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Abstract

We expose an unorthodox adversarial attack that exploits the
transients of a system’s adaptive behavior, as opposed to its
limited steady-state capacity. We show that a well orches-
trated attack could introduce significant inefficiencies that
could potentially deprive a network element from much of
its capacity, or significantly reduce its service quality, while
evading detection by consuming an unsuspicious, small frac-
tion of that element’s hijacked capacity. This type of attack
stands in sharp contrast to traditional brute-force, sustained
high-rate DoS attacks, as well as recently proposed attacks
that exploit specific protocol settings such as TCP timeouts.
We exemplify what we term as Reduction of Quality (RoQ) at-
tacks by exposing the vulnerabilities of common adaptation
mechanisms. We develop control-theoretic models and as-
sociated metrics to quantify these vulnerabilities. We present
numerical and simulation results, which we validate with ob-
servations from real Internet experiments. Our findings moti-
vate the need for the development of adaptation mechanisms
that are resilient to these new forms of attacks.

1. Introduction

Motivation and Scope: Over the past few years, Denial
of Service (DoS) attacks have emerged as a serious vul-
nerability for almost every Internet service. An adversary
bent on limiting access to a network resource could sim-
ply marshal enough client machines to bring down an In-
ternet service by subjecting it to sustained levels of de-
mand that far exceed its capacity, making that service inca-
pable of adequately responding to legitimate requests. In the
most recent of these attacks, MyDoom earned its malevolent
moniker by crashing SCO Group’s Web site as the email-
carried W32/Novarg.A, W32/Shimg, and W32/Mydoom
worms mounted a widespread and record-setting Distributed
DoS (DDoS) attack in the first minutes of February 1st.

While such attacks may be viewed by some as mere
nuisances, the impact of these attacks on critical resources
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and services may cripple our increasingly Internet-dependent
economy. Already, the MyDoom attack is estimated to have
cost the global economy over $26.1B [35]. Luckily, DoS at-
tacks that overwhelm a service beyond its capacity are not
easy to mount because they do require control of a fairly
large base [34], e.g., 100K-200K zombie clients in the case
of MyDoom. More importantly, by their very nature, DoS
attacks are easily discovered, making it possible for counter
measures to be taken, including the collection of information
that could be used to prosecute the attack perpetrators.

The ability to anticipate a DoS attack and/or to trace-
back perpetrators thereof are powerful deterrents. But, what
if victims of an attack cannot easily anticipate or even de-
tect that they are under an attack? And, what if the attack’s
purpose is not to necessarily cripple a service, but rather to
inflict significant degradation in some aspect of the service—
e.g., resource utilization, system stability, or service quality?

In this paper, we expose an attack that exploits system
dynamics—i.e., the characteristics of a system’s transient be-
havior as opposed to its limited steady-state capacity—to
achieve the above adversarial goals. In particular, we show
that a determined adversary could bleed a system’s capacity
or significantly reduce service quality by subjecting the sys-
tem to a fairly low-intensity (but well orchestrated and timed)
request stream that causes the system to become very ineffi-
cient, or unstable. We give examples of such attacks—which
we term Reduction of Quality (RoQ; as in “rock”) attacks—
on a number of common adaptive components in modern
computing and networking systems. RoQ attacks stand in
sharp contrast to traditional brute-force, sustained high-rate
DoS attacks [5], as well as recently proposed “shrew” attacks
[23] that exploit specific protocol settings such as TCP time-
outs. Indeed, as the results in this paper show, RoQ attacks
are potentially more potent than both DoS and shrew attacks.
Our contributions can be summarized as follows:

+ We formalize a notion of attack “potency”, which exposes
the tradeoff between the “damage” inflicted by an attacker
(e.g., waste in bandwidth) and the “cost” of the attack
(e.g., average attack rate).

+ We parameterize our definition of potency to capture the
aggressiveness of the attacker (i.e., the level of exposure
risk that the attacker is willing to take). We then introduce
families of DoS attacks based on aggressiveness.



+ We focus on less aggressive DoS attacks that exploit the
transients of the system’s underlying adaptation mecha-
nisms. We term these “RoQ attacks,” and we identify dif-
ferent attack goals based on the service quality targeted by
the attacker for degradation.

+ Unlike existing DoS attacks which target a specific host
or a set of flows, we are able to define RoQ attacks which
can continually degrade a network element’s performance
(and thus all flows passing through it). We introduce
RoQ attacks which target various service qualities such
as bandwidth and delay jitter.

+ We crystallize the effect of RoQ attacks by analytically
deriving effect of attack traffic on the network element’s
efficiency-load curve. For instance, an attacker can con-
tinually disturb the stability of a router by affecting
the congestion signals (prices) fed back to rate-adaptive
sources.

+ In addition to analytical, numerical, and simulation re-
sults, we present real Internet experiments that confirm
the premise of RoQ attacks. For example, we show that
a RoQ attack can achieve higher potency than a “shrew”
attack [23] whose attack period is chosen so as to target a
specific initial TCP timeout value.

Paper Outline: We start this paper in Section 2 by intro-
ducing the premise and definition of RoQ attacks. Also, we
propose a general metric for the quantification of the impact
of RoQ attacks. In Section 3, we present an illustrative an-
alytical model whereby the transients of adaptation are sim-
ply the result of an optimization process which forces a net-
work to converge to a stable operating point. In Section 4,
we present experimental results obtained numerically using a
more detailed control-theoretic model in which the dynamics
of queue management (e.g., RED) as well as TCP’s AIMD
adaptation are explicitly modeled. These numerical results
are validated in Section 5 using extensive ns simulations in
which other phenomena that are not captured in our analyti-
cal models are present (e.g., TCP slow-start and timeouts). In
Section 6, we present results from Internet experiments we
have conducted, which confirm the feasibility of RoQ attacks
and provide further validation of the insights we gained from
analysis and simulations. In Section 7, we briefly discuss
related work, noting that throughout this paper, we point to
various pieces of research work as appropriate. We conclude
in Section 8 with a summary and future directions.

2. RoQ Attack Premise and Definition

Network Adaptation Mechanisms and Vulnerabilities:
End system protocols (e.g., TCP) rely on feedback mech-
anisms to adapt their sending rates to match their “fair
share” of network resources. TCP reduces its sending rate
on packet loss/marking and increases its rate on success-
ful packet transmission. Typically, the decrease in rate,
which is needed to protect against wasting network utiliza-
tion, is drastic—e.g., by halving the sending rate—whereas
the increase in rate, which is needed to probe for available

bandwidth, is slow—e.g., by linearly increasing the sending
rate over time. Additive-Increase-Multiplicative-Decrease
(AIMD) rules1 ensure that flows react adequately to conges-
tion in a “friendly” manner to one another—hence the TCP-
friendly label [15]. Moreover, these protocols react even
more swiftly to excessive losses by completely shutting off
their sending rates for a long period of time (e.g., timing out
in TCP).

Buffer management schemes play an important role in
the effectiveness of transmission control mechanisms as they
constitute the feedback signal (by marking or dropping pack-
ets) to which such mechanisms adapt. In DropTail, an in-
coming packet to a full queue is dropped otherwise, its is
queued. DropTail doesn’t try to achieve any performance
improvements, nor does it try to stabilize the queue size.
Other Active Queue Management (AQM) techniques have
been developed that try to maintain the queue size at a tar-
get level and employ probabilistic dropping—e.g., RED and
its many variants [13, 24, 31], PI [18] and REM [1]). Such
techniques improve fairness and allow flows to send small
bursts of packets without experiencing packet drops. Stabi-
lizing the queue at a low target guarantees efficiency while
minimizing jitter and round trip time in general.

The adaptation strategies of transmission control proto-
cols such as TCP, while crucial for alleviating congestion,
make them vulnerable to losses that are generated through
other processes—namely losses that are not the result of con-
gestion (e.g., wireless losses). The impact of such losses on
TCP performance was considered in many studies; examples
include [2]. In these studies, however, the processes inter-
fering with TCP’s adaptation could be considered “non ad-
versarial” in the sense that the losses were more or less the
result of (say) a random process as opposed to a calculated
attack. Indeed, in recent work, it was shown that an attacker
could potentially shut off the communication between two
parties (e.g., Alice and Bob) by mounting what is termed as a
“shrew” attack [23]—an attack that exploits TCP’s time-out
mechanism, which is how TCP adapts to persistent conges-
tion. In the following sections of this paper, we show that
the vulnerabilities resulting from the dynamics of adaptation
are potentially more serious than shrew attacks in that an at-
tacker could in effect target a potentially large set of connec-
tions utilizing a single resource (or set of resources as we
will argue later) such as a network link.

Attack Definition: The feedback signal from a given link
carries important information to senders about how they
should adjust their sending rates. Carrying false signals
would cause the senders to back off at times of non-persistent
congestion, or to increase when congestion in fact exists! For
the purposes of this paper, we focus on attack techniques
that would hinder an AQM from stabilizing its queue, and
hence resulting in a noisy feedback signal to the end-system
transmission controllers, which in turn would lead to high jit-

1Other TCP-friendly increase/decrease rules have also been proposed
and evaluated [3]. All would be susceptible with various degrees to the
same issues we consider in this paper.



ters due to oscillations, as well as inefficiencies due to queue
drainage, i.e, the input rate can’t saturate the link capacity.

Consider a bottleneck link of capacity C and a buffer
size B shared by m TCP connections and a single CBR con-
nection, representing the attack traffic. For simplicity, we
consider an attack comprising a burst of M packets (or bytes)
transmitted at the rate of δ packets (or bytes) per second over
a short period of time τ , where M = δτ . This process is
repeated every T units of time. We call M the magnitude of
the attack, δ the amplitude of the attack, τ the duration of the
attack, and T the period of the attack.

Attack Goal: For the above attack, we define Π, the attack
potency, to be the ratio between the damage caused by that
attack and the cost of mounting such an attack. Clearly, an
attacker would be interested in maximizing the damage per
unit cost—i.e., maximizing the attack potency.

Potency = Π =
Damage

Cost
1
Ω

(1)

The above definition does not specify what constitutes “dam-
age” and “cost”. In the remainder of this paper, we will con-
sider various instantiations of these metrics. For example,
for an attacker aiming to minimize the utilization of a link, a
natural metric of “damage” would be the difference between
the total bandwidth through the link before and after the at-
tack (excluding the attacker’s traffic). If the attacker aims to
maximize a link’s jitter, then a natural metric of “damage”
would be the difference between the standard deviation of
the queue size before and after the attack. Similarly, there
could be a number of different metrics for what constitutes
“cost”. Examples include the effective attack bit-rate (i.e.,
M/T ), the attack amplitude δ, the attack duration τ , etc.

The above definition uses a parameter Ω to model the
aggressiveness of the attacker. A large Ω reflects the high-
est level of aggression, i.e., an attacker bent on inflicting the
most damage and for whom cost is not a concern. Mount-
ing a DoS attack is an example of such behavior. A small Ω
reflects an attacker whose goal is to maximize damage with
minimal exposure. Unless specified otherwise, for the re-
mainder of this paper we take Ω to be 1.

Detection and Traceback of RoQ Attacks: As we have
hinted in the introduction and as the results in this paper will
show, an adversary mounting a RoQ attack does not have to
constantly overwhelm the network resource under attack in
order for its attack to be effective. Moreover, the transients
induced by the attack are not much different from those that
are possible under normal operation (except that they do not
subside). These dimensions of RoQ attacks make it challeng-
ing for a network resource to realize that it is under attack,
given the need to monitor its load at a wide range of time
scales, including possibly very short timescales (e.g., in the
order of msec).

Even if the network element is known to be under at-
tack [29], tracing back the perpetrators and/or taking counter

measures2 is much more challenging than in traditional DoS
attacks. Specifically, packets generated by an adversary do
not even have to use specific destination addresses since the
target of the attack is not the destination but rather a router
along the path. In effect, this flexibility provides the adver-
sary with two degrees of freedom for “evading” detection.

The first degree of freedom—as in traditional DoS at-
tacks on web servers/sites—is through the use of many
sources to mount the attack (i.e., mounting a Distributed RoQ
attack). For instance, these sources (possibly zombies) could
take turn in sending the attack traffic. The second degree of
freedom—and unlike traditional DoS—is through the use of
many destinations in the attack traffic. Indeed, every packet
sent from a source of the attack could be sent to a different
destination. Moreover, as long as they are known to be routed
through the resource under attack, these destinations do not
even have to be legitimate or live addresses.3 For simplicity
of presentation throughout this paper, we will assume that a
single attacker4 will be responsible for generating the attack
traffic for the attack duration τ . The reader should keep in
mind that from the middle of the network (i.e., at the victim
resource), such a burst could have possibly many spoofed
sources and destinations, making it extremely hard to isolate
the attack packets from legitimate packets.

3. Network Model and RoQ Exploits

In this section, we illustrate how the transients of adaptation
could be exploited in a RoQ attack. We do so by analytically
deriving the effect of a RoQ attack on a set of rate-controlled
connections, each with transmission rate xr. The value of
xr for a given connection is adapted based on congestion
feedback (equivalently, prices) from links along the route r
of that connection. We use the following differential equa-
tions [22]:

d

dt
xr(t) = κ

(
wr − xr(t)

∑
l∈r

pl(
∑
l∈s

xs(t))

)
(2)

where κ represents the gain of the system; the first term rep-
resents the additive rate increase and the second term repre-
sents the multiplicative decrease (as in the AIMD transmis-
sion rules of TCP). The second term is the sum of prices from
all congested links along the route r.

The link function pl(.) reflects the prices (or, costs) fed
back to the sources as the input load on the link varies.
Figure 1 shows an example of a pricing function. Given
such positive, continuous, and increasing function, one could
show that the Lyapunov function [30] of the system is given

2For example using network ingress filtering [11], traceback [32], or new
router functionalities, such as those envisioned in [8].

3Notice that this destination flexibility makes the need for “spoofing”
source addresses to evade detection less important.

4In practice, it may not be possible for a single attacker to flood an Inter-
net resource by itself, due to its capacity constraints. The issue of synchro-
nizing different bursts, from different attackers, to overlap at the resource is
currently being researched.
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Figure 1. An example of a link pricing function

by [22]:

U(x) =
∑
r∈R

wrlog xr −
∑
l∈L

∫ ∑
l∈s

xs

y=0

pl(y)dy (3)

where U(x) represents the net gain—the first term represents
the gain in sending rates, while the second term represents
the associated costs summed over the set of all links L. s is
the set of rates that utilize a particular link l ∈ L. A Lya-
punov stability analysis shows that the system converges to
a stable state x∗

r that maximizes U(x), i.e., d
dtU(x(t)) > 0 if

xr(t) �= x∗
r and equals zero when xr(t) = x∗

r for all r.

The steady-state rates x∗
r can be obtained by equating to

zero the following partial derivatives:

∂

∂ t
U(x) =

wr

xr
−
∑
l∈r

pl(
∑
l∈s

xs) (4)

Given that this system is guaranteed to converge from any
starting state xr(0), one would be interested in that rate of
convergence. If the system is perturbed around its steady-
state, a linearized model—in terms of new variables yr(t),
such that xr(t) = x∗

r +
√

(x∗
r)yr(t)—yields [22]:

d

dt
y(t) = −κ

(
WX−1 +X1/2ATP ′AX1/2

)
y(t)

= −κΓTΦΓ y(t) (5)

In the above, W , X , and P ′ are diagonal matrices, where
the diagonal elements are wr, x∗

r , and the derivatives of
pl(
∑

l∈s x
∗
s), respectively. The matrix A is an L×R matrix,

where entry al,r=1 if connection r is using link l. The diag-
onal matrix Φ gives the eigen values of the system along the
diagonal. The smallest eigen value, call it λ, determines the
rate of convergence of the system—a higher value indicates
faster convergence, as the transient response of the system
decays more rapidly.

The above analysis could be used to provide insights
into the effect of RoQ attacks on such a system.

Assume that the system had already stabilized to its
steady-state x∗

r values. Since a link is used to its almost max-
imum capacity, the additional attack load is likely to push
the link towards saturation where the fed-back prices are ex-
tremely high (cf. Figure 1). Since the RoQ attack involves
a sustained rate of δ for τ units of time, the system will be
pushed to a new stable point, say (x′)∗r . Let λ′ refer to the

Time

xr(t)

 
 '

xr*

(x’)r
*

Figure 2. RoQ attack on system stability

new smallest eigen value, representing the convergence rate
to the new stable point (i.e., from x∗

r to (x′)∗r). Since during
the attack duration τ , the capacity of the attacked link is ef-
fectively reduced, the link pricing function is pushed to the
left, as shown in Figure 1. Such higher prices result in faster
convergence (i.e., higher λ′) and lower (x′)∗r .5

As soon as the system stabilizes to the new (x′)∗r , an
optimized RoQ attack would cease its attack so as to allow
the system to return to its original state x∗

r . This attack pat-
tern then repeats. Figure 2 illustrates the effect of such RoQ
attack, when the system spends its time oscillating between
different states, in the presence and absence of the attack traf-
fic. Note that in general, the attack traffic may destroy the
“contractive” mapping property of the pricing function and
so the system may not converge to a fixed point while under
attack.

To assess the impact of the RoQ attack, we turn our at-
tention to the attack potency as defined in Equation 1. In
terms of the above analytical model parameters, one may
capture the “damage” caused by the attack using the expres-
sion δ( 1

λ′ + 1
λ ). Intuitively, this expression represents the

wasted bandwidth (and other service qualities such as delay
and rate jitter, as we discuss later) during instability. Also,
one may capture the “cost” of the attack by (δ/( 1

λ′ + 1
λ )).

Intuitively, the cost increases with increasing peak rate and
decreases with longer attack period. Figure 3 shows a sin-
gle measure of attack potency versus attack peak rate, where
potency in this model is defined by:

Potency = Π =
δ( 1

λ′ + 1
λ )(

δ/( 1
λ′ + 1

λ )
)1/Ω

Π = δ1− 1
Ω (

1
λ′ +

1
λ
)1+

1
Ω (6)

As we alluded before, Ω reflects the relative values that an
attacker attributes to “damage” versus “cost”, or equivalently
the desired level of aggression.

Figure 3 shows the potency plots for a 2-link tandem
network used by three rate-controlled sources. The pricing
function of the first link is p1(y) = 0.2/(10 − y), and that
of the second link is p2(y) = 0.5/(5 − y). One connection
crosses both links, while each of the other two crosses only
one link. The additive-increase parameters wr are taken to
be (0.5, 1.5, 1.0)—the increase rate is lowest for the longest

5Since during the attack, the pricing function includes δ, the convergence
rate λ′ depends on δ.
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Figure 3. Attack potency versus attack peak rate for
Ω=1 (left y-axis) and for Ω=2 (right y-axis).

2-link connection.

We observe that for a given value of Ω, there is an opti-
mal attack peak rate δ that optimizes potency Π. On the one
hand, a low attack peak rate, while less costly, results in min-
imal damage, and thus results in low potency. On the other
hand, a higher attack peak rate, while resulting in higher
damage, may be too costly that it results in lower potency.
This suggests that an optimized RoQ attacker can achieve
higher potency (i.e., higher damage per unit-cost) by forcing
the system into instabilities at the right times, injecting only
the right amount of attack traffic. This is true for any level of
attacker’s aggressiveness, Ω.

Note that in this model, a RoQ attacker attempts to
cause damage by specifically exploiting the AIMD-like dy-
namics of the system. Such dynamics are essential in driv-
ing the system to fairness. If one were to protect the system
against RoQ attacks through other increase-decrease rules as
AIAD or MIMD (to avoid drastic reductions at the time of
the attack or to ramp the rate back up more quickly when the
attack ceases), then fairness can’t be achieved. Such trade-
off between protection against attacks and performance dur-
ing normal operating conditions is very important to high-
light. In the remainder of this paper, we confirm these an-
alytical observations using more elaborate models, and also
using simulations and Internet experiments. These more de-
tailed models will include other dynamics, such as those re-
sulting from TCP timeouts. Nevertheless, the simple model
presented here unifies important general dynamics of many
adaptive computing and networking systems. For example,
the xr variables may represent the sending rates of TCP
sources, or the admission rates of different classes of web
requests. Additionally, the pricing function pl(.) may rep-
resent the congestion feedback signals (e.g. from RED-like
AQM) to TCP sources, or the degradation in the service rate
of a web server as it thrashes under high load.

4. Vulnerability Assessment
Wasted Bandwidth as the Target of RoQ Attacks: Con-
sider an attacker bent on maximizing the bandwidth wasted
as a result of a RoQ attack.6 Thus, we define bw, the

6Later, we consider other attack objectives—e.g., maximize jitter.

wasted bandwidth, to be the difference between the achiev-
able throughput under normal conditions and the achievable
throughput under a RoQ attack, both measured as the num-
ber of packets (or bytes) going through the link for legiti-
mate traffic. Thus, bw quantifies the absolute “damage” re-
sulting from the attack. Let ba, the attack bandwidth, denote
the bandwidth consumed by the attacker over the link un-
der attack. Clearly ba could be construed as the cost of the
attack—for instance because the higher the value of ba the
more likely that the attacker would be identified. Substitut-
ing in Equation 1, we get the following definition of attack
potency:

Π =
bw

b
1
Ω
a

(7)

The above definition doesn’t account for the total traffic sent
by the attacker but only for the attack traffic that is observable
at the link under attack. We have also used an alternative
measure of cost that accounts for the total traffic injected by
the adversary; the resulting potencies were indistinguishable.

Detailed Analysis: We extend an analytical fluid model sim-
ilar to that proposed in [17, 21, 25, 33] to assess the potential
damage that could be inflicted by an adversarial exploitation
of the adaptation dynamics of TCP + AQM (namely, AIMD
+ RED).

The pricing function of a RED router [14] is given by
the relationship between the congestion marking probabil-
ity pc(t) and the average queue size v(t). The latter is an
Exponentially-Weighted-Moving-Average (EWMA) of the
instantaneous backlog buffer size b(t), which in turn evolves
as a function of both the sending rates of legitimate TCP
sources xi(.) and the attack rate y(.). Equations 8 and 9 cap-
ture the RED pricing function, where σ and ς are the RED
parameters given by Pmax/(Bmax − Bmin) and Bmin, re-
spectively. In effect, the high-level goal of RED is to sta-
bilize the queue size at a low value so as to minimize de-
lay, while maximizing throughput by always maintaining the
queue size at a non-zero (small) threshold.

pc(t) =




0 v(t) ≤ Bmin

σ(v(t)− ς) Bmin < v(t) < Bmax

1 v(t) ≥ Bmax

(8)

d

dt
v(t) = −βC(v(t)− b(t)), 0 < β < 1 (9)

Consider m TCP connections and a single Constant-
Bit-Rate (CBR) connection, representing the attacker’s traf-
fic, traversing a single RED bottleneck of capacity C. The
round trip time ri(t) at time t for connection i is equal to the
round-trip propagation delay Di between the sender and the
receiver for connection i, plus the queuing delay at the bot-
tleneck router. Thus ri(t) equals Di +

b(t)
C . We denote the



propagation delay from sender i to the bottleneck by Dsib,
which is a fraction αi of the total propagation delay, i.e.,
Dsib = αiDi. The backlog buffer b(t), which is equal to the
input rate xi(.) from the m connections plus the attacker’s
traffic y(.) minus the output link rate, evolves in accordance
to equation 10.

d

dt
b(t) =

m∑
i=1

xi(t−Dsib)− (C − y(t−Dab))(10)

Notice that the input rates are delayed by the propagation de-
lay from the senders and the attacker to the bottleneck Dsib

and Dab. As in the generic analytical model of Section 2,
we notice that during the attack duration the capacity of the
resource is effectively reduced by the attack peak rate.

According to TCP’s AIMD rules, the dynamics of TCP
throughput for each of the m connections can be described
by the following differential equations:

d

dt
xi(t) =

xi(t− ri(t))
r2
i (t)xi(t)

(1− pc(t−Dbsi
(t)))−

xi(t)xi(t− ri(t))
2

(pc(t−Dbsi
(t)))

i = 1, 2, ..,m (11)

The first term represents the additive increase rule, whereas
the second represents the multiplicative decrease rule. Both
sides are multiplied by the rate of acknowledgments for the
last window of packets xi(t − ri(t)). In the above equa-
tions, the time delay from the bottleneck to sender i, passing
through the receiver i, is given by Dbsi

(t) = ri(t)−Dsib.

As in Section 2, we define the attack traffic, y(t), as the
square wave given by equation 12, where δ is the attack am-
plitude, τ is the attack duration and T is the attack period.

y(t) =
{

δ t mod T ≤ τ
0 otherwise (12)

The fluid model presented above is only capable of capturing
the dynamics due to AIMD. Thus the effects of slow start and
timeouts are ignored. Despite these limitations, the model is
useful as it provides a “lower-bound” assessment of vulner-
ability to RoQ attacks. By lower bound, we mean that in
reality, as we will show in simulation and Internet experi-
ments, the impact of a RoQ attack is likely to be even worse
than the model predicts. This is so because it is reasonable
to assume that the attack duration will be long enough for
many connections not only to back off, but also to go into
timeout/slow start, which would increase the “damage” from
the attack.

Quantitative Assessment of Attack Potency: We are now
ready to put the fluid model just developed to work by nu-
merically solving for the attack potency. In the next two sec-
tions, we present results of ns simulations and Internet exper-
iments that relax the simplistic assumptions of our model to
capture various effects (e.g., slowstart, timeouts, cross traffic

on multiple hops) and other queue management policy (e.g.,
DropTail).

Based on the fluid model developed above, we quan-
tify the impact of RoQ attacks by considering an example
parametrization of the model. Specifically, we consider a
bottleneck RED link of 2,000 packets/sec (=16Mbps) capac-
ity traversed by 19 TCP connections and a single CBR con-
nection representing the attacker’s traffic—a total of 20 con-
nections. The bottleneck’s buffer size is 250 packets. The
RED parameters, minimum and maximum thresholds, were
tuned to 50 and 120, respectively. The weight parameter was
chosen to be 0.00001, and the maximum loss probability was
chosen to be 0.1. The propagation delays of the connections
were generated uniformly between 80 and 120 msec. We
start the attack at time t = 40 with a δ = 16Mbps, τ = 0.2
seconds, and T = 5 seconds. The value T was chosen to
roughly match the time it takes the queue to converge to its
steady state operating point. As we will discuss later, an
attacker could “discover” this value using a number of meth-
ods.

Figure 4(a) shows the queue size predicted by our an-
alytical model for 0 ≤ t ≤ 100. Clearly, after a short
while, RED’s queue size stabilizes, indicating that the sys-
tem converges to an efficient operating point. However, as
soon as the attack is started, one can see the wide oscilla-
tions in queue size, which includes periods of time during
which RED’s queue is empty, implying an inefficient opera-
tion (i.e., a loss of capacity, which is precisely the goal of the
attack). Figure 4(b) takes a closer look at the period of time
35 ≤ t ≤ 50. It shows how the oscillations resulting from
two attack cycles at time t = 40 and t = 45 cause the queue
size to reach zero, leading to under utilization.

Figure 4(c) shows the average throughput for each flow
traversing the link from t = 40 to t = 60 (i.e., while the
link is under attack). The flow with ID=20 represents the
attacker’s flow. Clearly, the average throughput consumed
by the attacker is indistinguishable from that consumed by
the remaining 19 legitimate flows.

Thus, by simply looking for flows that use more than
their fair share over the time scale of the attack period (or
even shorter if the attacker sends its packets with different
destinations, as we pointed out in Section 2), it would be
impossible to identify the attacker—not to mention realizing
that the system is under attack in the first place! Indeed,
as we mentioned earlier in the paper, one of the dangerous
aspects of exploits that capitalize on system dynamics is that
they are harder to detect.

5. Simulation Experiments

As we mentioned before, the analytical model used in the
quantitative evaluation in Section 4 does not capture many
aspects of the system dynamics (e.g., variability in RTT, ef-
fects of timeouts, etc.) To validate that (simple) model, we
present results from ns simulations [10] in which such limi-
tations are not present.
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Figure 4. Vulnerability to RoQ attacks: Queue size over time (left and center) and throughput achieved per flow
in the presence of attack (right). Top row shows results predicted by analytical model of TCP+RED; middle row
shows ns simulation results with RED queue; bottom row shows ns simulation results with DropTail queue.

Similar to the setting we chose for our numerical eval-
uation, we consider a bottleneck link with 2,000 packets/sec
(=16Mbps) capacity, 250-packet buffer size, and a 20ms
propagation delay shared by a number of TCP connections
with unlimited data to send, and a CBR connection repre-
senting the attack traffic. The propagation delay for the ac-
cess links are chosen uniformly at random between 15 and 25
msec. So the average round trip propagation delay is around
120 msec. We run the experiments with 10, 20, 30 and 120
connections, including the attack traffic.

Results of RoQ Attack on a RED Queue: Figures 4(d),
4(e), and 4(f) show the results obtained from ns simulations
when the queue management is RED. The RED parameters,
minimum and maximum thresholds, were tuned to 50 and
120, respectively. The weight parameter was chosen to be
0.0001, and the maximum loss probability was chosen to be
0.1. Figures 4(d), 4(e), and 4(f) show the queue size (and
average queue size as estimated by RED) for 0 ≤ t ≤ 100,
a closeup of the period 35 ≤ t ≤ 50 showing the stabilized
queue followed by two attack cycles at t = 40 and t = 45,
and the average throughput achieved for the 19 legitimate
flows and for the 20th attack flow.

Clearly, the results of our ns simulations shown in Fig-
ures 4(d), 4(e), and 4(f) match fairly well those obtained us-
ing the analytical model of Section 4 in Figures 4(a), 4(b),
and 4(c).

Results of RoQ Attack on a DropTail Queue: Figure 4(g),
4(h), and 4(i) show the results obtained from ns simulations
when the queue management is DropTail. The difference be-
tween these results and those obtained for RED is that the
queue size (prior to the attack) does not stabilize around a
target value. This is expected given that DropTail does not
aim to stabilize the queue. Also, the average throughput for
the different flows is less uniform under DropTail than un-
der RED. Again, this is expected by virtue of RED’s design
principles.

Surprisingly, though, our results suggest that both RED
and DropTail are equally susceptible to the attack. In other
words, RED’s attempt to more fairly drop/mark packets
across all flows based on buffer occupancy, while helping
it with fairness, does not protect it from being exploited by
a RoQ attack. Since DropTail recovers faster than any AQM
(since it doesn’t generate early congestion signals after the
attack is over), a RoQ attack basically degenerates any AQM
to DropTail making them all susceptible to being exploited.

RoQ Attack Potency: Table 1 shows the achievable potency
of the RoQ attack predicted by our numerical model of Sec-
tion 4 and validated by the simulation experiments presented
above. For DropTail, the table shows that a well orchestrated
RoQ attack with a rate of 44 packets/sec, representing less
than 2.5% of the link’s capacity, is capable of robbing that
link of over 25% of that capacity—a potency of over 10.



Damage Cost Potency
bw ba Π

RED (model) 177 79 2.15
RED (ns) 467 56 8.30

DropTail (ns) 475 44 10.7

Table 1. Potency values for Bandwidth (with Ω = 1)

Jitter as a Goal of RoQ Attacks: In our discussions so far,
we have focused on bandwidth as the subject of the RoQ
attack. This need not be the case.7 As both of our numerical
and simulation results shown in Figure 4 clearly shows, RoQ
attacks result in other undesirable effects, including a larger
delay jitter as evident from the larger oscillations in queue
size induced by the attack for both RED and DropTail. Such
reduction in service quality could well be the target of a RoQ
attack. Table 2 shows the achievable potency of the RoQ
attack we have considered above, if increasing jitter is the
goal of the attack.

One interesting observation from the results shown in
Table 2 is that the impact on jitter of RoQ attacks on a RED
queue is much more pronounced than that on a DropTail
queue. This is expected since RED actively aims to reduce
jitter (by stabilizing the queue size) whereas DropTail does
not. Thus, a RoQ attack on a RED queue could be seen as
robbing RED of its advantage over DropTail.

The results in Tables 1 and 2 confirm what we men-
tioned earlier–namely that the analytical model of Section 4
provides us with a “lower bound” on the achievable potency
in practice.8 For example, the model predicted a potency of
2.15 for an attack aiming to bleed link bandwidth when our
ns simulations resulted in a potency of 8.3. In other words, in
addition to the bandwidth it consumes, an attacker can bleed
more than eight times that bandwidth by exploiting system
dynamics. Similarly, the model predicted a potency of 0.36
for an attack aiming to increase delay jitter when our ns sim-
ulations resulted in a potency that is 44% higher at 0.52. The
meaning of this potency is that by exploiting network dy-
namics, a RoQ attacker is able to inflict 0.52 milliseconds of
added jitter for every extra packet it injects in the network
per second.9

Tuning the RoQ Attack Parameters: The parameters of
the RoQ attack used to produce the results shown in Tables 1
and 2 were chosen rather arbitrarily. Specifically, δ, τ , and T
were “educated guesses” given the a priori known settings of
the experiment—namely, RTT, link capacity, etc. Are these
attack parameters optimal though? Could a different set of
parameters lead to higher potency?

For a chosen burst of size M = δ × τ , the attacker has
a choice of using a large amplitude δ over a short duration τ ,
or else using a smaller amplitude over a longer duration. Fig-
ure 5(a) shows the potency of a RoQ attack with M = 5 for

7Indeed, this may be a difficult goal to achieve in practice.
8Our Internet experiment will further validate this in the next section.
9Notice that this 0.52 msec is the best an attacker can do since this value

represents the transmission time of a packet.

Delay Jitter Damage Cost Potency
Before After (msec) ba Π

RED (model) 0.0 28.5 28.5 79 0.36
RED (ns) 8.50 37.5 29.0 56 0.52

DropTail (ns) 32.0 42.0 10.0 44 0.23

Table 2. Potency values for Delay Jitter (with Ω = 1)

various δ (or equivalently for various τ = M/δ) values and
for different number of flows. The figure shows that there
is an “optimal” choice of δ that maximizes the attack po-
tency. Figure 5(b) shows that this “optimal” setting changes
as a function of M , for a given number of flows (namely
20). Thus, for any value of M and for any number of flows
traversing the link under attack, an adversary could pick the
value that will maximize the potency of its attack.

Next, we consider T , the attack period. Intuitively, one
would think that the smaller the value of T , the more the
damage inflicted on the link. But, as Figure 5(c) shows, the
attack potency decreases fairly rapidly once the period T de-
creases below some threshold (i.e., moving towards 0 on the
x-axis). For example, with 10 flows traversing the link un-
der attack, the potency of an attack of magnitude M = 5
quickly diminishes when T is less than 5 seconds. In other
words, there is a point of diminishing returns (to the attacker)
beyond which increasing the rate of the attack does not pay-
off in terms of the harm done per packet of attack traffic.
Thus, an adversary bent on causing the maximum harm with
the minimum attack traffic would chose the minimum value
of T that is larger than that point of diminishing returns.

As discussed above, for each value of M there are “op-
timal” values of δ (τ ) and T . Assuming that these optimal
values are selected, Figure 5(d) shows the attack potency as
a function of M . The figure suggests that for a given number
of flows traversing the link under attack, there is a point of
diminishing returns beyond which increasing the magnitude
of the attack does not buy the attacker more potency.

The above tuning of the attack parameters was per-
formed with an eye on maximizing the wasted bandwidth
per attack “byte” with Ω = 1. Our results confirm that the
set of parameters that optimize a particular attack are differ-
ent from those optimizing on a different metric (e.g., delay
jitter) with different Ω. Due to space limitation, we refer the
reader to [16] for the delay jitter figures for different values
of Ω.

Measurement-Based On-Line Tuning of RoQ Attacks: In
the above tuning of RoQ attacks (to optimize potency), it
was assumed that system parameters such as link capacity,
number of flows, and RTTs are known a priori. This is a
meaningful assumption if the adversary is an oracle (or an
author :), but not otherwise. Even if optimal attack param-
eters are possible to derive, these parameters are likely to
depend on the profile of the traffic going through the router
(e.g., the mix of RTTs). This suggests that any set of fixed
parameters may not be optimal at all times. One alternative
to fixing the values of δ, τ , and T is to use a measurement
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Figure 5. Tuning attack parameters to maximize potency (for link bandwidth) using Ω = 1: Effect of changing δ for
a fixed magnitude (M = 5) under different number of flows (a). Effect of changing δ for a fixed number of 20 flows
under different attack magnitudes (b). Effect of changing T for a fixed magnitude (M = 5) with corresponding
optimal δ under different number of flows (c). Effect of changing M with corresponding optimal δ and T (d).

based approach to orchestrating the attack. Specifically, it is
reasonable to assume that an adversary would have at its dis-
posal the arsenal of measurement tools available publicly—
tools that could be used to estimate the bandwidth or the
buffer size of the targeted link, for example. Alternatively, an
attacker could use a TCP connection as a “probe” via which
to measure the damage caused by its attack. Using that as
the feedback signal to a simple controller, the attacker could
easily adjust the parameters of the RoQ Attack to maximize
potency.

6. Internet Experiments

Experimental Setup: Figure 6 depicts the experimental
setup we used for our Internet experiments. It consists of a
router (R), a local content server (S0), three client machines
(C1, C2, and C3), a source of attack traffic (As) and a sink of
attack traffic (Ak). The router’s server-side interface is con-
nected to a 100 Mbps switch that connects the whole setup to
the Internet, the content server machine (S0) and the attack
source (As). The router’s client-side interface is connected
to another 100 Mbps switch that connects it to the local sub-
net where client machines (C1, C2, and C3) and attack sink
(Ak) reside. The network interface cards on all machines run
at 100 Mbps except for the router’s client-side interface, rep-
resenting the bottleneck link, which runs at 10 Mbps. All
machines run Linux RedHat version 2.4.20. The router uses
iproute2 and tc [20] to run different packet scheduling disci-
plines. In all experiments we report on in this paper, we used
a packetized version of FIFO (called pfifo).

Client C1

Client C2

Client C3

100Mbps
Switch

10 Mbps

Attack Sink A

100Mbps
Switch

Attack Source A

Server S0

Internet

Router R

Server S1

k s

Figure 6. Setup for Internet Experiments.

A client (Ci) is configured to request local data trans-
fers from the local server S0 or via HTTP 1.1 from a remote
transatlantic Internet server (S1). As described in Section
2, the attack source (As) injects UDP packets destined to
sink (Ak)10 following the RoQ attack square wave pattern
with parameters δ, τ and T . Since the traffic injected by As

passes through the bottleneck link, the attacker’s main goal
is to adjust its parameters to maximize potency.

In calculating results from a given experiment we al-
ways discard the data from the first 10 seconds to allow for
throughput to ramp up. Unless otherwise specified, each
experiment lasted for two minutes. As one would expect,
experiments that only involved machines in our laboratories
produced almost identical results every time they were run.
When our experiments involved remote servers (e.g., S1), re-
sults were not consistent when experiments were conducted
over different times (e.g., mornings versus evenings). How-
ever, when experiments involving remote servers were con-
ducted at the same time-window (on different days), the re-
sults were fairly consistent. All such experiments we report
on in this section were performed in a three-hour window of
time from 4:00am to 7:00am GMT.

RoQ Attacks on Flows with Short RTTs: In this set of ex-
periments, each client Ci opens two TCP connections to the
server S0 for a total of 6 TCP flows traversing the bottleneck
link. Under no RoQ attack traffic, the 6 flows achieve a total
throughput of 8.45 Mbps, with the average round-trip time
between the clients and the server measured to be 15msec.
To ensure queuing and induce drops at the bottleneck link R,
the attack rate δ was fixed at 9.5 Mbps, and the attack du-
ration τ and period T were varied to assess the potency of
various RoQ attacks as was done numerically in Section 4
and in simulation in Section 5.

With the attack duration τ fixed at 40 msec, Figure 7(a)
shows the effect of varying the attack period T . With the
attack idle time (i.e., T − τ ) fixed at 250 msec, Figure 8(a)
shows the effect of changing the attack duration τ . As these

10Unlike traditional DoS attacks, Ak is not the target of the attack, but
rather a co-conspirator of As, or even a bystander which does not even have
to be on-line (as long as packets destined to it are routed through the target
of the attack—namely router R).



figures suggest, the maximum potency was achieved when
the attack period was set to 270msec and when the attack
duration was set to 20msec. With these settings, the total
throughput achieved by the 6 flows dropped from 8.45 Mbps
to 4.47 Mbps with only 0.45Mbps of attacker’s traffic—a po-
tency of almost 9 (using Ω = 1).

RoQ Attacks on Flows with Long RTTs: In this experi-
ment, each client issues two HTTP requests for a very large
file to the remote server S1. Thus, in total, 6 TCP connec-
tions traverse R. With no RoQ attacks present, the total
bandwidth grabbed by the 6 flows is 8.08Mbps,11 with the
average round-trip time between the clients and the server
measured to be 120msec. A characterization of the Internet
path from R to S1 revealed a 21-hop route with a bottleneck
bandwidth well over the 10Mbps capacity of R.

With the attack duration τ fixed at 40 msec, Figure
7(b) shows the effect of varying the attack period T . With
the attack idle time (i.e., T − τ ) fixed to 1,000 msec, Fig-
ure 8(b) shows the effect of changing the attack duration τ .
The trends in these figures are consistent with those observed
in simulations—for example the trends in Figure 7(b) match
those in Figure 5(c & g). As these figures suggest, the max-
imum potency was achieved when T was set to 1,040 msec
and when the attack duration was set to 40msec. With these
settings, the total throughput achieved by the 6 flows dropped
from 8.08 Mbps to 3.6 Mbps with only 0.37 Mbps of at-
tacker’s traffic—a potency of almost 12 (using Ω = 1).

It is worth noting that setting the attack duration τ to
240msec, which is close to twice the round-trip time, and
setting the attack period T to around 1 sec reduces the RoQ
attack to the shrew attack [23], which would cause TCP to
perpetually timeout. This setting is indeed one of the points
shown in Figure 8(b). Interestingly enough, relying on TCP
timeout mechanism to cause the maximum damage per unit
of attack traffic is not effective. Indeed, if we examine the
results of the experiment with settings resulting in a shrew
attack, we observe that the total throughput of the 6 flows
was brought down from 8.08 Mbps to 1.25 Mbps with an av-
erage attack traffic of 1.58 Mbps—a potency of only 4.3. No-
tice that with a period T of around 1 second, an attack with
a much lower rate of 0.3 Mbps would achieve a potency of
over 12.25 (close to triple that achieved by the shrew attack),
bringing down the throughput achieved by the six flows to
4.4 Mbps.

Another point worth mentioning is that a “flooding” ap-
proach to hijacking a link’s capacity (a la DoS attacks) is also
quite inefficient if maximizing the damage caused per byte of
attack traffic is the goal. While flooding would indeed shut
down the TCP connections, its potency will also approach
0 as the attacker must inject a lot of traffic (not to mention
increasing its exposure).

These results demonstrate that to maximize the

11Notice that this value is slightly lower than the 8.45Mbps total through-
put obtained with local connections. This could be explained by virtue of
the longer RTT of transatlantic connections.

marginal utility of attack traffic, exploiting the transients
of adaptation is the way to go; it is a much more efficient
strategy than exploiting specific protocol properties (such as
timeouts) or simply blasting packets at the highest rate.

RoQ Attack on a Mix of Long and Short RTT Flows: In
this experiment, each client opens two connections: one on
the remote server S1 and one on the local server S0. Thus,
in total, 6 TCP connections traverse R—three with RTT of
around 15 msec and three of around 120 msec. With no
RoQ attacks present, the total bandwidth for the 6 flows is
8.45Mbps. With the attack duration τ fixed to 20 msec, Fig-
ure 7(c) shows the effect of varying the attack period T . With
the attack idle time (i.e., T−τ ) fixed to 250 msec, Figure 8(c)
shows the effect of changing the attack duration τ .

As these figures suggest, the maximum potency is
achieved when the attack period was set to 270msec and
when the attack duration was set to 20msec. With these set-
tings, the total throughput achieved by the 6 flows dropped
from 8.45 Mbps to 3.7 Mbps with only 0.45 Mbps of at-
tacker’s traffic—a potency of over 10.5. These results are
quite similar to those obtained with six short RTT flows—
suggesting that a RoQ attack on the lower-end of the RTT
profile of flows going through the bottleneck is effective.

7. Related Work

To our knowledge, this work is the first to investigate the ad-
versarial exploitation of network dynamics for the purpose
of reducing one or more aspects of service quality or of ef-
ficiency. Clearly, there is a huge literature on many other
forms of adversarial attacks, which range from attacks that
compromise security (e.g., Trojan horse attacks) to those that
target system availability (e.g., DoS attacks). In this section,
we put our work in context by comparing it to existing work,
which while not explicitly looking at exploiting the transients
of adaptation, are nevertheless related.

Modeling of Network Dynamics: There have been a num-
ber of recent works that have focused on the study of network
dynamics using an arsenal of tools and techniques. Most
of these studies have concentrated on the negative impact
of interference by non-adversarial processes. Examples in-
clude works in which the negative impact of non-congestion
packet losses (e.g., due to wireless links) is evaluated [2] and
new adaptation strategies to circumvent such impact (e.g.,
in large bandwidth-delay product networks) are proposed
[4, 12]. While we have employed some of the same analyti-
cal tools and techniques to pursue our study of RoQ attacks,
our work is the first to consider the use of such techniques in
assessing vulnerabilities due to adversarial processes.

Dealing With Misbehaving Flows: There is a large body
of literature that looked at the impact of misbehaving flows
and on detection and policing techniques thereof [26]. Mis-
behaving flows are loosely defined as those who do not adapt
their sending rate in a manner consistent with an established
norm—in particular TCP friendliness [15]. In this body of
literature, the basic assumption is that the goal of misbehav-
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Figure 7. Potency of Internet RoQ attack as the attack period T (in seconds) is changed while keeping the attack
duration τ constant. Two potency curves are shown one for Ω = 1 (labels on left y-axis) and one for Ω = 2 (labels
on right y-axis). Results shown are for (a) RoQ attack on flows with short RTTs with τ=40msec, (b) flows with
long RTTs with τ 40msec, (c) a mix of long and short RTT flows with τ = 20msec.
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Figure 8. Potency of Internet RoQ attack as the attack duration τ (in milliseconds) is changed while keeping T − τ
constant. Two potency curves are shown one for Ω = 1 (labels on left y-axis) and one for Ω = 2 (labels on right
y-axis). Results shown are for (a) RoQ attack on flows with short RTTs with T − τ=250msec, (b) flows with long
RTTs with T − τ 1,000msec, (c) a mix of long and short RTT flows with T − τ = 250msec.

ing flows is to get more than their fair share of bandwidth,
typically by blasting packets at some constant high rate. In-
deed, many of the detection techniques proposed in the liter-
ature are based on that assumption—e.g., by proposing effi-
cient data structures for the identification of high-bandwidth
flows [9]. While not friendly, misbehaving flows that merely
attempt to get more than their fair share of a resource are not
adversarial, in the sense that they are not aiming primarily
at reducing the efficiency or service quality of the resource.
Resources targeted by such flows could well be operating ef-
ficiently, delivering acceptable service quality to other flows
(e.g., low delay and jitter). In this paper, our focus was on
adversarial flows whose sole purpose is precisely to disturb
these aspects of the resource’s operation, while preferably
being “under the radar” as far as their fair use of the resource.
Indeed, the results we show in Section 4 suggest that a flow
consuming only its fair share of bandwidth could be quite
adversarial in its impact.

RoQ versus DoS: DoS attacks [6, 5] and its many variants
[7] could be characterized as targeting one dimension of a
system’s service quality–namely, its availability. There are
a number of papers that classify various forms of DoS at-
tacks; examples include [19, 28, 27]. Using our model, DoS
attacks could be classified as RoQ attacks with an infinite ag-

gressiveness index (defined in Section 3), which imply that
the attacker’s ultimate goal is to maximize the damage at
any cost. In this paper, we have focused on attacks whose
perpetrators are not focused on denying access (i.e., target-
ing availability), but rather they are focused on bleeding the
system of its capacity, or simply pushing it to operate in in-
efficient operating regions to reduce some aspect of service
quality. More importantly, in this paper, we have focused on
the harder-to-detect, low-intensity attacks, i.e., with modest
aggressiveness compared to the aggressiveness required for
DoS attacks.

RoQ versus the “Shrew”: The “Shrew” attack proposed in
[23] is an example of a low-intensity, harder to detect at-
tack which is targeted at a subset of flows going through a
network link, with the intension of shutting off these flows
by synchronizing the attack traffic in such a way to cause
these flows to perpetually timeout. Shrew attacks could be
viewed as RoQ attacks which target service quality extended
to a specific set of flows. As explained in [23] Shrew attacks
could result in shutting off targeted flows without much of an
effect on the link’s utilization. In this paper, we have focused
on RoQ attacks that do not target a specific subset of flows,
but rather target the network element itself.



8. Conclusion

This paper highlights the importance of a systematic exam-
ination of the dynamics of systems and networks as possi-
ble vulnerabilities to adversarial attacks. Towards that end,
we formalized a notion of potency that exposes the trade-
offs between the damage inflicted by an attacker, the cost of
mounting the attack, and the willingness to pay such costs
(i.e., aggressiveness). We identified RoQ attacks as those
attempting to maximize the marginal utility of attack traffic
by optimally exploiting the transients of the underlying sys-
tem adaptation mechanisms. We uncovered susceptibilities
to RoQ attacks that could compromise the efficient operation
and the service quality of Internet resources, by maximiz-
ing wasted bandwidth or delay jitter, for example. Using the
potency metric, the extent of such RoQ exploits can be quan-
titatively assessed, enabling a solid basis for comparing the
trustworthiness of competing designs. We used a control-
theoretic model to underline the complex interplay between
the efficiency-load behavior of a resource and the adaptation
mechanisms of both the resource and its consumers. Our
conclusions are confirmed analytically, numerically, as well
as through simulations and Internet experiments. We believe
this paper to be a first step towards developing a general
understanding of design principles that could be adopted to
protect against RoQ exploits, and applying such principles to
the design and implementation of common adaptive resource
management components.
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