. The
HTTP protocol is built around the exchange or request
and response messages. A message consists of a sin-
gle control line which specifies the basic action or re-
sult represented by the message, zero or more headers
which modify or refine the meaning of the message, and
an optional message body carrying a (possibly encoded
or transformed) representation of the state of some re-
source. A message may be either a request (a message
asking that some action be performed upon a particular
resource) or a response (a message reflecting the result
of a request); clients are agents which transmit requests
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and receive responses, while servers process requests
by performing the requested action upon a resource and
sending responses reflecting the results. A proxy is both
a server and a client, forwarding requests and responses
from its own clients to upstream servers and back. A
cache is a store of responses to past requests, usually
connected to a proxy or a client to reduce the number
of interactions with servers and thereby improve per-
formance.

2.1. Data Model

An HTTP message body is a transformed and en-
coded media object. The particular sequence of en-
codings and transformation applied to that object make
up what is called the message’s data model or (equiv-
alently) content model; the set of all such encod-
ing/transform sequences supported by the protocol is
the protocol’s data model or (equivalently) content
model.

In addition to structuring the order of encodings and
transforms, the data model attaches a structured set
of semantics to various points within the encoding se-
quence. Specifically, we say that there are four phases
to the HTTP data model: variant, instance, entity, and
message;1 each corresponds with a distinct set of se-
mantics for agents which wish to interpret and use the
content of a message body, as described below.

Variants A variant is a primitive value produced by
a resource intended for direct presentation to a user, a
non-HTTP-specific software component, or a resource.
Variants usually take the form of individual documents,
images, audio or video files in some well-known encod-
ings (e.g., HTML, JPEG, MP3, and RealMedia, respec-
tively), and no processing beyond that which is intrinsic
to that encoding is needed to render the variant to the
appropriate output device(s) or present it to the targeted
application logic.

Instances An instance is a variant with zero or more
content-codings applied to it. Content-codings are
transforms which preserve the wholeness or semantic
integrity of a variant/instance while altering the byte-
wise content of its presentation; for example:

• Compression (e.g., gzip, compress,
deflate)

• Wrapping content (encrypted, signed, or both) in a
cryptographic envelope

• Integrity checks (e.g., MD5 checksums)

Because instances remain semantically whole rep-
resentations, they are suitable (in principle) for shared
caches to store and use to answer subsequent requests.

1Our work builds upon the four-phase data model proposed by
Mogul et al [14, 15] as a refinement of RFC2616’s three-phase model.

Also note that a variant can always be coerced to be-
come an instance, but not vice versa.

Entities An entity is an instance with zero or more
instance-manipulations applied to it. An instance-
manipulation is an operation which does not necessar-
ily preserve the semantic integrity or “wholeness” of its
operand. For example:

• Range selection (Content-Range header,
multipart/byteranges Content-Type)

• Delta coding [11, 15]

• Cyclone coding [16]2

• Compression3

• Wrapping content in a cryptographic envelope

• Integrity checks (Content-MD5 header)

While an instance represents a whole thing (a rep-
resentation which is of itself expressive of the state of
the resource which produced it), an entity is not nec-
essarily useful of itself, but rather may provide an ap-
plication with enough information to be able to con-
struct a complete instance from other information it also
possesses (e.g., by providing a delta against a previous
instance or filling a gap in a previous aborted down-
load). More formally, content-codings will always be
“lossless” with respect to the essential information of
a representation, while instance-manipulations may be
“lossy” transforms (such that the lost information must
be acquired via a separate request or other out-of-band
means). Because of their potential irreversibility (and
the resulting potential inability to recover a usable in-
stance or variant without additional out-of-band infor-
mation), entities are not suitable for conventional shared
caching.

Another distinction between an instance and an en-
tity is that an instance is an end-to-end object from the
application’s perspective; upon successful completion
of an HTTP transaction, the client and the origin server
should (if the system has behaved properly) agree on
the bytewise content of the instance in question. Enti-
ties, in contrast, are not necessarily end-to-end in this
same sense, as proxies may interpret an entity and then
send a very different entity on to their next inbound
or outbound peer (e.g., patching a hole in the cache’s

2Cyclone coding was proposed as a media-coding, i.e., the vari-
ant would itself be a cyclone-coded object; see [2] for a critique of
this design decision and motivation for classifying it as an instance-
manipulation.

3Compression is one of several operators also mentioned as a
content-coding and a transfer-coding; intuitively, this is required be-
cause a “compressed entity”, a “compressed instance”, and a “com-
pressed message” have different meanings (inasmuch as entity, in-
stance, and message have different meanings); e.g., a compressed
delta must be handled differently than a compressed variant.



copy of an instance with one byterange, then transmit-
ting a different but overlapping byterange requested by
the client).

While in principle there is nothing wrong with lay-
ering multiple instance-manipulations upon one an-
other, doing so is simply not supported by the
HTTP/1.1 protocol [7], which supports only one
transformative instance-manipulation (byterange selec-
tion, i.e., “partial downloads”) and one annotative
instance-manipulation (instance checksumming via the
Content-MD5 header), and those two applied only in
that order. This restriction is relaxed by a standards-
track proposed extension to HTTP [15].

Messages As the final phase, a message is an entity
with zero or more transfer-codings applied to it; this
process is often called serialization. Transfer-codings
are annotations and transformations of an entity or a
message which allow a recipient to reliably delineate
the underlying content, e.g.:

• Message Length (Content-Length header)

• Chunking (chunked Transfer-coding)

• Wrapping content in a self-delimiting (e.g., ASCII
armored) cryptographic envelope

• Compression (using self-delimiting encodings)

The message length transform (we model it as a trans-
form, as it fixes unambiguously the boundaries of the
stream) is simple enough to understand; in order to use
whatever object is length-described, the recipient must
receive the stated number of bytes. “Chunking” is a
technique introduced in HTTP/1.1 to allow servers to
begin transmission of messages before they can deter-
mine their length (e.g., when a representation is being
produced by a script) [10].

While it is possible in principle to send an entity
without applying any meaningful transfer-codings, this
is not advisable, as it prevents the recipient from having
a reliable HTTP-level indicator of the end of the mes-
sage; as such, it must treat the message as an unlimited
byte source which happens to eventually be terminated
by an out-of-band event (closure of the transport con-
nection).

2.2 Syntax and Semantics

The intent of an HTTP message is to use headers
to syntactically express the data model of the mes-
sage body to allow a recipient to correctly interpret the
message body; while the syntax of the HTTP proto-
col is well-defined [7] and the above data model has
been clearly stated for the HTTP engineering commu-
nity [15], the relationship between syntax (headers and
their values) and some precise model of semantics (e.g.,

layered types) is stated strictly with english prose, open-
ing the door to potential ambiguity, incompleteness, or
contradiction within the specification.

In formal programming language theory, such pre-
cise relationships are often established by defining the
syntax-directed semantics of a language, usually as a
function which takes a block of syntax and returns some
representation of the result, effects, or meaning of that
syntax. We use layered types as a reference model for
the semantics of HTTP message bodies and present sev-
eral examples of syntax-directed semantics for differ-
ent versions of the HTTP protocol. We are also able to
present an example of a semantic-directed syntax func-
tion which translates models of desired semantics back
into the standard HTTP syntax.

This exercise has several benefits. First, a precise
model of semantics gives us a way to formally reason
about such desirable properties as interoperability be-
tween revisions and extensions, something which has
not always been diligently maintained4.

Second, the rules we develop for comparing partic-
ular message data models offer a useful run-time tool
for assessing the usefulness of a given message as input
to a given application; for example, if an application
expresses its willingness to accept any message of the
type “gzipped XML document” and it is sent a mes-
sage of the type “gzipped XHTML document”, the tra-
ditional HTTP rules would rule this as an unacceptable
mismatch;5 by contrast, we develop a system in which
subtyping rules can be used to infer the suitability of
one representation for use by an application requiring
a representation with a differing description, and even
to (in some cases) identify strategies for transforming a
representation to make it usable to the application.

3. Layered Types

Our representation of the HTTP data model is based
upon layered types [2]. The layered type system is a
precise description of the composition of transformative
and annotative operations in the construction of repre-
sentations for use in protocols like (but not limited to)
HTTP. Layered types describe latent or internal seman-
tics and properties of data as it is operated upon in ways
which preserve (perhaps in part) that meaning but alter
the form, presentation, or encoding of the data, or which
alter the set of annotations attached to that data.

In essence, a layered type preserves the history
of transformative and descriptive operations performed

4This is evidenced by the potential deadlock conditions which
emerged between HTTP/1.0 and HTTP/1.1 agents implementing the
now-obsoleted RFC2068 [3] as well as in initial proposals for persis-
tent connections [13].

5More precisely, for this situation to proceed successfully would
require the application to exhaustively list all MIME-types which
have been assigned to XML-based encodings.
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Figure 1. Layered Type [t1[t2[t3[t4[]]]]]

upon a representation with an unambiguous ordering of
their application. Thus, it describes (and thereby re-
stricts) not only the immediate interpretation of the rep-
resentation, but also provides an implicit strategy for the
management of the representation, its comparison and
composition with other representations, and (in many
cases) a strategy for applying inverted transforms to de-
rive the more basic underlying data forms.

3.1. Syntax of Layered Types

Layered types are expressed using the stacked type
syntax (developed and employed for several applica-
tions in [2]). Rather than representing the type of a
value with a single symbol (e.g., int or bool), the stacked
type syntax expresses the type of a value with a stack
of such symbols, where the head of the stack represents
the most immediate “layer” of semantics which must be
correctly handled in order to reach the inner “layers” of
semantics (the stack’s tail). This is represented graphi-
cally in Figure 1, where t1 is the head (outermost) type
which must be correctly interpreted to reach a value of
type t2 and so forth.

Layered types have the syntax:

σ ::= [stackel σ] | []

Intuitively, a layered type (σ) is a stack (list) of type
elements (stack elements or stackels), each denoting a
particular transformation or annotation, terminated by
the empty-stack symbol ([]) at the tail. For example,
[t1 [t2 [t3 [t4 []]]]] (the type illustrated in Figure 1) is a
stack consisting of four stackels with t1 as its head.

A useful construct for layered types is concatenation
of type σ′ onto the head of σ, written as σ′σ and defined
as:

σ′σ =











σ′ if σ = []

σ if σ 6= [] and σ′ = []

[v σ′′ σ] if σ 6= [] and σ′ = [v σ′′]

3.2. Layered Type Basics

When a value (a representation by another name) has
a type [s σ] for some s and some σ, it can be thought
of as belonging to the set s. The value in question will
(in general) be transformable into one of type σ by ap-
plying a function which removes, undoes, or decodes
whatever transform is indicated by s.

For example, consider an HTML document com-
pressed using the gzip algorithm. The contents of this
file constitute a simple value (call it F ); the layered type
of this value would be [gzipped [HTML []]], indicating
that the value must be gunzipped before the HTML can
be interpreted.

For most conventional meanings of subtypes, the tail
clearly encodes a subtype of whatever type information
is identified by the head. Consider F above; in the set-
theoretic sense, its type indicates not only that the value
is a member of the set of valid gzipped streams (the head
element), but that it is one of a subset of such streams
which, when run through the gunzip algorithm, produce
HTML documents (the tail).

We express subtypes using the conventional reflex-
ive subtype operator <:, where “a <: b” means “a is a
subtype of b”. One could think of <: as having a similar
meaning to ⊆, in that “a <: b” means “the set of values
described by a is a subset (not necessarily strict) of the
set of values described by b”.

We define the empty stack symbol [] as carrying no
type information, and thus the universal supertype. For
all stackels s and all layered types σ, we state as axioms
that

σ <: [] (1)

and that
[s σ] <: [s []] . (2)

A natural corollary of Equation 1 is that [] <: []
(which also follows from the reflexivity of <:).

We can establish subtype relationships among indi-
vidual stackels of the form s1 <: s2, e.g.,

HTML3.2 <: HTML

and

byterange32KB@64KB <: byterange8KB@72KB

The latter example may seem counterintuitive at first, as
the first type carries a superset of the bytes of the latter.
Consider it instead in terms of information content: of
all of the messages carrying the 8KB beginning at off-
set 72KB, those which carry 32KB beginning at offset
64KB are a strict subset.

We compose subtype relationships between layered
types of the form σ1 <: σ2 using Equations 1 and 2 and



by induction using the rule

[s1 σ1] <: [s2 σ2] (3)

where s1 <: s2 and σ1 <: σ2. To illustrate this, con-
sider two gzipped XML documents, X1 and X2. Sup-
pose X2’s underlying content is actually XHTML, a
sub-language (subtype) of XML. Also suppose that X2

is compressed using the most aggressive gzip setting
(9). Then these two values are typed

X1 : [gzipped [XML []]]

and
X2 : [gzipped9 [XHTML []]].

Intuitively, the type of X2 is a subtype of X1, in that all
XHTML documents are XML documents and all level-
9 gzipped documents are gzipped documents. Since

XHTML <: XML

and
gzipped9 <: gzipped

it follows from 3 that

[XHTML []] <: [XML []]

and subsequently (also from 3) that

[gzipped9 [XHTML []]] <: [gzipped [XML []]].

This agrees with our intuition, that the information both
about and within the outer gzipped layer allows us to es-
tablish a subtype relationship between types which are
distinct at every layer.

3.3. Varieties of Stack Elements

The layered type system is useful for specifying a to-
tal ordering of operations performed in the preparation
of a representation. Such operations are divided into
three categories, which reflect distinct attributes of the
way HTTP operates upon and describes message bod-
ies: transformative operations, annotative operations,
and phase labels.

Transformative operations are those which actually
alter the content of the object being operated upon; the
obvious example is the gzip compression algorithm. In
essence, a transformative operation is any function t for
which t(x) 6= x for at least one representation x; as
a result, reliably retrieving x from t(x) requires access
to the inverse function, t−1, such that t−1(t(x)) = x

for all x (e.g., gunzip for gzip). Transformative opera-
tions are used in HTTP to support a number of features
from compression to byterange selection to chunking
and delta coding.

Annotative operations are those which provide ad-

ditional side-band information about a value which is
not necessary to interpret the value itself. Annotative
operations can be computationally trivial (counting the
number of bytes in an object) or highly involved (com-
puting public-key signatures or message digests), but
they never change the content of the representation it-
self. HTTP supports several annotative operations, most
notably the computation of MD5 checksums.

If a message body x has the type [s σ] and s rep-
resents a transformative operation, then retrieving the
underlying value of type σ will require that the inverse
of that transform be applied to x. However, if s denotes
an annotative operation, then s (intuitively) simply of-
fers subtype information to the type σ; in this case, x

can safely be treated as having type σ. Formally, for ev-
ery stackel a which is annotative and for every layered
type σ,

[a σ] <: σ . (4)

Taken together with Equation 3, this can be thought of
as a limited variation on the concept of multiple inher-
itance (a controversial concept in object-oriented pro-
gramming) or alternately as an intersection type [5], by
which the type of the expression is describable as a sub-
type both of the stack’s head and of its tail. (Of course,
this only works for annotative heads, not transformative
ones.)

Furthermore, because annotative operations are
idempotent with respect to message content, it is also
true that for all annotative stack elements a1 and a2 and
for every layered type σ that

[a1 [a2 σ]] <: [a2 [a1 σ]] (5)

(i.e., annotative stackels are commutative).

Phase Labels Recall in Section 2.1 our description
of the four phases of the HTTP data model: variant,
instance, entity, and message. We represent each of
the four phases by pushing a corresponding identifier (a
phase label) onto a layered type stack to denote its re-
lationship with the transforms and annotations applied
to the representation. Under Mogul’s four phase model,
all HTTP messages can be described with layered types
of the form:

σ1 [message σ2 [entity σ3 [instance σ4 [variant σ5]]]].

Intuitively, an agent which receives a typed mes-
sage need only interpret enough layers of that type to
reach the phase-identifying element corresponding to
the phase of the data model with which that particu-
lar agent is concerned. For example, caches are in-
terested in instances, so for a message of the above
type a cache need only possess capabilities to interpret
σ1[message σ2 [entity σ3 []]] (and can be completely
ambivalent to σ4 and σ5); a user-agent is interested in



variants and would need to also understand the data
model of σ4, while a “pure” proxy (with no attached
cache) is simply interested in receiving and forwarding
entities and so would only need to comprehend mes-
sages of the type σ1 [message σ2 []].

Sublayers Recall our definition of a variant as “an in-
stance with zero or more content-codings applied to it”.
This intuitively suggests that variant <: instance would
be a reasonable subtype rule to introduce, and similarly
instance <: entity and entity <: message. However,
such rules would be problematic in our system because
their application removes one phase marker from the
stack and replaces it with another. For example, con-
sider a variant (call it V ) with the type

[variant [Validated(URI) [XML/1.1 []]]] .

Using the subtype rule variant <: instance, we can also
safely treat V as having the type

[instance [Validated(URI) [XML/1.1 []]]] .

Now, imagine that we apply the gzip operation to V ,
yielding a new representation V ′ with type

[instance [gzipped [Validated(URI) XML/1.1 []]]] .

This type has lost an important piece of information,
namely, at what point in the stack we stop describing an
instance and start describing the underlying variant: is
the variant itself gzip-compressed, or was the compres-
sion performed as a content-coding?

Layer subtype rules like variant <: instance are un-
desirable because type promotion rules would (for ex-
ample) discard the variant element from the stack where
it should be preserved to indicate the content model of
the object at the time of its “type promotion”. To ac-
complish this, we introduce sublayers as a variation on
traditional subtyping.

We write that a phase label t1 is a sublayer of another
phase label t2 as:

t1 ≺ t2.

The interpretation of this declaration is that t1 always
appears in the tail of any layered type with t2 as its head.
(Note that, unlike <:, the ≺ relation is not reflexive.)

Sublayer declarations are used by the type inference
rule:

x : [t1 σ] t1 ≺ t2

x : [t2 [t1 σ]]
(6)

An equivalent statement would be that t1 ≺ t2 implies
[t1 σ] <: [t2 [t1 σ]]; intuitively, a representation of type
[t1 σ] can be promoted to have a type of the form [t2 . . .]
by pushing t2 onto the head of its type stack, but not by
replacing t1 with t2.

There are three sublayer relations defined for HTTP

layered types: variant ≺ instance, instance ≺ entity,
and entity ≺ message.

Other Phase Label Issues As mentioned in Section
3.3, HTTP’s practical features require that we distin-
guish between transformative and annotative stack ele-
ments. This raises an important question: are the phase
labels (variant, instance, entity, and message) transfor-
mative or annotative, or should they be treated as some-
thing distinct?

As we have already stated, value-wise every variant
can be thought of as also being an instance; this sug-
gests that the phase labels are purely annotative. This
supports several useful conclusions; e.g.,

[instance [variant σ]] <: [variant σ]

(i.e., an instance with no content-codings can be treated
as a variant). Taken together with the variant ≺
instance rule, this suggests that

[instance [variant σ]] ≡ [variant σ]

(i.e., that the two types are equivalent). Treating phase
labels as annotations also allows us to take advantage of
commutativity of annotations in interesting ways, e.g.,

σ [instance [checksum(0xfedcba98) σ′]] <:

σ [checksum(fedcba98) [instance σ′]]

for all σ and σ′, i.e., an annotation applied to an instance
equivalently describes an entity to which no transforma-
tive content-codings have been applied.

However, the commutativity of annotations would
also lead to such nonsensical conclusions as

[variant [instance σ]] <: [instance [variant σ]] .

Therefore, we prefer to define phase labels as neither
annotative nor transformative, but as their own third
class of stack elements, and specify subtype relation-
ships which retain the desirable properties above while
avoiding problems with commutativity. Specifically, for
any phase labels p and p′ and any σ,

[p [p′ σ]] <: [p′ σ] , (7)

and for any phase label p, any annotative stack element
a, and any σ,

[p [a σ]] <: [a [p σ]] (8)

[a [p σ]] <: [p [a σ]] (9)

Thus, properties like [instance [variant σ]] ≡
[variant σ] and commutativity of phase labels with an-
notations are retained without allowing phase labels to
commute with each other.



4. Syntax-Directed HTTP Semantics

In this section we formalize the data models of dif-
ferent versions of the HTTP protocol through the use
of a syntax-directed type inference algorithms defined
over the HTTP messages syntax. We refer to these
inference algorithms as interpreters, as they (in a real
sense) reflect an abstract model of the process an HTTP
agent goes through in interpreting a message to derive
its own internal representation of that message’s data
model.

Taken together with the typing rules given in the
previous section, this unambiguously declares the set
of correct interpretations for a given message, allowing
us to reason about correctness and interoperability with
precision. A complete presentation of a suite of such
formalisms, along with interpreters for Mogul’s pro-
posed modifications [15, 12] and a novel HTTP variant
explicitly serializing layered types (and thus substan-
tially broadening the HTTP data model), can be found
in [2].

4.1. Interpreting HTTP/1.0 Messages

HTTP/1.0 [1] has a very simple data model for repre-
sentations; a representation has a basic media type, no
more than one content-coding, and delimits messages
with a byte count.6 A suitable interpreter I1.0 J· · ·K
can be defined as in Figure 2 (with its helper function
I ′

1.0 J· · ·K in Figure 3); these functions are evaluated us-
ing a first-match strategy to simplify their presentation.

4.2. Interpreting HTTP/1.1 Messages

Because of the ad hoc way HTTP headers have been
added and mapped onto its data model, the rules for in-
terpreting a conventional HTTP/1.1 header block must
of necessity be far more complicated than those for
HTTP/1.0 messages. The function I1.1 J· · ·K interprets
HTTP/1.1 headers to construct a layered type for the at-
tached message body. Headers provide the bulk of the
type information, although for response messages the
request method (GET, HEAD, PUT, POST, etc) and re-
sponse status code (200, 304, 404, 500, etc) can both
significantly alter the meaning of the response message
and the type it should be assigned.

The function I1.1 J· · ·K wraps the interpretation al-
gorithm by taking two arguments: the syntax of the
message to be interpreted and a boolean flag indicat-
ing whether this message is a response to a HEAD re-
quest. (Naturally, this boolean value will always be

6HTTP/1.0 also allows response messages to be delimited by clos-
ing the transport connection; as noted previously, this makes a com-
plete representation indistinguishable from an aborted or incomplete
one, so we do not include it in this model.

false when interpreting a request.) This function then
returns the message body with an appropriate type dec-
oration. To simplify the specification of this function,
the first-match rule is used when identifying the appli-
cable case for any given arguments. I1.1 J· · ·K is speci-
fied in Figure 4; the symbol “either” matches both true
and false values.

The helper function, I ′

1.1 J· · ·K (stated in Figure 5),
takes as an argument a block of HTTP syntax (headers
followed by a potentially empty message body) deco-
rated with a layered type, and returns the message body
with the complete layered type appropriate to the initial
type and the headers present in the syntax block. Use of
the first-match rule again simplifies the specification.

These functions actually reflect several disambigua-
tions of the HTTP standard (RFC2616). For example,
there is an apparent conflict in the specification of the
206 response code, in that it is defined only as a valid
response to the GET method; this (arguably) excludes
it as a valid response to HEAD, but that in turn raises
a contradiction with the definition of HEAD (which is
supposed to duplicate the results of a GET with the mes-
sage body repressed, and “SHOULD” bear the same
meta-data). Our formalization errs on the side of allow-
ing 206 responses to HEADs; this allows us to under-
stand responses to HEAD requests indicating that the
server would have transmitted a message with partial
content had the request been a GET.

In a similar spirit, while HTTP/1.1 seems to de-
fine byterange instance-manipulations strictly for 206
responses, our interpreter follows the IETF inter-
operability principle (“be conservative in what you
send, liberal in what you accept”) by including
rules by which the Content-Range header or
multipart/byteranges media type can be used
to signal the use of this instance manipulation regardless
of the response status-code, provided no other instance-
manipulations have been applied. This specifies an
interpretation of messages for which HTTP/1.1’s se-
mantics are simply undefined; as stated, it also en-
ables our interpreter to attach a type to messages which
are explicitly forbidden by the specification (e.g., a
response with the 416 status code must not use the
multipart/byteranges type), but this can be ex-
plicitly excluded with a fairly verbose (but not terribly
illuminating) change to the function.

4.3. Formalizing Interoperability

This section presents a model for partially assess-
ing the interoperability of HTTP agents’ content models
based upon the layered type model. When speaking of
interoperability between HTTP agents, we have three
criteria in mind: completeness, soundness, and agree-
ment.

Capability Completeness For two agents to interoper-



I1.0 JRequest-Line Headers MessageBody, falseK
= I

′

1.0 JHeaders MessageBody : [message [entity [instance [variant []]]]]K
I1.0 JHTTP-Version SP "204" SP Reason-Phrase CRLF Headers MessageBody, eitherK

= I
′

1.0 JHeaders MessageBody : [T-repress [message [entity [instance [variant []]]]]]K
I1.0 JHTTP-Version SP "304" SP Reason-Phrase CRLF Headers MessageBody, eitherK

= I
′

1.0 JHeaders MessageBody : [T-repress [message [entity [instance [variant []]]]]]K
I1.0 JStatus-Line Headers MessageBody, falseK

= I
′

1.0 JHeaders MessageBody : [message [entity [instance [variant []]]]]K
I1.0 JStatus-Line Headers MessageBody, trueK

= I
′

1.0 JHeaders MessageBody : [T-repress [message [entity [instance [variant []]]]]]K

Figure 2. The I1.0 J· · ·K function

I
′

1.0 J"Content-Type:" media-type CRLF Headers MessageBody : σ1 [variant []]K
= I

′

1.0 JHeaders MessageBody : σ1 [variant [T-contentmedia-type []]]K
I
′

1.0 J"Content-Encoding:" content-coding CRLF Headers MessageBody : σ1 [instance [variant σ2]]K
= I

′

1.0 JHeaders MessageBody : σ1 [instance [T-content-coding [variant σ2]]]K
I
′

1.0 J"Content-Length:" digits CRLF Headers MessageBody : σ1 [message σ2]K
= I

′

1.0

q
Headers MessageBody : σ1 [T-lengthdigits [message σ2]]

y

I
′

1.0 JHeader Headers MessageBody : σK = I
′

1.0 JHeaders MessageBody : σK
I
′

1.0 JCRLF MessageBody : [T-rcr σ]K = I
′

1.0 JCRLF MessageBody : σK
I
′

1.0 JCRLF MessageBody : [message [entity [instance [variant []]]]]K = [T-nil []]

I
′

1.0 JCRLF MessageBody : σK = σ

Figure 3. The I ′

1.0 J· · ·K helper function

ate, each must be able to produce a message type
which can be correctly interpreted by the other,
i.e., if A produces a message M of type τA, then B

must be able to understand a message of type τB

where τA <: τB .

Interpretive Soundness Possession of a particular ca-
pability (e.g., the ability to decompress a gzip-
encoded stream) does not mean that the agent will
necessarily know if or when to employ that ca-
pability (e.g., to identify the appropriate point in
the interpretation pipeline to apply the decompres-
sion).
We define a serializer as a software agent which
transforms some representation of a message’s
data model into an actual block of HTTP syntax
(i.e., a semantic-directed syntax function). For
two agents to interoperate, one must serialize the
message in such a way that the recipient can both
(syntactically) understand the description and (se-
mantically) discern that the message body is of an
agreeable type; i.e., if A produces from the type τA

a message using a serializer SA J· · ·K and B uses
the interpreter IB J· · ·K, then

τA <: IB JSA JM : τAKK

Intuitively, the serialization/deserialization
pipeline may lose type information about the
message so long as it does not introduce spurious
or unintended type information which would in-
correctly alter the interpretation of the message’s
contents.

Agreement between Interpretation and Capabilities
Notice that an agent may be able to discern the in-
tended semantics of a message without possessing
the capabilities to then interpret the content of the
message. (e.g., the agent may recognize that the
content is bzip-compressed but lack the necessary
algorithm to decompress it.) For two agents to
interoperate, they must share the capabilities
understood by the recipient as the model of the



I1.1 JRequest-Line Headers MessageBody, falseK
= I

′

1.1 JHeaders MessageBody : [message [entity [instance [variant []]]]]K
I1.1 JHTTP-Version SP "204" SP Reason-Phrase CRLF Headers MessageBody, eitherK

= I
′

1.1 JHeaders MessageBody : [T-repress [message [entity [instance [variant []]]]]]K
I1.1 JHTTP-Version SP "205" SP Reason-Phrase CRLF Headers MessageBody, eitherK

= [T-nil []]

I1.1 JHTTP-Version SP "206" SP Reason-Phrase CRLF Headers MessageBody, falseK
= I

′

1.1 JHeaders MessageBody : [message [entity [T-range [instance [variant []]]]]]K
I1.1 JHTTP-Version SP "206" SP Reason-Phrase CRLF Headers MessageBody, trueK

= I
′

1.1 JHeaders MessageBody : [T-repress [message [entity [T-range [instance [variant []]]]]]]K
I1.1 JHTTP-Version SP "304" SP Reason-Phrase CRLF Headers MessageBody, eitherK

= I
′

1.1 JHeaders MessageBody : [T-repress [message [entity [instance [variant []]]]]]K
I1.1 JHTTP-Version SP "416" SP Reason-Phrase CRLF Headers MessageBody, falseK

= I
′

1.1 JHeaders MessageBody : [T-rcr [message [entity [instance [variant []]]]]]K
I1.1 JHTTP-Version SP "416" SP Reason-Phrase CRLF Headers MessageBody, trueK

= I
′

1.1 JHeaders MessageBody : [T-rcr [T-repress [message [entity [instance [variant []]]]]]]K
I1.1 JStatus-Line Headers MessageBody, falseK

= I
′

1.1 JHeaders MessageBody : [message [entity [instance [variant []]]]]K
I1.1 JStatus-Line Headers MessageBody, trueK

= I
′

1.1 JHeaders MessageBody : [T-repress [message [entity [instance [variant []]]]]]K

Figure 4. The I1.1 J· · ·K function

message’s content, i.e.,

IB JSA JM : τAKK <: τB

for some τB comprehensible to B. In words, B can
soundly discover the intended semantics of M and
possesses the capabilities necessary to interpret M

itself correctly.

In summary, for any messages M of type τA sent by
agent A, the necessary and sufficient condition for agent
B to be able to correctly interpret them is precisely B’s
ability to interpret messages of some type τB where

τA <: IB JSA JM : τAKK <: τB

For example, with respect to capability completeness
a message of type τ1 can (theoretically) always be cor-
rectly interpreted by an HTTP agent which understands
messages of type τ2 if τ1 <: τ2. So if a server sends a
message with the type

[message [T-chunked [entity [T-delta-coded
[instance [A-MD5 [T-gzipped [variant

[T-contentapplication/xml []]]]]

]]]]]

it must be careful only to do so when communicating
with a client which understands messages of the type

[message [T-chunked [entity [T-delta-coded
[instance [T-gzipped [variant

[T-contentapplication/xml []]]]

]]]]]

or it will risk the client incorrectly interpreting and pre-
senting the message.

4.4. Protocol Correctness

There are two spheres of correctness we wish to use
this formalism to assess. The first is with respect to
a protocol itself; the specification (call it A) defines a
canonical message interpreter IA J· · ·K for converting
HTTP syntax into layered types and a generic serial-
izer SA J· · ·K which accepts as an argument every lay-
ered type supported by the protocol’s data model and
outputs (non-deterministically) every possible syntactic
representation of each. Given these two functions, the
correctness of the protocol itself rests upon these two
criteria:

1. The specification does not allow construction of
any messages which the canonical interpreter can-
not handle, i.e., the range of SA J· · ·K must be a
subset of the domain of IA J· · ·K.



I
′

1.1

s
"Content-Type:" "multipart/byteranges" ";" "boundary=" BoundaryString CRLF
Headers MessageBody: σ1 [T-range σ2]

{

= I
′

1.1

r
Headers MessageBody : σ1 [T-rangemultipart

BoundaryString σ2]
z

I
′

1.1

s
"Content-Type:" "multipart/byteranges" ";" "boundary=" BoundaryString CRLF
Headers MessageBody: σ1 [entity [instance σ2]]

{

= I
′

1.1

r
Headers MessageBody : σ1 [entity [T-rangemultipart

BoundaryString [instance σ2]]]
z

I
′

1.1 J"Content-Type:" media-type CRLF Headers MessageBody : σ1 [variant []]K
= I

′

1.1 JHeaders MessageBody : σ1 [variant [T-contentmedia-type []]]K
I
′

1.1 J"Content-Range:" content-range-spec CRLF Headers MessageBody : σ1 [T-rcr σ2]K
= I

′

1.1 JHeaders MessageBody : σ1 σ2K
I
′

1.1 J"Content-Range: */" instance-length CRLF Headers MessageBody : σ1 [instance σ2]K
= I

′

1.1

q
Headers MessageBody : σ1 [T-lengthinstance-length [instance σ2]]

y

I
′

1.1 J"Content-Range:" byte-range-resp-spec "/*" CRLF Headers MessageBody : σ1 [T-range σ2]K
= I

′

1.1

q
Headers MessageBody : σ1 [T-rangebyte-range-resp-spec σ2]

y

I
′

1.1

s
"Content-Range:" byte-range-resp-spec "/" instance-length CRLF
Headers MessageBody: σ1 [T-range σ2 [instance σ3]]

{

= I
′

1.1

q
Headers MessageBody : σ1 [T-rangebyte-range-resp-spec σ2 [T-lengthinstance-length [instance σ3]]]

y

I
′

1.1 J"Content-Range:" byte-range-resp-spec "/*" CRLF Headers MessageBody : σ1 [entity [instance σ2]]K
= I

′

1.1

q
Headers MessageBody : σ1 [entity [T-rangebyte-range-resp-spec [instance σ2]]]

y

I
′

1.1

s
"Content-Range:" byte-range-resp-spec "/" instance-length CRLF
Headers MessageBody: σ1 [entity [instance σ2]]

{

= I
′

1.1

q
Headers MessageBody : σ1 [entity [T-rangebyte-range-resp-spec [T-lengthinstance-length [instance σ2]]]]

y

I
′

1.1

s
"Content-Encoding:" content-coding "," 1#content-coding CRLF

Headers MessageBody: σ1 [instance σ2]

{

= I
′

1.1

s
"Content-Encoding:" 1#content-coding CRLF
Headers MessageBody: σ1 [instance [T-content-coding σ2]]

{

I
′

1.1 J"Content-Encoding:" content-coding CRLF Headers MessageBody : σ1 [instance σ2]K
= I

′

1.1 JHeaders MessageBody : σ1 [instance [T-content-coding σ2]]K
I
′

1.1 J"Content-MD5:" md5-digest CRLF Headers MessageBody : σ1 [entity σ2]K
= I

′

1.1 JHeaders MessageBody : σ1 [A-md5md5-digest [entity σ2]]K
I
′

1.1 J"Content-Length:" digits CRLF Headers MessageBody : σ1 [message σ2]K
= I

′

1.1

q
Headers MessageBody : σ1 [T-lengthdigits [message σ2]]

y

I
′

1.1

s
"Transfer-Encoding:" transfer-coding "," 1#transfer-coding CRLF
Headers MessageBody: σ1 [message σ2]

{

= I
′

1.1

s
"Transfer-Encoding:" 1#transfer-coding CRLF
Headers MessageBody: σ1 [message [T-transfer-coding σ2]]

{

I
′

1.1 J"Transfer-Encoding:" transfer-coding CRLF Headers MessageBody : σ1 [message σ2]K
= I

′

1.1 JHeaders MessageBody : σ1 [message [T-transfer-coding σ2]]K

I
′

1.1 JHeader Headers MessageBody : σK = I
′

1.1 JHeaders MessageBody : σK
I
′

1.1 JCRLF MessageBody : [T-rcr σ]K = I
′

1.1 JCRLF MessageBody : σK
I
′

1.1 JCRLF MessageBody : [message [entity [instance [variant []]]]]K = [T-nil []]

I
′

1.1 JCRLF MessageBody : σK = σ

Figure 5. The I ′

1.1 J· · ·K helper function



S1.1

q
σ [T-x [variant σ

′]]
y

= “Content-Encoding: x” · CRLF · S1.1

q
σ [variant σ

′]]
y

S1.1

q
σ [A-x [variant σ

′]]
y

= S1.1

q
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S1.1

q
σ [T-length
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[message σ
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y

= “Content-Length: x” · CRLF · S1.1

q
σ [message σ

′]
y

S1.1

q
σ [A-x [message σ

′]]
y

= S1.1

q
σ [message σ

′]
y

S1.1

q
σ [A-x [entity σ

′]]
y

= S1.1

q
σ [entity σ

′]
y

for x 6= md5

S1.1

q
σ [A-md5x σ

′ [entity σ
′′]]

y
= S1.1

q
σ σ

′ [entity σ
′′]

y
for σ

′ 6= []

S1.1

q
σ [A-md5x [entity σ

′]]
y

= “Content-MD5: x” · CRLF · S1.1

q
σ [entity σ

′]
y

S1.1

q
σ [T-length

x
[instance σ

′]]
y

= “Content-Range: */x” · CRLF · S1.1

q
σ [instance σ

′]
y

S1.1

q
σ [entity [T-range

x
[T-length

y
[instance σ

′]]]]
y

= “Content-Range: x/y” · CRLF · S1.1

q
σ [entity [instance σ

′]]
y

S1.1

q
σ [entity [T-range

x
[instance σ

′]]]
y

= “Content-Range: x/*” · CRLF · S1.1

q
σ [entity [instance σ

′]]
y

S1.1

r
σ [T-rangemultipart

x
[instance σ

′ T-contentx]]
z

=

“Content-Type: multipart/byteranges” · CRLF · S1.1

q
σ [instance σ

′]
y

S1.1 Jσ [T-contentx]K = “Content-Type: x” · CRLF · S1.1 JσK
S1.1

q
σ [T-x [entity σ

′]]
y

= “Transfer-Encoding: x” · CRLF · S1.1

q
σ [entity σ

′]
y

S1.1

q
σ [A-x σ

′]
y

= S1.1

q
σ σ

′
y

S1.1

q
σ [T-x σ

′]
y

= Error: unsupported content model

S1.1 J[]K = CRLF

Figure 6. The S1.1 J· · ·K function

2. SA J· · ·K and IA J· · ·K are sound (as defined
above).

The broadness of SA J· · ·K may give the impression that
proving these two properties will be highly difficult,
but this is in fact not the case. HTTP declares that
many syntactically differing messages are semantically
equivalent, and if we can prove these equivalences for
IA J· · ·K we can significantly reduce the size of the mes-
sage set to be considered to include only a single canon-
ical form for every such equivalence class. For exam-
ple:

• Header names are case-insensitive. We assume the
rules capture this, and consider only the canonical
spellings used in the RFC.

• There is tremendous liberty in the use of white
space in headers. We assume the rules capture this,
and consider only a single space as representing all
linear white space strings.

• Value-list headers may present their lists using one
or several headers, i.e.,

Transfer-Encoding: gzip, chunked

is equivalent to

Transfer-Encoding: gzip
Transfer-Encoding: chunked

Notice (for example) Figure 5’s
rules for Content-Encoding and
Transfer-Encoding capture this, so it is
safe to consider only one-value-per-line presenta-
tion.

• Header ordering is very liberal; so long as in-
stances of value-list headers (see immediately
above) are kept in order, there are no order-
ing rules between headers. Our use of the
σ [match-string σ′] form in the interpretive rules
makes them largely agnostic to ordering, so it is
safe to consider only an alphabetical header order-
ing.

A portion of the function S1.1 J· · ·K is presented in
Figure 6 as a first-match rule set as a partial so-reduced
model of HTTP/1.1 serialization. (We have omitted the
sections dealing, e.g., with unusual request methods like
HEAD and unusual response status codes like 304, and
instead present only those rules which pertain to header
construction in normal request and response messages.)
The proof that the complete form of this function and
I1.1 J· · ·K satisfy the above two correctness properties
is straightforward but voluminous, and is omitted here
for want of space.7

7The proof, along with a complete declaration of S1.0 J· · ·K and
S1.1 J· · ·K, will be published in a technical report version of this
paper.



Interoperability These same techniques can be
used to test the backward-compatibility of a pro-
tocol. Consider HTTP/1.0 and 1.1, represented
by the function pairs 〈S1.0 J· · ·K , I1.0 J· · ·K〉 and
〈S1.1 J· · ·K , I1.1 J· · ·K〉, respectively. We can say that
1.1 is backward-compatible with 1.0 if for every mes-
sage content model σ in the domain of S1.0 J· · ·K,

σ <: I1.0 JS1.1 JσKK

and
σ <: I1.1 JS1.0 JσKK

(i.e., a 1.1 agent can always understand a 1.0 agent, and
a 1.0 agent can always understand a 1.1 agent when ca-
pability completeness is satisfied), which is in fact the
case.

4.5. Implementation Correctness

Similarly, we are concerned with assessing whether
a particular implementation of the protocol is correct
with respect to the formalized specification. Call the
implementation Z, and the standard it aspires to R; its
correctness rests upon both of the following criteria:

1. Z’s syntax interpreter IZ J· · ·K agrees with the ref-
erence interpreter IR J· · ·K (e.g., I1.1 J· · ·K) for all
messages within the scope of the protocol. For-
mally, for every syntax block x in the range of
SR JxK, either IR JxK <: IZ JxK or IZ JxK is un-
defined (the interpreter rejects the message).

2. The implementation’s serializer SZ J· · ·K is a cor-
rect instantiation of the reference serialization
model SR J· · ·K, i.e., for every x in the intersection
of the domain of SZ J· · ·K and SR J· · ·K, SZ JxK
only produces syntax that could have been pro-
duced by SR JxK.

Proving this for a given implementation requires ex-
tracting models of SZ J· · ·K and IZ J· · ·K directly from
the code; while this task is certainly not trivial, neither
does it seem intractable [6, 9].

5. Summary

We have proposed layered types as a formalism for
specifying the content model semantics of representa-
tional protocols such as HTTP. By capitalizing upon
well-understood concepts such a subtypes and introduc-
ing novel type constructs (such as sublayers) to repre-
sent particulars of the kernel of HTTP’s content model,
we are able to define both a type-based syntax-directed
semantics for the payloads of HTTP protocol messages
and a precise notion of correctness and interoperability
against which new revisions and extensions to the pro-
tocol can be compared and tested.
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