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Abstract: In this paper, SETH,(a) a hardwired imple-
mentation of the recently proposed \Information Disper-
sal Algorithm" (IDA) [7], is presented. SETH allows the
real-time dispersal of information into pieces as well as
the retrieval of the original information from the minimal
intact subset of these pieces. We begin the paper by in-
troducing IDA and overviewing SETH operation. Next,
the di�erent algorithms used are described and schemat-
ics of varying levels of details are presented. Next, we
present an implementation of SETH [1]-[2] using Scalable
CMOS technology that has been fabricated using a MO-
SIS 3-micon process. We conclude the paper with poten-
tial applications and extensions.

Introduction

The storage and transmission of data in computer sys-
tems raises signi�cant security and reliability problems.
In particular, data might be lost due to hardware failures,
it might be accidentally (or even maliciously) garbled or
destroyed, and it might be read and interpreted by unau-
thorized users.

The common solution to the aforementioned security
problems is to have users store and communicate their
data using some form of encryption, where only authorized
users are enabled to decrypt the information throught the
use of appropriate Secret Keys [8]. The proven di�culty of
decrypting the information without knowing the secret key
guarantees a high level of security. On the other hand, to
protect against possible failures, redundancy is often used
as the only alternative to achieve fault-tolerance. This is
usually done by having the users replicate their (possibly
encrypted) data into n di�erent machines [5]. The inde-
pendency of the failure modes of these machines guaran-
tees a high level of availability. The main disadvantages
of this encryption and replication strategy is that it re-
sults in an n-fold blowup of the total storage required in
the system. Moreover, the existence of all the information
(possibly encrypted) in one site(b) for long periods might
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(b)whether stored in or communicated through that site

make it possible for adversaries to break the secret key.
Recently, Michael Rabin [7] proposed the \Informa-

tion Dispersal Algorithm (IDA)" as a potential technique
that would achieve the required security and reliability
using a much smaller level of redundancy and by keep-
ing only partial information at a speci�c site. The main
idea is to use a secret key to disperse the information of a
�le F into n pieces which are transmitted and stored on
n di�erent machines (or disks) such that the contents of
the original �le, F , can be reconstructed from any m of
its pieces, where m � n. On the one hand, the proposed
technique guarantees the con�dentiality of the dispersed
information. As a matter of fact, it is hard to get any clue
about the original information unless at least m pieces
from the dispersed �le are collected. This makes the task
of the adversaries more di�cult, since they have to con-
trol m of the sites and not only one. Even if this happens,
it is provably very di�cult to reconstruct the original �le
unless the secret keys are known. On the other hand,
the proposed technique guarantees a higher availability,
since it tolerates up to (n �m) failures. The salient fea-
ture of the \Information Dispersal Algorithm" is that each

of the dispersed pieces is of size jF j
m
, where j F j is the

size of the original �le. Hence, the added redundancy is
( n
m
� 1) � 100%.
In this paper, we present a hardwired implementation

of the \Information Dispersal Algorithm" that would al-
low the execution of the algorithm in real-time. A chip,
which we called SETH(c), has been designed in the VLSI
Lab of Harvard University using Scalable CMOS technol-
ogy and has been fabricated by the MOSIS 3-micron pro-
cess. SETH accepts a stream of data and a set of vector-
keys (see the description below) along with the necessary
controls so as to produce the streams of encrypted data to
be stored on (or communicated with) the di�erent sinks.

(c)According to an old Egyptian legend, SETH (an Egyptian
prince) killed his brother OSIRIS and cut his body into small pieces
and \dispersed" it all over the Eastern Mediteranean. Later, his lov-
ing wife, ISIS, collected all the pieces together and \reconstructed"
OSIRIS, bringing him to life again as the Evil God of the Under-
world.



The chip might as well accept the streams of data from the
di�erent machines along with the necessary controls and
vector-keys so as to reconstruct the original information.

We begin this paper by introducing the Information
dispersal algorithm and presenting an overview of SETH
design. Next, we describe how the di�erent operations are
done using \irreducible polynomial arithmetic." In partic-
ular, we outline general methods for e�cient addition and
multiplication in these systems. Next, functional units are
described and system block diagrams of varying levels of
details are presented. We conclude the paper by exam-
ining potential applications and extensions for SETH. In
particular, we are considering the use of IDA in the de-
sign of I/O subsystems, Redundant Arrays of Inexpensive
Disks (RAID) systems, reliable communication, and rout-
ing in distributed/parallel systems. SETH demonstrates
that using IDA in these applications is feasible.

SETH was designed using MAGIC. The design was
tested using ESIM and SPICE. The MAGIC layout of the
chip as well as the simulation results are available in the
VLSI Lab, Harvard University [1]. The chip was fabri-
cated by MOSIS on a 3-micron SCMOS-technology pro-
cess. Twelve packages were returned and the functionality
of the chip was veri�ed.

Overview of SETH

SETH is an interface that allows the reliable and secure
storage and communication of information between the
di�erent units of a computing system. Reliability is guar-
anteed by using redundant communication and/or stor-
age, while security is achieved using encryption. A major
objective in SETH design was versatility and 
exibility.
We view SETH as a basic building block. By using many
of these blocks in di�erent con�gurations, one can achieve
di�erent design objectives (namely di�erent levels of fault-
tolerance, recoverability, redundancy and security).

SETH can be operated in two modes; Disperse-mode
or Reconstruct-mode. In disperse-mode, the data given
to SETH is encrypted, dispersed and sent to the di�er-
ent sinks. In reconstruct-mode, the data from a num-
ber of intact sinks is collected and recombined to yield
the original information. The encrypt/decrypt and dis-
perse/recombine functions are achieved using a set of se-
cret keys that must be supplied to SETH. Figure 1, shows
the SETH disperse/reconstruct modes.

Keeping the aforementioned versatility and 
exibility
in mind, we decided to make the SETH chip interface an
8-bit bus to four 4-bit buses { using four 8-bit keys. Hence,
a stream of 8 bits can be dispersed into four streams of 4
bits each, so that any two of these four streams are su�-
cient to reconstruct the original 8-bit stream. Di�erent se-
ries/parallel con�gurations using SETH are possible. For
instance, two SETH chips in parallel can be used to inter-
face a 16-bit bus to eight 4-bit buses or to four 8-bit buses
or to two 16-bit buses. In any case the level of redundancy
is 100% and the achievable fault-tolerance is 50% (that is
we tolerate the loss of 50% of the storage sinks or chan-

Figure 1: SETH Disperse and Reconstruct modes

nels). These, however, are still controllable. For instance
by using only three of the four output buses, the redun-
dancy drops to 50%, whereas the level of fault-tolerance
becomes 33%. In any of the above cases security is guaran-
teed since the dispersed data is actually encrypted. More-
over, by using exactly two of the output buses, SETH can
be used just for encryption and dispersal (with no added
redundancy and no support for failures). Another degree
of freedom (both in the redundancy/fault-tolerance and
security levels) can be achieved by using series con�gura-
tion of SETH.

Information Dispersal and Retrieval

In this section we explain how the IDA works. We single
out the di�erent operations to be performed and which
must be carried out in real-time by SETH. For a thorough
presentation of the algorithm, we refer the reader to the
original paper on IDA, [7], and to the data scattering and
gathering examples in the Appendix of [2].

Let F be the original �le (information) we want to
disperse. The main idea behind IDA is to split this �le
into n di�erent pieces so that recombining any m of these,
m � n, is su�cient to reconstruct F , whereas any number
of pieces less than m would not be su�cient to reveal any
information about the contents of any portion of F .

The original �le F can be viewed as a sequence (or
stream) of data on the form F = b1b2b3b4:::etc: , where
each bi in this stream can be viewed as an integer. In order
to disperse this stream, we choose a set of n vectors, secret
keys (V1; V2; :::; Vn) each of length m. Theses keys have to
meet certain (easily satis�able) linear independence con-
ditions (see [7] and [2] for details.) Let Anm be the array



whose rows are the selected vectors. A represents a map-
ping from an m-dimensional space to an n-dimensional
space, or in other words, from a sequence of m elements
to another sequence of n elements. To disperse the �le F ,
we simply map each sequence of m elements from F into
a new sequence of n elements using the transformation A.
Each element from the resulting sequence is sent to a dif-
ferent site and kept there. So, for each m elements of F
we send one element to each of the n sites. Therefore, to

disperse the whole �le F we will need to send jF j
m

elements
to each of the n sites.

Now, suppose that we want to reconstruct the orig-
inal �le F from the pieces dispersed as described above.
This is done by reading any m of these pieces.(d) Let the
pieces be from sites s1; s2; s3; :::; sm. Let Bmm be the ar-
ray whose rows are (Vs1 ; Vs2; Vs3 ; :::; Vsm). Thus, B maps
sequences of m elements from F into sequences of m ele-
ments, which by virtue of the dispersion step above, are
kept at sites s1; s2; s3; :::; sm. To reconstruct the �rst m
elements of F we need simply to collect the �rst element
from each of m di�erent sites and use the appropriate in-
verse transformation (T = B�1). Note that if the keys
were appropriately chosen, such an inverse is guaranteed
to exist.

In SETH we decided to pick n = 4 and m = 2, so
that F is dispersed into 4 di�erent pieces and using no less
than 2 of these pieces would be su�cient to reconstruct
F . Moreover, we decided to represent F as a stream of
hexadecimal digits, nibbles, (integers in the range [0::15]).
Hence, each byte (8 bits) of F can be viewed as 2 nibbles
and we use the IDA described above to produce 4 nibbles
that are dispersed to the 4 di�erent sites. This is illus-
trated in Figure 1. It is to be noted, however, that the
design techniques that we present in this paper are inde-
pendent of the choices above and can be easily applied to
any other choices.

The Disperse operation
The Disperse is simply a 4� 2 transformation A,

A =

0
BBB@

V T
0

V T
1

V T
2

V T
3

1
CCCA =

0
BBB@

a00 a01
a10 a11
a20 a21
a30 a31

1
CCCA

where, Vi is the ith key-vector and each aij is a hexadec-
imal (4-bit) number. Let (b0b1)

T represent the two hex-
adecimal digits (a total of 8 bits) from the input stream.
To disperse this piece of information, we use the transfor-
mation A as follows:0

BBB@
c0
c1
c2
c3

1
CCCA =

0
BBB@

a00 a01
a10 a11
a20 a21
a30 a31

1
CCCA�

 
b0
b1

!

(d)If less than m pieces are available then the �le cannot be recon-
structed, and if more than m pieces are available then the use of any
subset of m pieces will su�ce.

where, ci is the hexadecimal digit sent to the ith site.

The Reconstruct operation
Given that the dispersed data at sites s1 and s2 is intact,
the Reconstruct transformation is simply a 2 � 2 matrix
T ,

T =

 
V T
s1

V T
s2

!�1

=

 
t00 t01
t10 t11

!

Let (c0c1)
T represent the two hexadecimal digits (a

total of 8 bits) from the two intact sites. To reconstruct
the original byte of information, we use the transforma-
tion T as follows: 

b0
b1

!
=

 
t00 t01
t10 t11

!
�

 
c0
c1

!

Irreducible Polynomial Arithmetic
All operations (namely additions and multiplications)
needed for the IDA have to be carried-out using the ir-
reducible polynomial arithmetic (IPA) where integers are
viewed as polynomials over some �nite �eld Zp, p is a
prime number (see the Appendix of [2] for a more detailed
discussion and for a complete example). Taking p = 2
(an obvious choice for digital applications), integers are
represented as polynomials with binary coe�cients. For
instance, the hexadecimal digits from 0 to 15 are repre-
sented in IPA as follows:-0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0
1
x

x+ 1
x2

x2 + 1
x2 + x

x2 + x+ 1
x3

x3 + 1
x3 + x

x3 + x+ 1
x3 + x2

x3 + x2 + 1
x3 + x2 + x

x3 + x2 + x+ 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

In an IPA with 16 elements, all operations are done
modulo an irreducible 4th degree polynomial (one that
cannot be divided by any polynomial of 3rd or lesser de-
gree.) For instance, it can be easily shown that (x4+x+1)
is an irreducible 4th degree polynomial. Indeeed, this is the
one used in SETH.

Addition: Addition is straightforward. To add two inte-
gers, we add their corresponding polynomials. This is done
by adding (modulo-2) the coe�cients of the corresponding
powers. The following is an example of addition done in
IPA:

5 + 6 = (x2 + 1) + (x2 + x) = (x+ 1) = 3



It is obvious that addition is just the bitwise
\exclusive-or" of the binary representation of the integers.
This makes the hardware implementation straightforward.

Multiplication: Multiplication is a little bit more compli-
cated. To multiply two integers, we multiply their cor-
responding polynomials. If the resulting polynomial is of
degree less than the order of the irreducible polynomial
(4 in our case) then we got the polynomial representa-
tion of the result. Otherwise, we have to get the residue
of the result when divided by the irreducible polynomial.
Again, all additions and multiplications are done (modulo-
2). The following is an example of a multiplication done
using (x4 + x+ 1) as the irreducible polynomial:

3 � 10 = (x+ 1)(x3 + x)

= (x4 + x3 + x2 + x)mod(x4 + x+ 1)

= (x3 + x2 + 1)

= 13

Implementing multiplication in IPA is no big deal!!..
The most straightforward implementation would be us-
ing table lookup. A more e�cient, elegant and scalable
implementation, however, can be done using \shifts" and
selective \exclusive-or's". We discuss this in the following
section.

A Disperse/Reconstruct example
Let F = 2; 4; 1; 14; 6; 8; :::etc: be the stream to be dis-
persed, and assume that we selected the secret key-vectors
to be:  

1
0

!
;

 
1
1

!
;

 
1
2

!
;

 
1
3

!

Hence, the transformation A is:

A =

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA

To disperse F we divide it into sequences of 2 elements
as shown below:

F = 2; 4|{z}; 1; 14| {z }; 6; 8|{z}; :::etc:
Next, each of these sequences is transformed using A

and we obtain the new sequences shown below:0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

 
2
4

!
=

0
BBB@

2
6
10
14

1
CCCA

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

 
1
14

!
=

0
BBB@

1
15
14
0

1
CCCA

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

 
6
8

!
=

0
BBB@

6
14
5
13

1
CCCA

: : : etc: : : :

From the above, the resulting sequence will be:

F 0 = 2; 6; 10; 14| {z }; 1; 15; 14; 0| {z }; 6; 14; 5; 13| {z }; :::etc:
The �rst sink will be given the 1st element from each re-
sulting sequence, i.e. (2; 1; 6; :::etc: ) Similarily, the second
ssink will be given the 2nd element from each resulting se-
quence, i.e. (6; 15; 14; :::etc: ), ...etc.

F 0
1 = 2; 1; 6; :::

F 0
2 = 6; 15; 14; :::

F 0
3 = 10; 14; 5; :::

F 0
4 = 14; 9; 13; :::

Now, suppose that the second and fourth site fail and
we want to reconstruct the original �le F . This is done
by �rst computing the transformation B which consists
of the key-vectors for the available sites (namely the �rst
and third) as shown below:

B =

 
1 0
1 2

!

Second, we compute the inverse of this transformation
T = B�1 as follows:(e)

T = B�1 =

 
1 0
9 9

!

Now, to reconstruct the �rst sequence of m elements
of original �le, we transform the sequence consisting of the
�rst element from the �rst and third sites, namely (2; 6),
using T as follows: 

1 0
9 9

!
�

 
2
6

!
=

 
2
4

!

Thus obtaining the �rst two elements (2; 4) of the original
�le.

Similarily, to get the next two elements of F , we trans-
form the sequence consisting of the second element from
the �rst and third sites, namely (6; 14), using T as follows: 

1 0
9 9

!
�

 
6
14

!
=

 
1
14

!

Thus obtaining the third and fourth elements of F , namely
(1; 14). The process is basically the same for the rest of
the �le.

Notice that the reconstruction needs not be done from
the same sinks. The set of intact sinks can be changing
dynamically, provided that the appropriate keys are sup-
plied.

(e)This inverse is with respect to the irreducible polynomial 10011



SETH functional units

Given the 2 hexadecimal digits from the input stream
b0; b1, and given the 8 hexadecimal digits which de�ne
the transformation A = [aij ]; 0 � i; j � 3 described above,
SETH should be able to compute 4 hexadecimal digits
c0; c1; c2; c3 using the relation:0

BBB@
c0
c1
c2
c3

1
CCCA =

0
BBB@

a00 a01
a10 a11
a20 a21
a30 a31

1
CCCA�

 
b0
b1

!

Moreover, using the appropriate inverted transformation
T = [tij ]; 0 � i; j � 1, the data c0; c1 returned from any
two di�erent sinks can be recombined using the relation: 

b0
b1

!
=

 
t00 t01
t10 t11

!
�

 
c0
c1

!

In the above matrix operations, all the additions and
multiplications are to be done using IPA. It is obvious
that the main functional units in SETH are the adder and
multiplier (which themselves might be realized using other
basic building blocks.) By using an array of eight multipli-
ers and by adding the approriate results together using 4
adders, a data path that implements matrix multiplication
can be realized. To be able to use the same data path for
both the disperse and reconstruct modes of SETH, some
control logic needs to be added.

The Adder
Let X = x3x2x1x0 and Y = y3y2y1y0 be the binary repre-
sentation of the two hexadecimal digits X; Y to be added.
As we have stated earlier, addition using IPA in the binary
�eld Z2, reduces to the bitwise \exclusive-or." Thus, the
logical equations for the result Z = z3z2z1z0 is given by:

z3 = x3 � y3
z2 = x2 � y2
z1 = x1 � y1
z0 = x0 � y0

The Multiplier
Let X = x3x2x1x0 and Y = y3y2y1y0 be the binary repre-
sentation of the two hexadecimal digits to be multiplied,
where the result is Z = z3z2z1z0.

First, we notice that multiplication of binary num-
bers actually reduces to successive shifts and adds; in our
case exactly four shift/add stages are required (one stage
for each bit of Y ). In each of these stages, the accumu-
lated value W = w3w2w1w0, initialy being 0000, is shifted
left one bit and if the corresponding bit of Y is 1, X is
added to the accumulated value and the result is propa-
gated to the next \lower" stage. Of course all additions
have to be done using the technique described above. Sec-
ond, we notice that the resulting number (using the de-
scribed four-stage shift/add) cannot be used directly since
the polynomial representation of this result might now be

of fourth (or higher) degree and the residue of this result
should be computed using x4 + x+ 1(� 10011). To com-
pute this residue means that we need to perform succes-
sive subtractions. Fortunately, subtraction (modulo-2) is
just the same as addition (modulo-2). Moreover, we note
that these subtractions can be actually done within each
stage of the above shift/add steps (and hence need not
be accumulated till the end of the multiplication. Finally,
we notice that at most one subtraction is needed within
each stage of the multiplier since in each such stage, the
degree of the accumulated result cannot be increased by
more than one, and consequently, by subtracting the irre-
ducible polynomial 10011 just once (whenever an over
ow
is detected) guarantees that the accumulated result will
remain of the third degree (or less).

An algorithm to implement the above technique is
shown in Figure 2. In this algorithm, each iteration cor-
responds to one stage of the multiplier. Several optimiza-
tions can be applied to the algorithm. First, we notice
that the test for whether yi is equal to 0 or not and do-
ing the shift-only or shift-and-add operation accordingly
can be replaced by a shift and add to the bitwise product
(\and") of yi and X . Second, we notice that the test for
whether a subtraction is needed or not can be replaced by
always doing an \exclusive-or" of the result with w4 (since
if w4 = 0 the \exclusive-or" won't change anything). Fi-
nally, we notice that a� 0 = a. The optimized version of
the algorithm is given in Figure 3. In Figure 4 we illus-
trate the use of this optimized and systematic method in
computing the product of 1011 by 1100.

The above algorithm is the basis for our multiplier
design. As a matter of fact the whole multiplier is con-
structed using four identical stages stacked together. Each
stage accepts the accumulated value computed from the
previous stage (stage #3 being fed with 0000). Also each
stage accepts the value of X and one of the bits of Y .
The result of the multiplication is the accumulated result
from stage #0. The design of each of the multiplier stages
requires exactly four \and" gates and �ve \exclusive-or"
gates. The multiplier unit and the multiplication stage
are shown in Figure 5.

The matrix multiplication unit
The matrix multiplication unit can be simply built using 8
multipliers to multiply in parallel the 2-element input vec-
tor with the corresponding elements of the transformation
matrix, yielding 8 di�erent products. Each couple of these
products is added in parallel using a separate adder to pro-
duce the required 4-element output. Figure 6 shows the
matrix multiplication unit.

Data 
ow Control
SETH is a bidirectional interface between two data
streams. These streams are fed to SETH using two bidi-
rectional ports B & C. Both the disperse and reconstruct
modes of SETH involve matrix multiplication. This sug-
gests that the same matrix multiplication unit could be



Begin
w4 = 0 ; Initialize result

w3 = 0 ;
w2 = 0 ;
w1 = 0 ;
w0 = 0 ;
for (i = 3; i � 0; i{ {) f For each stage

if (yi = 0) f Is yi = 0 ?

w4 = w3 ; If Yes then just shift left

w3 = w2 ;
w2 = w1 ;
w1 = w0 ;
w0 = 0 ;

g
else f

w4 = w3 � 0 ; If No then shift left and add

w3 = w2 � x3 ;
w3 = w1 � x2 ;
w3 = w0 � x1 ;
w3 = 0� x0 ;

g
if (w4 = 1) f Is there a need to subtract ?

w4 = w3 � 1 ; If Yes then do it !!

w3 = w3 � 0 ;
w2 = w2 � 0 ;
w1 = w1 � 1 ;
w0 = w0 � 1 ;

g
g Done.

End

Figure 2: IPA multiplication

used for both modes with the appropriate control to for-
ward the data in and out from the matrix multiplication
unit.

In disperse-mode (dispersal operation), SETH ac-
cepts 8-bit inputs (2 hexadecimal digits) from its B-port.
These inputs, as well as the 32-bit (8 hexadecimal dig-
its) transformation matrix are forwarded to the matrix
multiplication unit to produce the 16-bit (4 hexadecimal
digits) output which is forwarded to SETH's C-port. In
reconstruct-mode, SETH accepts 16-bit inputs (4 hex-
adecimal digits) from its C-port. Depending on the con-
trol lines applied, only 2 hexadecimal digits from these
4 are forwarded to the matrix multiplication unit along
with the appropriate inverted secret keys provided to the
chip. Finally 8 of the 16-bit output produced are routed
to SETH's B-port (since only half of the matrix multipli-
cation unit is used in this case).

The SETH chip
Figure 7 shows the simulated delays (worst and best and
average), the power consumption, the number of devices
used (FETs) and the area of the layout for the di�erent
units of SETH. This data does not re
ect the delays and
power consumed by i/o, Vdd, and Gnd pads. Twelve
SETH chips were tested in the VLSI Lab. at Harvard
University, of which, three proved to be defective (a yield

Begin
w4 = 0 ; Initialize result

w3 = 0 ;
w2 = 0 ;
w1 = 0 ;
w0 = 0 ;
for (i = 3; i � 0; i{ {) f For each stage

w4 = w3 ; Add X if yi = 1, otherwise add 0

w3 = w2 � (x3:yi) ;
w3 = w1 � (x2:yi) ;
w3 = w0 � (x1:yi) ;
w3 = (x0:yi) ;
w1 = w1 � w4 ; Adjust result (if necessary)

w0 = w0 � w4 ;
g Done.

End

Figure 3: Optimized IPA multiplication

of 75%.) The maximum speed for the correct operation
was found to be approximately 4 Mhz. With a more elab-
orate design (for example, using pipelining) and a more
advanced fabrication technology, we believe that this �g-
ure can be improved by at least one order of magnitude.

Applications of SETH

There are basically two areas where SETH may be used;
Data storage and retrieval, and Data communication. In
a storage system, SETH would be located between the
storage device and the data bus. In the case of a commu-
nication system, SETH would be placed at each end of a
SETH bus with the system bus at each of the remaining
ends. A bene�cal side e�ect of using IDA is improved load
balancing in both storage and communication.

Data Storage and Retrieval using SETH
The integrety of stored information could be improved
greatly by using SETH. Mechanical storage devices are the
weakest components in a computer system due to their in-
tolerance to shocks, vibration, dust, and their inherently
unreliable moving parts.

Two SETH chips con�gured in parallel, and three
disks will make a fault tolerant system with two times
the storage of a single disk. In addition the system is se-
cure from information thefts. During normal operation,
data could be read from any two of the three drives on
the system, while data (dispersed using SETH) will be
written to all three disks at one time. In the case of a
drive failure (or even a bad track or sector on a single
drive), the SETH chips can still read data from the re-
maining two good drives until the bad drive can be re-
placed (or reformatted). When a new drive is installed,
reading and writting all data back to the three disks will
result in an initialization of the newly installed disk. As
a matter of fact, adding a new drive can be done on-line,



0 0 0 0 ; Stage #3
1 0 1 1
-------
1 0 1 1

0 0
-------
1 0 1 1 ; Stage #2

1 0 1 1
-------
1 1 0 1

1 1
-------
1 1 1 0 ; Stage #1
0 0 0 0
-------
1 1 0 0

1 1
-------
1 1 1 1 ; Stage #0
0 0 0 0
-------
1 1 1 0

1 1
-------
1 1 0 1 ; Result

Figure 4: Multiplication of 1011 by 1100 using IPA

with no service interruption. It is important to realize
that if the failure modes of the three disks are indepen-
dent, which is normally the case, then the probability that
the SETH-based design will fail is extremely small. For
instance assume that the probability of loosing a speci�c
track (or sector) is P (P is usually in the order of 10�6).
The SETH-based design will fail to read a speci�c track
if and only if the same track (or sector) in two or more of
the disks will be lost. This probability can be shown to
be 3P 2(1�P ) (in the order of 10�12). A detailed analysis
of the potential gains in I/O subsystems when using IDA
are discussed in [4].

Data storage and retrieval using SETH is secure as
well. When the system needs to be secured, the three
disks can be locked in three di�rent places (maybe under
di�erent machines { or at di�erent sites.) An adversary
will need to access at least two of the disks (assuming that
he knows what SETH is really doing !!) before retrieving
any \meaningful" information. In addition, to do that, the
conversion matrix used for dispersal needs to be known.
This makes it more di�cult especially if such information
is generated randomly by the operating system or even
the underlying hardware.

The use of IDA in the design of RAID systems (Re-
dundant Arrays of Inexpensive Disks) has been investi-
gated in [3]. It provides unparalleled gains in performance,
availability, and required redundancy. We have demon-
strated that such an approach is superior to previously
suggested techniques, namely shadowing and parity [6].

Data communication using SETH
Placing SETH chips on both sides of an information bus
will increase the reliability of the bus and make it harder
for information thieves to tap the information thereon.
For example, one SETH chip may interface with an 8-bit
data bus and send 16 bits to the other end, where another

Figure 5: The multiplier Unit and Stage

SETH chip would be used to recombine the data. The
security of the bus results from the di�culty to decipher
the information. The coding matrices used in SETH can
be changed at frequent intervals to make deciphering still
more di�cult. The bus is highly fault-tolerant since the
original information may be reconstructed from any two
of the four groups of nibbles available on the bus.

In [7], IDA has been used in routing packets on cube-
based architectures. The suggested technique is fully de-
scribed in that paper. An obvious extension of this work
would be to consider network topologies other than the
n-cube. Also, �ne tuning the routing algorithms to the
system parameters(f) is another interesting problem.

Conclusion

In this paper, we have presented \SETH" { a hardwired
implementation of the Information Dispersal Algorithm.
SETH allows the real-time dispersal of information into
di�erent pieces as well as the retrieval of the original infor-
mation from the available pieces. SETH accepts a stream
of data and a set of \secret keys" so as to produce the
required streams of dispersed data to be stored on (or
communicated with) the di�erent machines. SETH might
as well accept the streams of data from the di�erent ma-
chines along with the necessary controls and keys so as to
reconstruct the original information. The design of SETH
involved �nding e�cient techniques for computing using
IPA. In particular, we have outlined general methods for
addition and multiplication in these systems.

The design of SETH can be extended in several ways.
In our current implementation, an outside mechanism is

(f)number of processors, size of packets, failure rates, : : : , etc.



Figure 6: The matrix multiplication unit

-------------------------------------------------
Name Average Worst-case Total Area
of Delay Power No of in
Cell ns. UWatt/MHz. FET's Lambda^2

-------------------------------------------------
Inverter 1.44 2.33 2 038x011
And gate 2.07 0.76 6 036x036
Xor gate 1.99 0.36 8 049x052
Mult-stage 6.02 4.84 64 155x144
Multiplier 17.19 19.28 256 172x621
Adder 1.99 5.76 128 050x800
Matrix unit 19.98 160.00 2176 1565x891
Control 16.01 84.49 46 275x158
SETH 34.85 509.00 2428 Pad:64P46x68
-------------------------------------------------

Figure 7: Delay, power, and area of SETH units

responsible for providing the secret keys (inverse keys) to
be used in dispersing (recombining) the data. This outside
mechanism, however, can be relieved from the burden of
computing the inverse keys if the design is made so that
the inverse keys are computed on the 
y (given the origi-
nal secret keys and the set of intact sinks). This is quite
feasible. Moreover, the possibility of \automatically" gen-
erating the secret keys for each �le (or set of packets) is
very attractive. In this case, information about these keys
has to be included in the dispersed data so as to be used
later in the computation of the inverse keys.

Our choices for n (the number of sinks), m (the min-
imum number of sinks required to reconstruct F ) and k

(the character size) can also be changed. It can be shown
that the size of the chip scales linearly with n�m�k2 and
that the propagation delay scales linearly with k. Increas-
ing n andm would result in a more 
exible design in terms
of the achievable levels of redundancy and fault-tolerance.
On the other hand, increasing the value of k would signif-

icantly enhance the security of the dispersal algorithm at
the expense of a blowup in the size of the chip as well as
an increase in the propagation delay. The increase in the
propagation delay is not a critical factor, since by using
pipelining the overall delay in communicating messages
(especially long ones) can be downplayed. The number
of pins required for the chip is another crucial factor. In
particular, if the chip is to be used for parallel communi-
cation, then the number of pins required for data i/o is
(n+m)� k. For large values of n, m, and k, serial com-
munication is likely to be used. Still, another alternative
would be to partition the computations so as more than
one chip could be used in parallel.

The potential applications of IDA are numerous. In
particular, the use of IDA in I/O systems, RAID de-
signs, distributed communication and routing is promis-
ing. SETH demonstrates that using IDA in these applica-
tions is feasible.
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