
Distributed Packet Rewriting
and its Application to Scalable Server Architectures

Azer Bestavros Mark Crovella Jun Liu David Martin
Computer Science Department Dept of Math and CS

Boston University University of Denver
Boston, MA 02215 Denver, CO 80208

best,crovella,junliu @cs.bu.edu dm@cs.du.edu

Abstract

To construct high performance Web servers, system builders
are increasingly turning to distributed designs. An important
challenge that arises in such designs is the need to direct in-
coming connections to individual hosts. Previous methods
for connection routing (Layer 4 Switching) have employed a
centralized node to handle all incoming requests. In contrast,
we propose a distributed approach, called Distributed Packet
Rewriting (DPR), in which all hosts of the distributed system
participate in connection routing. DPR promises better scal-
ability and fault-tolerance than the currrent practice of using
centralized, special-purpose connection routers. In this pa-
per, we describe our implementation of four variants of DPR
and compare their performance. We show that DPR pro-
vides performance comparable to centralized alternatives,
measured in terms of throughput and delay. Also, we show
that DPR enhances the scalability of Web server clusters by
eliminating the performance bottleneck exhibited when cen-
tralized connection routing techniques are utilized.

1. Introduction

The phenomenal, continual growth of the World Wide Web
(Web) is imposing considerable strain on Internet resources,
prompting numerous concerns about the Web's continued vi-
ability. In that respect, one of the most common bottlenecks
is the performance of Web servers—popular ones in partic-
ular. To build high performance Web servers, designers are
increasingly turning to distributed systems. In such systems,
a collection of hosts work together to serve Web requests.
Distributed designs have the potential for scalability and cost-
effectiveness; however, a number of challenges must be ad-
dressed to make a set of hosts function efficiently as a single
server.

This work was partially supported by NSF research grants CCR-
9706685 and CCR-9501822.

Research completed while co-author was at Boston University.

Connection Routing: Consider the sequence of events that
occur as a result of a client requesting a document from a
Web server. First, the client resolves the host's domain name
to an initial IP address. Second, the IP address itself may
represent a distributed system, and one of the hosts in the
system must be chosen to serve the request. There are many
ways to perform the first mapping (from domain name to ini-
tial IP address). For example, this mapping could be coded
in the application as is done within Netscape Navigator to
access Netscape's Home Page [8]. Alternately, this mapping
could be done through DNS by advertising a number of IP ad-
dresses for a single domain name. Similarily, there are many
ways to perform the second mapping (from initial IP address
to actual host). For example, this mapping could be done at
the application level, using the HTTP redirection approach
[1] or using a dispatcher at the server [2, 17].

While initial attempts to implement connection routing
for scalable Web servers focused on using the mapping from
domain names to IP addresses [10], recent attempts have fo-
cussed on the second kind of mapping (IP addresses to hosts)
because of the potential for finer control of load distribution.
One common feature of all of these attempts (whether pro-
posed or implemented) is that a centralized mechanism is em-
ployed to perform the mapping from IP addresses to hosts.
Examples include the Berkeley MagicRouter [2], the Cisco
Local Director [17], and IBM's TCP Router [7] and Network
Dispatcher [9].

Distributed Connection Routing using DPR: In contrast,
DPR is a technique that allows the mapping between IP ad-
dress and host to be implemented in a distributed, efficient,
and scalable fashion. In particular, DPR can be viewed as a
distributed method of mapping IP addresses to servers.
Using DPR, every host in a Web server cluster acts both as a
server and as a connection router. Thus, unlike existing solu-
tions that rely on a single, centralized connection router, DPR
enables both the service and the routing responsibilities to be

If , then DPR becomes similar to the centralized solutions men-
tioned above—the difference being that DPR allows both packet routing and
service to be combined on the same node.



shared by all hosts in the cluster. Distributing the connection
routing functionality allows for true scalability, since adding
a new host to the cluster automatically adds enough capacity
to boost both Web service and connection routing capacities.

To illustrate the benefits of using DPR, consider the prob-
lem of scaling up a Web site that initially consists of a sin-
gle server host. Adding a second server host using typical
existing solutions (for example, Cisco's Local Director [17],
or IBM's NetDispatcher [9]) requires using special-purpose
hardware to distribute incoming HTTP requests between the
two server hosts. This kind of centralized solution provides
connection routing capacity that far surpasses what a two-
host server is likely to require. In other words, the upgrade
path (and hence the price tag) for a centralized solution is
not truly incremental: the two-host server will be roughly
three times the cost (if an ordinary PC is used as a central-
ized router) and may reach ten times the cost of a single-host
server.

An additional, important issue for many content providers
is that the centralized solution creates a single-point-of-
failure in the system, which leads to even more costly solu-
tions such as using a second, standby connection router. Thus
for mission-critical Web sites, centralized connection routing
escalates the imbalance in capacity between connection rout-
ing and connection service. These problems disappear when
using a DPR-based architecture. Adding a second server to
the site requires no special hardware, introduces no single-
point-of-failure, and utilizes the added capacity (and hence
dollars spent) to scale both the connection routing and con-
nection service capacities equally.

Paper Contribution and Scope: The novelty of DPR lies
in its distribution of the connection routing protocol (Layer
4 Switching), which allows all hosts in the system to partic-
ipate in request redirection, thereby eliminating the practice
of using a special purpose connection router to achieve that
functionality.

DPR is one of the salient features of COMMONWEALTH—
an architecture and prototype for scalable Web servers being
developed at Boston University. The design of DPR is driven
by a large set of goals that the COMMONWEALTH architecture
strives to achieve. These goals are:

1. Transparency: Clients should not be exposed to design
internals. For example, a solution that allows a client to
distinguish between the various servers in the cluster—
and hence target servers individually—is hard to control.

2. Scalability: Increasing the size of the cluster should re-
sult in a proportional improvement in performance. In
particular, no performance bottlenecks should prevent the
design from scaling up.

3. Efficiency: The capacity of the cluster as a whole should
be as close as possible to the total capacity of its con-
stituent servers. Thus, solutions that impose a large over-
head are not desired.

4. Graceful Degradation: The failure of a system compo-
nent should result in a proportional degradation in the

offered quality of service. For example, a solution that
allows for a single point of failure may result in major
disruptions due to the failure of a miniscule fraction of
the system.

5. Connection Assignment Flexibility: Connection assign-
ment techniques should be flexible enough to support re-
source management functionalities—such as admission
control and load balancing.

In the remainder of this paper we show how DPR sup-
ports these goals in the construction of the COMMONWEALTH

server. In the next section we review related work and show
why DPR is different from previous proposals for connection
routing in Web servers. Then in Section 3 we describe the de-
sign tradeoffs for DPR and the variants of DPR that we have
implemented and tested in our laboratory. In Section 4 we
show performance results using DPR, indicating that DPR
induces minimal overhead and that it achieves performance
scalability superior to that achievable using existing central-
ized connection routing. Finally, in Section 5 we conclude
with a summary.

2. Related Work

Preliminary work on scalability of Web servers has been per-
formed at NCSA [10] and DEC WRL [14]. In both cases,
load is balanced across server hosts by providing a mapping
from a single host name to multiple IP addresses. In accor-
dance with DNS standard, the different host IP addresses are
advertised in turn [16]. In addition to its violation of the
transparency property discussed in the previous section, both
the NCSA and DEC WRL studies observe that this “Round
Robin DNS” (RR-DNS) approach leads to significant imbal-
ance in load distribution among servers. The main reason is
that mappings from host names to IP addresses are cached by
DNS servers, and therefore can be accessed by many clients
while in the cache. The simulations in [7] suggest that, even
if this DNS caching anomaly is resolved, the caching of Host-
to-IP translations at the clients is enough to introduce signif-
icant imbalance.

Rather than delegating to DNS the responsibility of dis-
tributing requests to individual servers in a cluster, several
research groups have suggested the use of a local “router”
to perform this function. For example, the NOW project
at Berkeley has developed the MagicRouter [2], which is
a packet-filter-based approach [13] to distributing network
packets in a cluster. The MagicRouter acts as a switch-
board that distributes requests for Web service to the indi-
vidual nodes in the cluster. To do so requires that packets
from a client be forwarded (or “rewritten”) by the Magic-
Router to the individual server chosen to service the client's
TCP connection. Also, it requires that packets from the server
be “rewritten” by the MagicRouter on their way back to the
client. This packet rewriting mechanism gives the illusion
of a “high-performance” Web Server, which in reality con-
sists of a router and a cluster of servers. The emphasis of



the MagicRouter work is on reducing packet processing time
through “Fast Packet Interposing”, not on the issue of bal-
ancing load. Other solutions based on similar architectures
include the Local Director by Cisco [17] and the Interactive
Network Dispatcher by IBM [9].

An architecture slightly different from that of the Magic-
Router is described in [7], in which a “TCP Router” acts
as a front-end that forwards requests for Web service to the
individual back-end servers of the cluster. Two features of
the TCP Router differentiate it from the MagicRouter solu-
tion mentioned above. First, rewriting packets from servers
to clients is eliminated. To do so requires modifying the
server host kernels, which is not needed under the Magic-
Router solution. Second, the TCP Router assigns connections
to servers based on the state of these servers. This means that
the TCP Router must keep track of connection assignments.

The architecture presented in [11] uses a TCP-based
switching mechanism to implement a distributed proxy
server. The motivation for this work is to address the per-
formance limitations of client-side caching proxies by allow-
ing a number of servers to act as a single proxy for clients of
an institutional network. The architecture in [11] uses a cen-
tralized dispatcher (a Depot) to distribute client requests to
one of the servers in the cluster representing the proxy. The
function of the Depot is similar to that of the MagicRouter.
However, due to the caching functionality of the distributed
proxy, additional issues are addressed—mostly related to the
maintenance of cache consistency among all servers in the
cluster.

3. Implementation of DPR

As described in Section 1, our goals in developing DPR
were transparency, scalability, efficiency, fault tolerance, and
flexibility in connection assignment. Previous centralized
approaches (described in Section 2) have focused on trans-
parency and load balance: these are natural features deriving
from a design using centralized routing. The two dominant
styles of centralized routing are shown in Figure 1 (a) and (b).
Figure 1 (a) shows the MagicRouter style, in which packets
traveling in both directions are rewritten by a centralized host.
Figure 1 (b) shows the TCP router style, in which only pack-
ets traveling from the clients are rewritten, still by a central-
ized host. An important advantage of the TCP router style is
that the majority of bytes in a Web server flow from the server
to the client, and these packets do not require rewriting.

In contrast to centralized approaches, we seek to address
our wider set of goals, which also include scalability and fault
tolerance. As a result we adopt a distributed approach to TCP
routing, namely distributed packet rewriting. Under DPR,
each host in the system provides both Web service and packet
routing functions, as shown in Figure 1(c). Under DPR the
structure of any connection is conceptually a loop passing
through three hosts (client and two server hosts). The entire
set may have no hosts in common with another connection on

the same distributed server. We refer to the first server host
to which a packet arrives as the rewriter, and the second host
as the destination.

Centralized schemes place the rewriting task within the
routers connecting a distributed web server to the internet (or
as close to such routers as possible). DPR instead transfers
this responsibility to the Web servers it concerns. This can
be seen as an instantiation of the end-to-end argument: the
choice of the final server is essentially a service-specific de-
cision, and so should be made as close as possible to the ser-
vice points rather than being distributed throughout general-
purpose network components.

Another important advantage of DPR is that the amount
of routing bandwidth scales with the size of the system, in
contrast to the centralized approaches. Furthermore, since the
routing function is distributed, this system can not be wholly
disabled by the failure of a single node—as is possible under
centralized approaches.

The DPR scheme assumes that requests arrive at the in-
dividual hosts of the server. This can occur in a number of
ways. The simplest approach (which we currently use) is
to distribute requests using Round-Robin DNS. Although re-
quests may well arrive in a unbalanced manner because of
the limitations of RR-DNS, hosts experience balanced de-
mands for service because of the redistribution of requests
performed by DPR.

Design Tradeoffs

Two design issues arise in determining the specific capabili-
ties of a DPR implementation. First, will routing decisions be
based on stateless functions, or will it require per-connection
state? Second, how should rewritten traffic be carried on
the server network? The following sections investigate these
questions and describe decisions made in our various imple-
mentations extending the Linux 2.0.30 kernel with DPR sup-
port.

Stateless vs Stateful Routing:
It is possible to balance load across server hosts using a state-
less routing function, e.g., a function that computes a hash
value based on the source and destination IP and TCP port
addresses of the original packet. On the other hand, more
sophisticated load balancing policies may require more in-
formation than what is contained in the packets, for example,
knowledge of load on other hosts. In this case, each rewrit-
ing host must maintain a routing table with an entry for each
connection that is currently being handled by that host.

Stateless Approach: In the stateless approach, we use a sim-
ple hash function on the client's IP address and port number
to determine the destination of each packet. Since the client's
IP/port forms a unique key for requests arriving at the server,
this function is sufficient to distribute requests.

Using server logs from the BU Web site in simple sim-
ulations, we have verified that our hash function is effective



(a) MagicRouter/LocalDirector (b) TCP Router (c) Distributed Packet Rewriting

Figure 1. Illustration of various architectures for distributed Web Servers

at balancing load (in terms of hits per server over time) for
actual client request arrivals. An important factor in this suc-
cess is the use of the client port number as an input to the
hash function; the client's TCP layer indirectly chooses the
final server when it selects its ephemeral TCP port. Succes-
sive port numbers from the same client should map to dif-
ferent server hosts, dispersing each burst across servers, and
thus alleviating the imbalance due to the burstiness of client
requests [7].

Although stateless implementations are lightweight and
the resulting server load distributions are acceptable, we must
keep in mind the inability of the rewriter to route a con-
nection based on other factors (such as end-server load, dis-
tance, availability, or the necessity that successive requests be
routed to the same host for correct session semantics).

Stateless/LAN Implementation: This variant takes the sim-
plicity and speed of stateless MAC address rewriting to an
extreme. Because no state is stored, the additional code and
data required is small. The Stateless/LAN implementation
simply overwrites the MAC address of the packet and re-
transmits it on the LAN. The simplicity of the transformation
allows rewriting to occur in the context of the network de-
vice driver, namely, in the kernel routine that device drivers
use to register incoming packets. This implementation thus
receives, rewrites, and retransmits packets all within a single
interrupt service cycle; furthermore, no device-specific mod-
ifications are required.

While rewriting the entire request in the interrupt rou-
tine provides performance virtually indistinguishable from
that of a dedicated rewriting router (see Section 4), our
Stateless/LAN implementation is not practical. When State-
less/LAN processes fragmented packets, only the first IP
fragment contains the necessary TCP port information to en-
sure proper delivery and subsequent fragments are misrouted.

Because of this shortcoming, we used this implementation
only as an indication of an upper bound on the performance
that can be achieved with DPR-style techniques.

Stateful Approach: In the stateful approach, the packet rout-
ing decision is based on more information than is contained
in the packet. For example, a stateful approach is necessary
in order to route connections based on the current load on
each server host. Most of our efforts have concentrated on
this approach.

Stateful Implementation: In the stateful method, rewriters
must track TCP connection establishment and termination. A
table of connections currently being rewritten is maintained
by each host and is consulted in order to rewrite each packet.
In implementing these functions we were able to adapt fea-
tures from code already present in the Linux kernel that sup-
ports IP Masquerading. IP Masquerading [12] was devel-
oped to allow multiple hosts to function behind a firewall
without valid IP addresses. Thus, IP Masquerading supports
connections that are initiated from the “hidden” hosts. In or-
der to support a distributed server, we need to support con-
nections connecting to the hidden hosts.

Using the IP Masquerading functions adapted to support
a distributed server, the rewriter has considerable freedom
to choose a destination when it receives the first packet of a
client's TCP stream. After noting its decision in a state table,
it then forwards each packet associated with the connection
using either the MAC rewriting or IPIP encapsulation tech-
nique, depending on the network location of the destination.

At present, the routing decision for a newly observed con-
nection is made by simply obtaining the next entry in a ring of
server addresses. This ring is extended to user space through
a setsockopt(2) system call. By populating the ring in-
telligently, a user daemon can adjust the rewriting policy as
server conditions change.



We note that independently and at approximately the
same time as our work, Clarke developed a general-purpose
TCP forwarding kernel extension based on IP Masquerading
[5] which can also be used to support implementation of dis-
tributed Web servers.

Addressing Techniques:
There are two approaches to addressing packets bound for
another host in a multiple-server environment, depending on
whether the original destination IP address must be commu-
nicated from the rewriter to the destination host.

The first approach is appropriate when there is only one
published IP address for the whole Web server cluster (as
would be the case when a centralized connection router is
used). In this case, the original packet's destination IP ad-
dress (IP ) is replaced with that of the new destination (IP )
and then the packet is routed normally. When the new des-
tination transmits packets to the client, it must be careful to
replace its IP source address (IP ) with that of the rewriter
(IP ), because the client believes its connection to be with
the rewriter (i.e. IP ). Every host in the Web server cluster
knows that its outbound traffic should always bear the source
address IP , so the address IP need not explicitly appear in
rewritten packets.

One consequence of this technique is that the IP and TCP
checksums need to be adjusted when rewriting, since they
both depend on the destination IP addresses in the packet. (In
practical terms, only the IP checksum is important, since IP
routers do not examine the payload of IP packets they en-
counter [3]. However, firewalls and other types of “smart
routers” might in fact examine the TCP checksum, so it is
advisable to recompute it as well.)

The second approach applies to systems with more than
one published IP address, as in DPR. In a DPR system, a
mechanism is needed to communicate both the original ad-
dress (IP ) and the rewritten address (IP ) in packets sent
between the rewriter and the destination hosts so that the des-
tination knows how to populate the IP source address field.
The most efficient method we used was to rewrite the MAC
address of the packet and retransmit, leaving the original
packet's IP addresses and checksums undisturbed. (This is
how Internet hosts normally send packets through a gateway.)
Although fast, the method only works if both servers are lo-
cated on the same LAN. If the servers are on different LANs,
then IP-level routing is necessary. In this case we tunnel the
original packet to IP with IPIP encapsulation as described in
RFC2003[15]. When the packet arrives at IP , the outer IPIP
header is discarded and the inner header is interpreted.

Whether MAC rewriting or IPIP encapsulation is used,
the server with primary address IP eventually receives and
processes an IP packet bearing the original destination ad-
dress IP . Therefore, each server must be configured to re-
spond to all of the possible original destination addresses
(such as IP ) in addition to its own primary address. In our
Linux implementation, this was just a matter of adding loop-

back alias devices with the extra addresses.

4. Performance Evaluation

In this section we describe the performance of DPR vari-
ants. We have two goals: first, to characterize the overheads
present in DPR; and second, to study the scalability of DPR
as compared to centralized connection routing.

To address these two goals we ran two series of exper-
iments. The first series used a small network in determin-
ing the performance overhead of Stateful DPR and State-
less/LAN DPR when compared to a centralized connection
router, and to baseline cases involving no connection rout-
ing. For this set of experiments we used the SPECweb96 [6]
benchmarking tool because it places relatively smooth load-
ing on the server over time.

The second series of experiments concentrated on explor-
ing the scalability of Stateful DPR compared to centralized
connection routing. Since our goal in this section was to ex-
plore how DPR would behave under realistic conditions, we
used the Surge reference generator [4] to provide the server
workload. Surge is a tool developed as part of the COM-
MONWEALTH project that attempts to accurately mimic a
fixed population of users accessing a Web server. It adheres
to six empirically measured statistical properties of typical
client requests, including request size distribution and inter-
arrival time distribution. As a result, it places a much burstier
load on the server than does SPECweb96. In addition, while
SPECweb96 uses an open system model (requested work-
load is specified in GETs/sec), Surge adopts a closed system
model (workload is generated by a fixed population of users,
which alternate between making requests and lying idle). As
a result, Surge's workload intensity is measured in units of
User Equivalents (UEs).

In both series of experiments we restricted our configura-
tions to a single LAN in order to provide repeatable results.
Although the LAN was not completely isolated during our
measurements, only a negligible amount of unrelated traffic
(mostly ARP requests) was present.

4.1. Performance Overhead of DPR

As described above, SPECweb96's principal independent
parameter is the requested throughput, measured in HTTP
GETs per second. The measured results of each experiment
are the achieved throughput (which may be lower than what
was requested) and the average time to complete an HTTP
GET (measured in msec/GET). For each experiment, we ran
SPECweb96 for the recommended 5 minute warmup, after
which measurements were taken for 10 minutes. System
hosts (both clients and servers) consisted of Hewlett-Packard
Vectra PCs, each having a 200MHz Pentium Pro processor,
32 MB of memory, and a SCSI hard drive. Servers ran Linux
2.0.30 on Linux ext2 filesystems, while clients ran Windows
NT 4.0. We used the NT Performance Monitor to ensure that



0

50

100

150

200

0 50 100 150 200 250

A
ch

ei
ve

d 
T

hr
ou

gh
pu

t (
G

E
T

s/
se

c)

Requested Throughput (GETs/sec)

Baseline, 2 Hosts
Centralized Router

Stateless/Imbalanced
Stateful/Imbalanced

Stateful/Balanced
Baseline, 1 Host

Figure 2. Throughput of DPR Variants

our clients had capacity to spare when our servers became
saturated. The LAN was a 100 Mbit/sec Hewlett-Packard
AnyLAN switch; this star network is frame-compatible with
Ethernet, but it also uses a round-robin schedule together with
a client sensing mechanism so that packet collisions do not
occur. The Web servers used were Apache 1.2.4.

We describe the results of six experiments:

Baseline 1-Host. This experiment tests the performance of a
single, unmodified server driven by a single client.

Baseline 2-Host. This experiment consists of two simulta-
neous copies of the Baseline 1-Host experiment. It uses
two clients and two servers, and each client sends requests
to only one server.

Centralized Router. This experiment consists of two clients
sending requests to a centralized connection router, which
then distributes the load evenly between two servers. The
Centralized Router implementation is our Stateful DPR
configured to redirect all connections to the other two
servers (i.e. the routing function does not compete with
local web service).

Stateless/Imbalanced. This experiment uses the State-
less/LAN variant of DPR, running on two hosts. Two
clients generate requests, but they send all requests to one
of the server hosts, which then redistributes half of them.

Stateful/Imbalanced. This experiment uses the Stateful
variant running on two hosts. Again two clients generate
requests, sending all requests to one host, which redis-
tributes half of them.

Stateful/Balanced. This experiment again uses the Stateful
variant, but now the two clients generate equal amounts of
requests for each server host. Each host then redistributes
half of its requests, sending them to the other server.

Baseline 1-Host and Baseline 2-Host define the range of pos-
sible performance for the systems under study, with Baseline
2-Host defining the best performance that might be expected

0

50

100

150

200

0 50 100 150 200

A
ve

ra
ge

 D
el

ay
 (

m
se

c/
G

E
T

)

Throughput (GETs/sec)

Baseline, 2 Hosts
Centralized Router

Stateless/Imbalanced
Stateful/Imbalanced

Stateful/Balanced
Baseline, 1 Host

Figure 3. Request Delay of DPR Variants

from a 2-host server system. The Centralized Router results
represent the performance of the most common alternative to
DPR, and show the effect of removing the packet rewriting
function from the server hosts. Note that each packet travels
through two server nodes in the DPR and Centralized Router
cases, and through only one server node in the Baseline cases.

The Stateless/Imbalanced and Stateful/Imbalanced exper-
iments serve to show the worst possible performance of DPR,
i.e., when the arriving request load is maximally imbalanced
(all requests to one host). The Stateful/Balanced experiment
allows comparison of the best and worst possible load arrival
distributions for DPR.

Throughput:
In Figure 2 we show the achieved throughput of each ex-
perimental system as a function of the requested throughput.
The Baseline 1-Host case saturates at about 100 GETs/sec,
and the Baseline 2-Host case at the corresponding level of
about 200 GETs/sec. In between the experiments fall into
two groups: the Stateful experiments saturate at about 180
GETs/sec, while the Stateless/Imbalanced and Centralized
Router saturate at about 195 GETs/sec. The fact that the
Stateful/Balanced and Stateful/Imbalanced show nearly iden-
tical performance indicates that when requests arrive in a
highly imbalanced way and all packet rewriting occurs on
only one host, DPR is still able to achieve good throughput.
This comparison indicates that the performance demand of
packet rewriting is quite moderate, and so adding a packet
rewriting function to a host already performing Web service
does not represent a significant additional burden.

Comparing the Stateful and Stateless cases, we see that
the Stateless case performs indistinguishably from the Cen-
tralized Router case, and they both are equivalent to the Base-
line 2-Host case (in which no packet rewriting is taking place
at all). The similarity of the Stateless to the Baseline 2-Host
case shows that the performance cost of packet rewriting in



0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 10 20 30 40 50 60

M
ea

n 
B

yt
es

/S
ec

on
d

Surge User Equivalents per Host

1 Server

2 Servers

3 Servers

4 Servers

5 ServersDPR
Centralized

Figure 4. Throughput Comparison

the Stateless/LAN implementation is negligible.

An important implication of the similarity of the Stateless
and Centralized Router cases is that the centralized connec-
tion routing architecture is not cost-effective. This is because
an entire node has been allocated to the connection routing
task (there are three nodes in the Centralized Router case
and only two in the DPR cases). Thus the additional cost of
adding a specialized connection router to a small system may
not be justified. It is just as efficient, and cheaper, to use the
server hosts already present to perform the connection rout-
ing function. This point will be reinforced by our results in
Section 4.2 on the scalability of the DPR architecture com-
pared to the centralized routing architecture.

Delay:
In addition to providing high throughput, it is important to
verify that DPR does not add unacceptable delays to the sys-
tem. In Figure 3 we show the average response time of an
HTTP GET (in msec/GET) as a function of system through-
put, for the same six experiments. In this figure we only
plot those points for which achieved and requested through-
put are nearly equal, so throughput does not reach quite the
same maximum values as in Figure 2. Figure 3 shows that
the experiments break into the same groupings as before.
Again, the Stateful/Balanced and Stateful/Imbalanced cases
show approximately similar performance. Furthermore the
Stateless case shows approximately similar delays to the TCP
Router and the Baseline 2-Host cases.

Since packets travel through an additional server node in
the DPR and TCP Router cases as compared to the Baseline
2-Host case, there is a potential for greater delay in those
cases. However, it appears that the additional delays induced
by the additional hop are small compared to the average re-
sponse time for an HTTP GET. The response time of an av-
erage HTTP GET under SPECweb96 is in the range of 25 to
150 milliseconds on a LAN. Were the system serving packets
over the global Internet, response times would be even greater
since the added round-trip times would be tens to hundreds of

500000

1e+06

1.5e+06

2e+06

2.5e+06

1 2 3 4 5

M
ea

n 
B

yt
es

/S
ec

on
d

Number of Server Hosts

DPR
Centralized

Ideal

Figure 5. Scalability Comparison

milliseconds as well. The addition of additional packet pro-
cessing due to Stateless/LAN DPR, which appears to be on
the order of tens to hundreds of microseconds, is a negligible
additional cost for a Web server application.

4.2. Scalability of DPR

The previous section showed that the overheads of DPR were
no greater than that of a centralized connection router, and
that even when connection routing load was completely un-
balanced, system performance did not suffer. These results
suggest that DPR should show good scalability, but it is still
necessary to evaluate DPR's scalability in practice. For com-
parison purposes we also evaluate the centralized connection
routing case.

The scalability series of experiments took place on differ-
ent equipment than the performance overhead experiments.
All of the Web/DPR servers were Dell Dimension PCs with
64 MB of memory and IDE hard drives running Linux 2.0.30
and Apache 1.2.1. Four of the Web servers had 200 MHz
Pentium Pro processors, and one had a 233 MHz Pentium
II. The latter system appears in our results as the fourth Web
server in both DPR and centralized connection router experi-
ments. Our fastest system, a 266 MHz Pentium II, was used
only as a connection router. Both clients and servers used
Linux ext2 file systems. The LAN was a 12-port 3Com Su-
perStack II Switch 3000 10/100 running Ethernet in full du-
plex at 100Mb/s. The total bandwidth measured during the
experiments show that network capacity was not a limiting
factor; we also observed that our clients were able to saturate
our servers before reaching their own capacity.

As described above, for these experiments we used the
Surge load generator. In the DPR cases, we configured Surge
so that equal amounts of traffic were directed at each server
host. In an host system, each DPR host serves of the
requests locally and distributes of the requests
equally to the other hosts in the system. In adopting this
routing policy, our results for DPR are quite conservative.



A better policy that is still quite practical would be for each
server host to only redirect requests that arrive when the host
is loaded above the system average; in that case, a fraction of
requests much smaller than would be redirected,
and the overall performance of the DPR system would be bet-
ter than that reported here.

In our experiments we compare -host DPR systems
to centralized routing configurations consisting of server
hosts plus a connection router. By doing so, we emphasize
the scalability difference between the architectures. How-
ever these tests do not compare equivalent systems in terms of
hardware costs; as described above, it is more cost-effective
to organize a system of hosts in a DPR architecture than to
set aside one host solely for connection routing.

In order to scale the demand placed on the server sys-
tems as the number of server hosts grows, it is necessary to
proportionally increase the number of User Equivalents used
in Surge. For this reason we report results in terms of User
Equivalents per server host.

The achieved throughput for a range of both DPR sys-
tems and centralized routing systems is shown in Figure 4.
This figure shows that for small systems (2-3 hosts), DPR and
centralized routing behave approximately equivalently. How-
ever for larger systems (4-5 hosts), the centralized approach
seems to show lower maximum throughout than the DPR ap-
proach. This evidence that the centralized node is beginning
to become a bottleneck is supported by the fact that the dif-
ference between the two systems becomes more pronounced
as the demand grows.

To illustrate the onset of a bottleneck effect in the central-
ized routing case, we show the peak throughput achieved as a
function of the size of the system in Figure 5. Peak through-
put was obtained in each case by averaging the throughput
over the range 50-60 UEs per host (which in each case was
where system saturation was judged to have set in). The fig-
ure also shows the “ideal” throughput obtained by simply
scaling up the throughput obtained by a single unmodifed
host.

This figure shows that DPR obtains near-perfect speedup
for server systems up to five hosts in size. In contrast, the
centralized routing architecture seems to show signs of inef-
ficiency at larger sizes; on four hosts, maximum throughput
under centralized routing has dropped to 94% of ideal, and
on five hosts the centralized system is only 86% efficient.

5. Summary

In this paper we have proposed and experimentally evalu-
ated a protocol for routing connections in a distributed server
without employing any centralized resource. Instead of us-
ing a distinguished node to route connections to their desti-
nations, as in previous systems, Distributed Packet Rewrit-
ing (DPR) involves all the hosts of the distributed system in
connection routing. The benefits that DPR presents over cen-

tralized approaches are considerable: the amount of routing
power in the system scales with the number of nodes, and the
system is not completely disabled by the failure of any one
node. DPR allows more cost-effective scaling of distributed
servers, and as a result more directly supports the goals of the
COMMONWEALTH project.

References

[1] D. Anderson, T. Yang, V. Holmedahl, and O. Ibarra. SWEB:
Towards a Scalable World Wide Server on Multicomputers. In
Proceedings of IPPS'96 , April 1996.

[2] E. Anderson, D. Patterson, and E. Brewer. The
MagicRouter: An application of fast packet interpos-
ing. http://HTTP.CS.Berkeley.EDU/ eanders/
projects/magicrouter/
osdi96-mr-submission.ps, May 1996.

[3] F. Baker. IETF RFC1812: Requirements for IP Ver-
sion 4 Routers. See http://ds.internic.net/rfc/
rfc1812.txt.

[4] P. Barford and M. Crovella. Generating representative work-
loads for network and server performance evaluation. In Pro-
ceedings of ACM SIGMETRICS '98 , pages 151–160, Madi-
son, WI, June 1998.

[5] S. Clarke. Port Forwarding in Linux. See descrip-
tion at http://www.ox.compsoc.org.uk/ steve/
portforwarding.html.

[6] T. S. P. E. Corporation. Specweb96. http://www.
specbench.org/org/web96/.

[7] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scal-
able and highly available web server. In Proceedings of IEEE
COMPCON'96 , pages 85–92, 1996.

[8] S. Garfinkel. The Wizard of Netscape. WebServer Magazine,
pages 58–64, July/August 1996.

[9] IBM Corporation. The IBM Interactive Network Dis-
patcher. See http://www.ics.raleigh.ibm.com/
netdispatch.

[10] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP
server: The NCSA prototype. In Proceedings of the First In-
ternational World-Wide Web Conference, May 1994.

[11] K. Law, B. Nandy, and A. Chapman. A Scalable and Dis-
tributed WWW Proxy System. Technical report, Nortel Lim-
ited Research Report, 1997.

[12] Linux IP Masquerade Resource. See http://ipmasq.
home.ml.org.

[13] J. Mogul, R. Rashid, and M. Accetta. The Packet Filter: An
Efficient Mechanism for User-level Network Code. In Pro-
ceedings of SOSP'87: The 11th ACM Symposium on Operat-
ing Systems Principles, 1987.

[14] J. C. Mogul. Network behavior of a busy Web server and its
clients. Research Report 95/5, DEC Western Research Labo-
ratory, Oct. 1995.

[15] C. Perkins. IETF RFC2003: IP Encapsulation within IP. See
http://ds.internic.net/rfc/rfc2003.txt.

[16] R. J. Schemers. lbnamed: A Load Balancing Name Server in
Perl. In Proceedings of LISA'95: The 9th Systems Adminis-
tration Conference, 1995.

[17] C. Systems. Scaling the Internet Web Servers: A white Pa-
per. http://www.cisco.com/warp/public/751/
lodir/scale wp.htm, 1997.


