
Typed Abstraction of Complex Network Compositions∗

Azer Bestavros, Adam D. Bradley, Assaf J. Kfoury, and Ibrahim Matta
Department of Computer Science

Boston University

Abstract

The heterogeneity and open nature of network systems
make analysis of compositions of components quite chal-
lenging, making the design and implementation of robust
network services largely inaccessible to the average pro-
grammer. We propose the development of a novel type
system and practical type spaces which reflect simplified
representations of the results and conclusions which can
be derived from complex compositional theories in more
accessible ways, essentially allowing the system architect
or programmer to be exposed only to the inputs and out-
put of compositional analysis without having to be familiar
with the ins and outs of its internals. Toward this end we
present the TRAFFIC (Typed Representation and Analysis
of Flows For Interoperability Checks) framework, a simple
flow-composition and typing language with corresponding
type system. We then discuss and demonstrate the expres-
sive power of a type space for TRAFFIC derived from the
network calculus, allowing us to reason about and infer
such properties as data arrival, transit, and loss rates in
large composite network applications.

1. Introduction

In a recent paper [2], we argued that specifying, design-
ing, and developing correct, efficient, and resilient systems
is a notoriously hard problem, particularly when placing
these systems in open contexts in which they will interact
with dynamic and unpredictable environments, peers, and
adversaries. By “correct” we mean that we know with cer-
tainty some desirable invariants of a system. Many tech-
niques are already available to describe, discuss, and deduce
the invariants of a single software component: type sys-
tems, model checking, mathematical analyses and count-
less derivative tools allow us to speak confidently about
many local invariants (e.g., well-formed output, minimum
throughput, maximum response time, etc).

While there are many interesting, useful, and plausibly
verifiable properties of single software agents for which
plausible verification systems do not yet exist, we do pos-
sess a fairly good handle on what invariant properties for
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single software components look like and how to go about
expressing and testing them. What we do not yet have is a
solid grasp upon how to describe, discuss, and deduce the
global invariants of open, extensible software systems, or
how to (hopefully efficiently) bridge the gap between lo-
cal and global invariants, where global invariants describe
the acceptable range of behaviors and emergent properties
when the components or agents making up a system interact
(e.g., deadlock-free, stable, fair, etc).

This paper presents TRAFFIC, our prototype of a spec-
ification language and type inference model that is able to
take results and contributions from valuable but less acces-
sible approaches to compositional verification and mechan-
ically integrate their results to check for potential problems
in a given system or design. TRAFFIC builds upon a large
body of work on software development paradigms for net-
worked systems (e.g., [12, 8, 7]) and formalisms for the
analysis of their behaviors (e.g., [4, 10, 9, 11, 6])1 by offer-
ing a level of abstraction between the expressive power of
those (and other) tools and the programmer’s employment
of them.

2. Networks of Typed Gadgets

Formal systems like control or scheduling theory allow
us to abstract away some properties of a system to make
it possible to reason about the system at a level which is
impractical while retaining full detail. Sometimes, how-
ever, even these abstract representations afford us more de-
tail than we actually require; in such cases, it may be advan-
tageous to utilize “loose” descriptions of systems and com-
ponents where those less precise descriptions are sufficient
to demonstrate some desirable invariants. For example, it
may suffice simply to know whether or not a controller is
over-damped, whether the aggregate signaling path delay
exceeds some threshold, whether the total steady-state er-
ror decreases exponentially, polynomially, or simply mono-
tonically in time, or some combination of such properties.
These simpler abstractions, in turn, may be more suitable
for export into other domains which are interested in rea-
soning about high-level qualitative properties of the com-

1Space limitations preclude a more thorough treatment of this body of
literature. Interested readers are referred to the extended version of this
paper [3].
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ponents and their interactions without getting bogged down
in the minutiae of the particular analysis techniques used to
derive those underlying (more precise) invariants and con-
clusions.

Such an approach reflects the very essence of a type in
the programming languages and formal models sense: an
abstract description of some aspect of a system which cap-
tures interesting invariants (convergence, TCP-friendliness,
rate and time bounds) while discarding detail which may
hamper analysis (i.e., which is either unnecessary for prov-
ing desirable invariants at higher layers of abstraction, or
which may make a decision algorithm intractable or even
uncomputable).

Simply put, we believe that a more scalable and accessi-
ble approach to the checking of systems for correctness is to
move away from internal models, in which the inner work-
ings of a component are reduced to a technique-specific
abstract caricature, toward external models, in which the
workings of components are caricatured qualitatively and
quantitatively at their interfaces. This allows us to separate
representation from computation, i.e., to reason about and
from conclusions without regard for their supporting analy-
sis. It is with these observations in mind that we propose the
TRAFFIC framework (Typed Representation and Analysis
of Flows For Interoperability Checks), in which each of the
components of a composite system is represented simply as
a black box, with all correctness constraints presented at its
points of composition (edges) in the form of types.

3. Safely Composing Typed Gadgets

In order to mechanically infer properties and results from
types like those suggested above, we must formally define a
domain of applications and rigorously specify rules for the
construction and inference of types based upon the elements
of those applications. This section surveys the TRAFFIC
flow-composition language (presented more fully in [2, 1])
and type checking algorithms (presented more fully in [1])
designed around this goal.2

3.1. Flows

The TRAFFIC framework represents all systems as
typed flows which can be composed to produce more such
typed flows. A flow is an abstraction for a distinct com-
ponent or subsystem of a networked application or system.
A flow may represent something physical (e.g., an Ether-
net switch or a multicast router) or logical (e.g., a multi-hop
network backbone or a content delivery service), may be

2A live demo of the TRAFFIC type engine, including illustrative ex-
amples of TRAFFIC “programs” and type spaces, can be found on-line
at http://www.cs.bu.edu/groups/ibench/. Development and
expansion of this demo is ongoing, lead by Likai Liu <liulk@cs.bu.edu>

and Yarom Gabay <yarom@cs.bu.edu>.

BA
f1 f2 f3 f4

b1 b2 b3 b4

B
b4

f4

A
f1 f2

b1 b2

b3

f3 ���������

� ��� � �� 	 � � 


� 	 ��� 


Figure 1. Sequential Composition (top) and
Parallel (bottom) Composition.

comprised of several component flows, and may itself be
composed with other flows.

We represent flows as boxes with four sockets through
which they are attached with other flows and by which they
are assigned their types. These sockets are directional; two
correspond with the “forward” direction (one incoming, one
outgoing), two the “backward” direction (one incoming,
one outgoing). Intuitively, the flow is a function which
operates upon two incoming streams (each guaranteed to
adhere to the constraints represented by the types of the in-
coming sockets) and produces two outgoing streams (which
are guaranteed to adhere to the constraints represented by
the types of the outgoing sockets). We attach no particular
meaning at this point to “forward” and “backward” apart
from their distinctness as such; it may be given additional
meaning by the particular type spaces which we will im-
pose upon the sockets below in Section 3.3. In addition,
there is little that is particular to having only two channels;
this restriction greatly simplifies our syntax and the formal
description of our system using familiar language-theoretic
tools, but it does not otherwise reflect a fundamental limita-
tions upon the underlying architecture or algorithms.

We now turn to a formal specification of the inner work-
ings of the TRAFFIC framework.

3.2. Specification of Global Flows

We represent a specification of a network application as
a global flow. A global flow (or simply a flow) is a com-
posite object, built up from local flows and flow variables.
Local flows are single components for which we possess
complete type information (e.g., A and B in Figure 1(a));
these represent physical or logical intermediaries or end-
points in a specified system. Flow variables are “place hold-
ers” in a specification representing components which are
not yet known or fully specified; they could represent un-
known clients or servers at the endpoints of a specification,
unknown intermediary services or transport networks in the
middle, or any combinations thereof. In general, global
flows can be composed with each other, with local flows,
or with flow variables to create larger global flows.

We represent global flows syntactically using the BNF in
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x, y, z ∈ FlowVar flow variable
A, B, C ∈ LocalFlow local flow
A,B, C ∈ GlobalFlow ::= A | x

| A;B sequential flow
| A‖B parallel flow
| let x = A in B let-binding

Figure 2. BNF for Flow Specifications

Figure 2. Intuitively, a sequential flow A;B is a composi-
tion like that in Figure 1(top) in which two flows are placed
(logically) adjacently and joined, while a parallel flow A‖B
is one in which two flows are placed (logically) parallel, of-
fering simultaneous rather than serial service and data flow
(see Figure 1(bottom)). The sequential operator “;” and the
parallel operator “‖” have the same precedence, and both
associate to the left.

3.3. Syntax of Types

We represent constraints placed upon the behaviors of
any component of the system using types. Types can be
socket types (forward or backward), plain types (forward
or backward), or flow types, where types and flow types
comprise structured sets of socket types.

A socket type is a description of a single logical “entry”
or “exit” point for a flow. The type itself may be drawn from
any system we have embedded into a partially-ordered type
space; examples include the Network Calculus types pre-
sented in Section 4 and the systems suggested in Section 5.
For example, in a control-oriented application the forward
sockets may be typed to describe the steady-state error of
traffic use, whether the controller’s adaptation is monotonic
(over-damped) or not, or the convergence rate or time, and
the backward sockets may describe such properties as cu-
mulative feedback delay or feedback origins.

A plain type is an ordered list of socket types, describing
a (perhaps composite) socket, i.e., a socket which actually
corresponds with entry and exit points to one or more par-
allel flows (as in Figure 1(b)).

A flow type is a 4-tuple representing both the forward
and backward entry and exit points to a (perhaps compos-
ite) flow. This represents the complete type specification of
a component in the flow specification. We will present these

tuples graphically as two-by-two matrices, e.g.,
[

ρ1 ρ2

σ1 σ2

]

,

such that each element’s position in the matrix corresponds
with the graphical placement of its respective sockets in Fig-
ure 1. Intuitively, this means that ρ1 represents an incom-
ing socket in the forward direction, ρ2 the forward outgoing
socket, σ1 the outgoing socket in the backward direction
and σ2 the incoming backward socket.

The syntax of types, and the metavariables ranging over
their different categories, are given by the BNF in Figure 3.

r ∈ FwSocketType

s ∈ BwSocketType

t ∈ SocketType ::= r | s

ρ ∈ FwType ::= r | r ρ

σ ∈ BwType ::= s | s σ

τ ∈ Type ::= ρ | σ

T ∈ FlowType ::=
h

ρ1 ρ2

σ1 σ2

i

Figure 3. Syntax of TRAFFIC Types
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Figure 4. Splitting and Combining Flows

{t1 <: t2} ⊆ ∆

∆ ` t1 <: t2

τ ∈ Type

∆ ` τ <: τ

T ∈ FlowType

∆ ` T <: T

∆ ` τ1 <: τ2 ∆ ` τ2 <: τ3

∆ ` τ1 <: τ3

∆ ` r <: r′ ∆ ` ρ <: ρ′

∆ ` r ρ <: r′ ρ′

∆ ` ρ′

1 <: ρ1, ∆ ` ρ2 <: ρ′

2, ∆ ` σ1 <: σ′

1, ∆ ` σ′

2 <: σ2

∆ `

»

ρ1 ρ2

σ1 σ2

–

<:

»

ρ′

1 ρ′

2

σ′

1 σ′

2

–

Figure 5. Some TRAFFIC Subtyping rules

3.4. Subtyping
Each potential value for SocketType represents some

sort of constraint or invariant upon the qualitative or quan-
titative behavior of a socket. For most interesting kinds of
systems there exist large numbers of such types with strict
subset relationships (i.e., we can make many statements of
the form “if a socket satisfies a type t1, then it necessarily
also satisfies a less-restrictive type t2”). We call these re-
lationships subtypes, denoting them t1 <: t2 (read “t1 is a
subtype of t2” and having the meaning just given). More
broadly, where the subtype relationships within a set of
SocketType values can be encoded as a partial order, we
refer to this set as a type space, and refer to the collection of
subtype relationships within a type space as ∆. We are then
able to extend the subtyping relation to relate flow types us-
ing axioms and rules such as those in the illustrative subset
presented in Figure 5. Intuitively, these rules are simply es-
tablish the reflexivity of subtypes and offer mechanisms for
extending subtype relationships from constituent types to
composite types, i.e., socket subtype relations can be com-
posed to form plain subtype relations and plain subtype re-
lations can be composed to form flow subtype relations.

A useful operation on plain and flow types is concate-
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nation, denoted “•”, defined in the obvious way: if τ1 =
t1 · · · tm and τ2 = tm+1 · · · tn with m,n > 1, then τ1•τ2 =
t1 · · · tn, and extended to flow types:

»

ρ1 ρ2

σ1 σ2

–

•

»

ρ3 ρ4

σ3 σ4

–

=

»

ρ1 • ρ3 ρ2 • ρ4

σ1 • σ3 σ2 • σ4

–

This allows us to easily construct types for parallel (Figure
1 bottom) and asymmetric (Figure 4) flows.

For example, consider a type system capturing upper and
lower bounds upon the value of some property, e.g., 0.3 6

α 6 0.7. Because the ranges [0.3, 0.7] ⊆ [0.2, 0.8], we say
that (0.3 6 α 6 0.7) <: (0.2 6 α 6 0.8) (i.e., if a socket
has the former type, it will never be incorrect to treat it as
having the latter), or similarly that (0.2 6 α 6 0.9) <:
(0.1 6 α 6 1.0), etc. This single-socket relationship can
then be lifted to compare parallel sockets, e.g.,

((0.3 6 α 6 0.7) • (0.2 6 α 6 0.9)) <:

((0.2 6 α 6 0.8) • (0.1 6 α 6 1.0))

Those familiar with formal type systems will recognize
that subtyping on flow types (the last rule) is contravariant
in the two types along the first diagonal and covariant in the
two types along the second diagonal; if we think of a flow
as a function, this corresponds intuitively with the sockets’
input and output roles, respectively. Thus, again using our
bounding types,

»

(0.1 6 α 6 1.0) (α = 0.9)
(0.4 6 α 6 0.6) (0.2 6 α 6 0.7)

–

<:

»

(0.1 6 α 6 0.5) (0.8 6 α 6 0.9)
(0.4 6 α 6 0.6) (0.4 6 α 6 0.5)

–

(meaning any flow with the first type can be safely used in
any context requiring a flow of the second type).

3.5. Typing rules

The point of assigning types to flows and their con-
stituent elements is to enable us to abstract away the inter-
nals of each component and perform compositional analy-
sis to assess whether the pieces of a global flow specifica-
tion will be able to interact according to the declared com-
position structures, i.e., whether the pieces “fit” together,
and what “shape” any gaps (flow variables) in the specifi-
cation might have. This takes two forms: first, we must
describe abstract rules which precisely define the notion of
a “fit” when composing typed flows; second, we must de-
fine tractable algorithms which are able to evaluate (or at
least closely approximate) a determination whether a given
application indeed plays by these rules.

A few of the more interesting rules for assigning types to
composite flows are described, inductively, in Figure 6. We
have defined a set of type-checking algorithms which can be
run upon TRAFFIC flows to determine whether, for a given
flow and a given type system, any of that flow’s constituent
compositions could potentially cause some safety property
to be violated [1].

(par)
Γ,∆ ` A : T Γ,∆ ` B : T ′

Γ,∆ ` A‖B : T • T ′

(seq)

Γ,∆ ` A :

[

ρ1 ρ2

σ1 σ2

]

, Γ,∆ ` B :

[

ρ3 ρ4

σ3 σ4

]

,

∆ ` ρ2 <: ρ3, ∆ ` σ3 <: σ2

Γ,∆ ` A ;B :

[

ρ1 ρ4

σ1 σ4

]

Figure 6. Some TRAFFIC Typing Rules

4. Network Calculus Types

Many conceptual tools exist for the analysis of the cor-
rectness of composite systems, or for understanding emer-
gent properties thereof. While it is expected that network
programmers would be well versed in the “art” of speci-
fying and implementing specific functionalities, experience
seems to indicate it is unrealistic to assume that they can
(or should) master the analytical machinery (and underlying
theories) that enable the analysis of the composite system
in which such functionalities are embedded (e.g., cascading
sequences or parallel sets of controller-driven flows).

We do not believe, however, that this precludes the av-
erage programmer from benefiting from the power of such
analytical tools. Specifically, we envision development and
programming environments which incorporate type systems
which reflect simplified forms of such tools, to provide sys-
tem architects and developers with at least a first-pass ap-
proximate answer to whether their system will be stable
or unstable, convergent or transient, under-provisioned or
over-provisioned, etc.

In this section, we present a type space which is mod-
eled after the Network Calculus [4], a formalism rooted
in the min-plus algebra which offers us tools for reason-
ing about the capacity of and demand upon networks and
network components.

Bear in mind that this type space is not itself TRAF-
FIC per se; rather, it is a demonstration of how a power-
ful analytical tool (the network calculus) can be distilled
and codified as a formal type model to enable its embed-
ding and mechanical application within a generic frame-
work, which may then make those results eligible for ex-
port into or composition with other system results and con-
straints which may derive from completely different verifi-
cation disciplines. Neither does this system seek to increase
the expressive or deductive power of the network calculus;
on the contrary, to achieve its goals of abstraction and algo-
rithmic tractability, it will in many cases produce less pre-
cise results than a “by hand” analysis might.

We also recognize that the type values themselves as we
will present them require a working familiarity with the net-
work calculus to be intelligible. As such, we do not expect
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R(t)
R1(t)

R0(t)

data

time
Figure 7. Cumulative flow function R, lower-
bounding function R0 and upper-bounding
composite function R1

for a production prototyping or programming environment
to (by default) expose types in this form, but rather expect
that system users will interact with a library of parame-
terized types which describe, in prose and graphical form,
the meaning of the invariants to the user in terms familiar
to their network engineering (as opposed to mathematical
modeling and min-plus algebraic) expertise.

Mathematical Conventions The network calculus uses
min-plus algebraic formulas to represent traffic and traffic
constraints. All functions in the time domain are defined
only over t > 0 with non-decreasing values clamped from
below at 0 and are left-continuous or right-continuous.

4.1. Data Flow

In the network calculus, data flow is represented by a
non-decreasing function R defined over t (time), where
R(t) is the number of bits seen at a given point in the sys-
tem in time interval [0, t). Many other network performance
theories focus upon the rate at which data is flowing in the
system, i.e., dR

dt
in this formulation; because the network

calculus focuses entirely upon the cumulative function and
not upon its derivative (rate), it is not necessary that R even
have a derivative (although it is desirable, for purposes of
analytical simplicity, that R be at the least either left- or
right-continuous).

A particular flow function R is not terribly useful as a
class (type). However, we can break the space of all such
functions up into regions bounded above or below by other
functions. Any non-decreasing, non-negative function R0

over t can be thought of as defining two “types” of R func-
tions: the type of all functions for which R(t) > R0(t) for
all t and the type of all functions for which R(t) 6 R0(t)
for all t. This is illustrated in Figure 7.

For example, consider the function f(t) = 0.25t +
√

t.
All rate functions are trivially bounded from below by the
constant function 0, so we say this function is a member
of the type T0UR (where the R subscript identifies this as
a type for data flow functions). More interesting, it is also
bounded from below by 0.25t, so it is also a member of the
type T0.25tUR. It is also bounded from above by (among
many others) the affine function 0.75t + 0.5, and thus be-
longs to the type V0.75t + 0.5WR.

Many of these function shapes have useful analogs in

the realm of network monitoring and traffic shaping; for ex-
ample, affine functions (of the form At + B) correspond
with the “leaky bucket” traffic shaper, enforcing a long-term
steady-state rate limit while allowing for a limited aggregate
burst quantity above that rate.

It is particularly interesting to consider the relationships
of these bounding functions with each other. Again, think of
each function as circumscribing two sets of functions. The
set of functions T0UR is the set of all flow functions; the
set T0.25tUR is a subset, so we can say that T0.25tUR <:
T0UR. Similarly, V0.75tWR <: VtWR, and Vt2WR <: V2t +
2WR. In general, for any functions f0 and f1, we say that
Tf0(t)UR <: Tf1(t)UR iff f1(t) 6 f0(t) for all t and that
Vf0(t)WR <: Vf1(t)WR iff f0(t) 6 f1(t) for all t. Of
course, any function will belong to an infinite number of
such sets; this suggests a particularly interesting lattice of
types relating the many different kinds of functions (expo-
nential, polynomial, affine) depending upon their parame-
ters (exponents, coefficients, constants).

In practice, it will often be useful to describe functions as
subtypes of several other functions at once; consider again
Figure 7, particularly R1, which is composed of two affine
functions. We could state the first and second regions as
separate functions,

R′

1(t) = r′1t and R′′

1 (t) = r′′1 t + b′′

and say that both R ∈ VR′
1(t)WR and R ∈ VR′′

1 (t)WR.
Thus, we can decompose many region-wise composite con-
vex functions from (usually) discontinuous functions which
may be difficult to manipulate directly in the min-plus alge-
bra into collections of simple function types which can be
reasoned about individually, having only their results com-
posed. A similar technique is to consider only the convex
hull of an analytically unmanageable bounding expression,
sacrificing some precision for significantly greater ease of
representation, manipulation, and analysis.

In either case, what is produced is recognizable to type
theorists as an intersection type: a given socket’s type (in
this case, amounts of data arriving at or leaving from a
socket) is the intersection of multiple distinct sets (types)
which might not themselves have subset/subtype relation-
ships. Intuitively, an expression (socket) must satisfy the
conditions of all members of the intersection type in or-
der to type-check. We denote this using the ∩ operator on
types, e.g., R(t) in Figure 7 belongs to the intersection type
VR′

1(t)WR ∩ VR′′
1 (t)WR ∩ TR0(t)UR.

We will also make use of the complimentary notion of a
union type, denoted ∪, which means (intuitively) that an ex-
pression (socket) may satisfy the conditions of any member
of the union in order to be deemed correct. We will use this
construct to simplify the expression of discontinuous func-
tions which bound a concave space. Union and intersection
types can (in principle) be mixed, but we do not do so in
this paper.
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4.2. Arrival Curves

An arrival curve sets an upper bound upon how many
bits may be sent within a window of time. Arrival curves
are different from the upper-bound data flow functions we
discussed above in that the data flow bounds were allowed
to be a function of absolute time, while an arrival curve lim-
its how much data can be sent over a given-length window
at any absolute time; in this sense, it is sliding window re-
striction. Therefore, it is not adequate to show for some
arrival curve α and some R that R(t) 6 α(t) for all t; an
arrival curve imposes the much stronger result that for every
t and for all s 6 t, R(t) − R(s) 6 α(t − s).

For example, if R has an arrival curve of α(t) = rt, then
that flow is rate-limited to r, i.e., over any window of time
of any positive length τ , R may send no more than τr bits.
Similarly, an affine arrival curve α(t) = rt+ b is analogous
to the continuous form of the leaky bucket, restricting the
flow’s cumulative deviation from the steady state rate r to
the maximum cumulative burst size b.

Taking a hint from our bounding functions above, we
can also establish classes (types) of arrival curves, realizing
all of the same benefits; specifically, if some function f is
an upper-bound of function f ′, i.e., f(t) > f ′(t) for all t,
then we say that Vf ′Wα <: VfWα, and that TfUα <: Tf ′Uα

(where the α subscripts indicate that these are types of ar-
rival curves). Note that because arrival curves are them-
selves upper-bounds, lower-bound types have very limited
use (“the arrival process is no more than some function
which is no less than...”); in practice, we will usually see
and use upper-bound arrival curve types.

More interestingly, we can draw relations between ar-
rival curves and data flow functions, namely, whether some
data flow function R is agreeable to some arrival curve α.
Ideally, we would like to encode this as subtype relation-
ships; for example, we can say for any f that VfWα <:
VfWR since any R process with an arrival curve α is cer-
tainly constrained by the window beginning at absolute time
0. (It is actually more tightly constrained than that, but
such is the point of a subtype-supertype relationship: we are
willing to shed some detail about the constraint in order to
produce a still-valid but less-precise restraint in a different
form, which may be more useful.) A slightly less-obvious
family of such relationships has the form VfWR <: TgUα,
meaning that the data flow of at most f “fits” within an ar-
rival curve of at least g, which holds (as stated above) iff
f(t) − f(s) 6 g(t − s). There are many obvious examples
of such functions, e.g., V

√
tWR <: Tt + 1Uα (square-root

grows sub-linearly after an initial burst), or (perhaps more
interestingly), for any positive-sloped affine function rt+b,
Vrt+bWR <: Trt+bUα (if the total transmission volume in
absolute time is leaky-bucket-limited, then marginal trans-
mission volume cannot be limited by anything stricter than
the same leaky bucket).

While not defined explicitly in [4], we define a compli-

¡
¡
¡
¡
¡
¡

time

data β(t)

Figure 8. Example service curve β(t)

mentary lower-bounding service curve ᾱ which expresses
the least amount of data that can be sent over a given-length
window at any absolute time. For much the same reasons
as given above, these will generally only be manifested as
lower-bounding types, i.e., having the form TfUᾱ.

4.3. Service Curves and Shapers
Consider a flow with a known incoming data flow curve

of R and an unknown outgoing data flow curve R∗. The
network calculus defines the service curve, denoted as β, as
a way of relating these two: given a particular R, the service
curve gives us a way of defining a worst-case bound upon
what R∗ can be. Specifically, for all t,

R∗(t) > min
s6t

(R(s) + β(t − s))

Intuitively, β is a guarantee that, over any window of size t,
a minimum of β(t) bits can be conducted across the service.
Thus, the input-output constraint looks (for any t) at the ar-
rival history (R over 0 6 t) and finds the worst (min) pos-
sible window (t − s where s 6 t) that could limit the num-
ber of bits transiting the component (R(t0) + β(t − t0) for
some past t0). Often, service curves will have shapes like
that shown in Figure 8; intuitively, this particular shape in-
dicates that the user/programmer must allow for some initial
latency (the flat region beginning at t = 0), after which the
sending rate is governed by a steady-state limit (the slope of
the later region).

In the min-plus algebra, upon which the network calcu-
lus is based, this is more simply stated as a convolution:
R∗ > R ⊗ β. Stated using our model of bounding function
constraint types, a service curve β on an outgoing socket
implies that, if the corresponding incoming socket has type
TFUR, then the output socket has the type TF ⊗ βUR.

Analogous to the service curve is a shaper, denoted σ,
which defines a best-case characterization of how traffic
may transit a node. Intuitively, the shaper function is a
sliding-window constraint which will cause the transmis-
sion of any data exceeding its shape to be delayed through
the use of a (potentially unlimited) buffer. (We present a ba-
sic primitive for dealing with finite-sized buffers below.) If
we have an upper-bound upon a shaper VfWσ and an upper
bound upon an input function VgWR, we then also have an
upper bound upon the output, Vf ⊗ gWR.

4.4. Losses
The network calculus can also represent losses in the

network driven by capacity limits (i.e., buffer overflows).
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Specifically, for some node with an arrival curve α(t), we
say there is a corresponding admission curve x(t) which re-
flects cumulative data not rejected from the node because of
a capacity constraint over any internal t. We say L(t) repre-
sents the total cumulative rejected data over interval t, i.e.,
α(t)−x(t), and that l(t) is the cumulative loss rate per unit
of data (i.e., L(t)/α(t)). As above, we can express upper
and lower bounds upon cumulative loss and loss rates using
our bounding function notation and the L and l subscripts,
respectively; for example, a flow experiencing a loss rate of
no more than 5 units data per unit time would have the type
V5tWL while one experiencing at least 1% loss would have
the type T0.01Ul.

Loss rates provide us with a mechanism for limiting best-
case service; for example, given input flow R(t) and losses
L(t), we trivially infer that the output R∗(t) is constrained
to VR(t)−L(t)WR, or (more generally) that if losses are of
type TQ(t)UL (best-case minimum loss regime of Q), then

R∗(t) ∈ VR(t) − Q(t)WR,

and that if losses are of the type VQ(t)WL (worst-case max-
imal loss regime of Q), then

R∗(t) ∈ T(R(t) − Q(t)) ⊗ βUR.

4.5. Bringing it Together
The fact that service curves define lower bounds upon

data flow functions fits very nicely with our notion of
bounding functions as types. Consider a gadget which
queues, schedules, and forwards packets in its forward path
and passes control data on its backward path. Suppose this
gadget has a limiting arrival curve (A), a minimal arrival
rate (TR0UR), and its traffic-shaping behavior is character-
ized by a service curve (call it B). With only this informa-
tion and a simple type system, we can specify a generic type
signature for this gadget:

[

VAWα ∩ TR0UR VAWα ∩ TR0 ⊗ BUR

control control

]

where ∩ denotes an intersection type, i.e., for an expression
to conform to type A ∩ B it must conform both to A and to
B.

However, if we expect to employ this gadget in a wide
variety of settings, the bounds of VAWα and TR0UR may be
so permissive as to discard most of the expressiveness the
network calculus affords us. However, if we introduce min-
plus convolution as an operator upon types, we can re-state
the above gadget’s type polymorphically as

∀x.

[

VAWα ∩ TxUR VAWα ∩ Tx ⊗ BUR

control control

]

This allows the lower-bound type for the forward output to
be dependent upon the lower-bound constraints upon the in-
put; thus, if we have a precise lower-bound at the input, we
are able to derive an equally precise lower-bound at the out-

put, and if we are presented only with an approximate (but
correct) lower bound at the input, we are able to derive a
similarly approximate (but still correct) lower-bound upon
the output.

More generally speaking, there exist many such rela-
tional dependencies between the varieties of types we have
defined, and each such relationship can be thought of as
defining an implicit polymorphic type which can be applied
to any flow. Consider again the above example: a flow’s
outgoing rate is bounded from below by the convolution of
the incoming rate’s lower-bound with the service curve. No-
tice that, given any two of these types, we can algebraically
derive the third. More generally, we have defined the fol-
lowing implicit “type templates” which allow us to do this
with various combinations of upper and lower bounding R,
σ, and L types:

Incoming Outgoing
TFUR TF ⊗ βUR

VFWR VGWσ ∩ VF ⊗ GWR

VFWR TQUL ∩ VF − QWR

TFUR VQWL ∩ T(F − Q) ⊗ βUR

VFWR TQUL ∩ VGWσ ∩ V(F − Q) ⊗ GWR

We have also defined several classes of subtyping rela-
tionships, such as those between certain data flow functions
and certain arrival curves (e.g., Vrt + bWR <: Trt + bUα);
this relation allows us to transform an existing outgoing data
flow bound into an outgoing “arrival curve” bound (i.e., the
arrival curve which will hold for the recipient of the out-
bound stream), and similarly, to convert arrival curves on
an inbound socket into data flow curves.

Derivative Types and their Practical Uses In like man-
ner, we are able to (with relative ease) derive (using the min-
plus algebra) upper and lower bounds upon a range of inter-
esting and important properties which are internal to system
components and derivative of the properties we have thus
far discussed.

For example, queue length (i.e., backlog) in a lossless
system for any concrete R(t) and R∗(t) is simply R(t) −
R∗(t). Given a flow with input type Tw(t)UR ∩ Vx(t)WR

and output type Ty(t)UR ∩ Vz(t)WR, buffer utilization (B)
is bounded by Tw(t)−z(t)UB ∩ Vx(t)−y(t)WB . In a lossy
component where loss is bounded by Vv(t)WL, buffering is
more tightly bounded above by Vx(t) − (v(t) + y(t))WB .

Thus, we are able to provision our buffer to tolerate
bursts up to duration t by simply finding the maximal value
of this function over the interval (0, t].

Upper bounds upon delay (D) can be similarly derived
as: Vmax∀s(minτ>0(τ |α(s) 6 β(s + τ)))WD.

Computation Within Types While many conventional
type system require only trivial computation upon the val-
ues of the types themselves (specifically, equality and com-
parison with respect to a partial-order), the type space pro-
posed in this section calls for significant computation to be
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performed upon the values of the types themselves as types
are inferred/derived for composite flows. Specifically, we
have introduced five min-plus algebraic operations: addi-
tion (denoted by +), subtraction (denoted by −), convolu-
tion (denoted by ⊗), supremum (denoted as max for in-
tuitive accessibility), and infimum (denotes as min for the
same reason), all of which may be present in a flow’s type
signature. The presence of these operators and our desire
to uncover and capitalize upon subtype relationships be-
tween terms comprised of them demands that our type sys-
tem include notions of algebraic normalization, reduction,
and comparison which can be performed upon such terms.
We have specified a simple rule set which is capable of
performing limited normalization, reduction, and compar-
ison between polynomial terms (omitted here for want of
space), and are confident that we can extend this reasoning
system to cover a usable subset of the min-plus algebra’s
representational power (including distributive cases, which
occur in the example below) and thereby support our goal
of automating network calculus-related computation within
the type system rather than exposing it to the user.

4.6. Practica

As we have already noted, this raw presentation of net-
work calculus type forms may not be the appropriate in-
terface to present to architects and programmers. It would
instead be reasonable to offer to them a library of param-
eterized templates for these kinds of constraints, described
in terms they could readily understand (e.g., “constant rate
r”, “leaky bucket with rate r and burst limit b”, “service
at maximum rate r with maximum lag d”, etc), which are
translated “under the hood” to and from the formal network
calculus types described here.

4.7. Example Application

A wireless service provider wishes to provide a video
aggregation, distillation, and delivery service to two clients,
described in the TRAFFIC syntax as

video1‖video2; shaper; delivery; (clientA‖clientB)

and illustrated (with type annotations) in Figure 9. In the
interest of space, we will only examine types in the forward
direction. The a priori design constraints are those denoted
by types in the diagram, i.e.:

video nodes Each outgoing socket is Tt− 5UR ∩Vt+5Wα.
Each video source is variable-bit-rate with a steady-
state rate of 1 and burst magnitude of no more than 5.

shaper node Incoming socket is T2t−10UR∩V2t+10Wα.
Service curve is T2t − 10Uβ (the node will introduce
no more than 5 seconds of total delay), shaper is V2tWσ

(smoothing all transmissions which exceed the steady-
state rate of 2t).

wireless delivery network Loss rate is V0.15t + 1W ∩
T0.05tU, i.e., the network drops at least a constant, uni-
form 2.5% of the steady-state stream rate (2t) and at
most 7.5% plus a single loss burst of 1 unit.

client nodes Each incoming socket is T1.2t − 16Uᾱ ∪
T0.7t − 4.5Uᾱ, i.e., the client is willing to tolerate a
worst-case 30% steady-state loss rate (0.7t), a delay of
less than 7 seconds in steady state (0.7t−4.5), and de-
lay bursts of up to 27 seconds provided they are recov-
ered from at no less than 1.2 times the original trans-
mission rate (1.2t − 16).

Those sockets about which no type information is estab-
lished a priori (including all backward channel sockets) are
denoted by the type variables τx,i for x ∈ {a, b, c, d, e, f}
and i ∈ {1, 2, 3, 4}. Our goal, in part, is to find correct types
to assign to these variables in order to determine whether
this application will “fit” together as specified.

We will type-check this system using a greedy left-to-
right approach, inferring absent α, ᾱ, and R types for each
τx,1 and τx,2 as we go. Bear in mind, the TRAFFIC com-
piler would be performing all of these steps automatically,
including many inferences not presented here (in the inter-
est of brevity and clarity). Since the number of varieties of
types is finite and there are no mechanisms by which the
number of members of an intersection type can grow more
than linearly, the process is algorithmically no more than
low-order polynomial in the number of inference steps (i.e.,
min-plus algebra normalizations).

First, we check the composite output of the two video
nodes against the required input type to the shaper node.
The composed output type, precisely, is Tt − 5UR ∩ Vt +
5Wα •Tt−5UR∩Vt+5Wα; our system must include a prim-
itive for the summation of traffic over a link, which takes
the form of simple min-plus addition for both T· · ·UR types
(lower bounds in absolute time) and V· · ·Wα types (upper
bounds on upper bounds over sliding windows); thus, the
actual incoming type is T2t− 10UR ∩V2t+10Wα, which is
a subtype of the shaper’s input socket because subtyping is
reflexive; thus, the first set of sockets type-check.

Second, we determine the output type of the shaper,
which is also the input type to the delivery network. Be-
cause of the V2tWσ shaper type, the summed output of the
shaper is limited by V2tWα. However, since we need to
maintain the integrity of our type system with respect to
each individual channel in order to check the final composi-
tion (the two client nodes), we must determine the best-case
for each channel, which is Vt + 5Wα ∩ V2tWα for each (in-
tuitively, the 5-unit burst can only build up at a rate of 2t).

The lower bound is more subtle than it may seem, as
the service curve is only given for the aggregate flow and
not for the constituent flows; as such, we are not able to
“divide up” the worst-case service delay between the two
flows, since either one could (in the worst case) be subject
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shaper
delivery
network

video1

video2

»

nil Tt − 5UR ∩ Vt + 5Wα

nil τa,4

–

[

nil Tt − 5UR ∩ Vt + 5Wα

nil τb,4

]

[

T2t − 10UR ∩ V2t + 10Wα V2tWα ∩ T2t − 10Uβ

τc,3 τc,4

]

clientA

clientB

[

τd,1 V0.15t + 1WQ ∩ T0.05tUQ

τd,3 τd,4

]

[

T1.2t − 16Uᾱ ∪ T0.8t − 8Uᾱ nil
τe,3 nil

]

[

T1.2t − 16Uᾱ ∪ T0.8t − 8Uᾱ nil
τf3

nil

]

Figure 9. Example TRAFFIC/Network Calculus Application

to the maximal delay while the other is passed through in-
stantaneously. Thus, the output on each channel is T(t −
5)⊗(2t−10)UR, which (perhaps surprisingly) normalizes to
Tt−5UR, and so the complete outgoing type from the shaper
(and unrestrained incoming type to the delivery network) is
Vt+5Wα∩V2tWα∩Tt−5UR •Vt+5Wα∩V2tWα∩Tt−5UR.

Notice that if we sum the channels, we get T2t − 10UR,
whereas had we used a summed input type, we would have
derived a looser lower bound of T2t − 20UR. This is an
example of the expression/simplicity tradeoff discussed ear-
lier; by retaining a more detailed (two-channel) type, we are
able to more tightly bound the behavior of the system, but
by shedding detail (summing the channels) we do not sacri-
fice the correctness of our results but merely their precision.

Third, we need to determine the output type of the deliv-
ery network based upon its input type, loss type, and service
curve type, using the equation we derived above. Since no
service or shaping curve is provided, we can substitute any
function not less than the input’s upper R bound for β, e.g.,
T2t+10Uβ ; min-plus convolution of all such R bounds with
β then become identity operations.

Since we have both upper and lower input bounds and
upper and lower loss bounds, we can compute both up-
per and lower output bounds. We cannot directly relate α
input and output bounds using losses, so we convert our
incoming α upper-bounds (which are affine) directly into
(weaker) R upper-bounds. We then use our template re-
lating incoming R upper-bounds with outgoing L lower-
bounds to determine the outgoing R upper-bound, namely,
V(t + 5) − 0.05tWR ∩ V(2t) − 0.05tWR on each channel,
which normalizes to V0.95t + 5WR ∩ V1.95tWR.

Similarly, using the template for output lower bound
based upon input lower bound, loss rate upper bound, and
service curve, we find the output lower bound type on each
channel to be T((t − 5) − (0.15t + 1)) ⊗ 2tUR which is
normalized easily to T0.85t − 6UR. Thus, the output type
of the delivery network is V0.95t + 5WR ∩ V1.95tWR ∩
T0.85t − 6UR •V0.95t+5WR ∩V1.95tWR ∩T0.85t − 6UR.

Finally, we make sure the delivery network’s output
type is compatible with the input types of the clients, i.e.,
whether V0.95t + 5WR ∩ V1.95tWR ∩ T0.85t − 6UR <:
T1.2t − 16Uᾱ ∪ T0.7t − 4.5Uᾱ.

Notice that there is no upper bound on incoming rate or
arrival curve; therefore, we disregard the R upper-bound
types and must simply assess T0.85t − 6UR <: T1.2t −
16Uᾱ ∪ T0.7t − 4.5Uᾱ. The type T0.7t − 4.5Uᾱ is it-
self a supertype of T0.7t − 4.5UR; however, 0.85t − 6 ¤
0.8t − 8 for all t > 0 (they have a positive crossing at
t = 10); using conventional back-of-the-envelope analy-
sis without the benefit of the refined models of the net-
work calculus, this could flag the application as unstable,
when in fact we can prove its correctness by ensuring that
T0.85t − 6UR <: T1.2t − 16Uᾱ for t 6 10, which does in
fact hold (by similar analysis). Since then T0.85t− 6UR <:
T1.2t − 16Uᾱ ∪ T0.8t − 8Uᾱ, the composition does type-
check beginning to end, and the entire verification process
is driven by a mechanical algorithm invisible to the pro-
grammer specifying the application.

5. Conclusion and Future Work

The TRAFFIC language and type inference model is in
no way particular to the Network Calculus type system we
have presented. In addition to our ongoing work developing
the core TRAFFIC compiler and type-checking engines and
refining and expanding the automated power of our network
calculus-based type space, we are exploring several other
novel type systems which reflect results in other approaches
to compositional analysis.

Scheduling Theory The recent work of Shin and Lee [13]
is an example of a system which yields abstract descrip-
tions of the properties of complex components. Rather
than working directly with the internal details of real-
time scheduling systems (workloads, algorithms, and actual
schedules), their periodic resource model affords a straight-
forward expression of the needs and capabilities of real-
time schedulers in terms of a small set of linear equations.
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Schedulability is then expressed in terms of necessary and
sufficient conditions upon these equations, allowing us to
completely set aside all internal details of the system while
retaining the ability to precisely determine whether a set
of schedulers can be composed under a super-scheduler in
a such a way that they will still guarantee their deadlines
will be met. Notice also that many expressions of periodic
schedules lend themselves very naturally to subtype rela-
tionships, e.g., a process able to produce no fewer than a
units of output every b units of time is also able to produce
na output per nb time for any integer n > 1.

Queuing Theory The analysis of composite systems
is common in queuing theory; sequences of queues in
open and closed loops are commonly used to describe
a whole range of environments and systems. Queu-
ing system descriptions are themselves a kind of type;
“M/M/3/20/100/FIFO” is a queue taking a memo-
ryless (Poisson) input, memoryless (exponential) service
times, three parallel servers, a maximum queue length of
20, a maximum population in the system of 100, and a
first-in first-out scheduling discipline. This nomenclature
lends itself naturally to defining subtype relationships (e.g.,
“M/M/1” <: “M/G/1” <: “G/G/k”).

Control Theory We have discussed the foundations for a
control-theoretic type space in our recent paper [2]. This is
another example of a type space which will require exten-
sive support for algebraic reduction and normalization, and
may require support for calculus-level operations as well to
render it sufficiently powerful to be useful.

Language Theory Issues In addition to our use of in-
volved (albeit still Turing-incomplete) computation systems
within the values of types themselves, this research agenda
suggests several interesting and promising lines of program-
ming language research. Recognizing from a program’s
syntax its characterization in terms of compositional theo-
ries, e.g., a congestion control function as a PI controller
or an imperative routine as operationally idempotent [5],
is a subtle but not not unsolvable problem, in practice if
not in general. Such a capability, even if limited, bridges
the gap between the TRAFFIC model of “programming” as
the composition of pre-existing, pre-typed “widgets” of net-
work functionality and the actual reliable implementation
and typing of the widgets themselves for use in a TRAFFIC-
like composition environment.

Another research direction is to extend our specifica-
tion language to allow simultaneous specification of large
collections of desirable network flows. One approach,
currently under investigation, involves multiple-choice let-
bindings of the following form (cf. Figure 2):

let x ∈ {A1, . . . ,An} in B
The interpretation (or semantics) of such an expression can
vary, again depending on the application, while an appro-
priate typing depends upon the choice of the semantics.

The simplest interpretation requires that, for every Ai, the
expression “let x = Ai in B” will type-check. Nested
multiple-choice let-bindings would make a brute force ap-
proach to testing this claim grow exponentially in cost; this
motivates the development of more computationally effi-
cient type-checking algorithms which are commensurately
more conservative, i.e., they exchange computational ease
for expressive precision (and in so doing, may become in-
capable of approving some subset of correct global flows).
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