
Preprint from ICPP’91: International Conference on Parallel Processing, Chicago, Illinois, August 1991.

E�cient execution of homogeneous tasks

with unequal run times on the Connection Machine �

Azer Bestavros

Harvard University

azer@harvard.edu

Thomas Cheatham

Harvard University

cheatham@harvard.edu

December 1990

Abstract

Many scienti�c applications require the execution of a large number of identical tasks,
each on a di�erent data set. Such applications can easily bene�t from the power of SIMD
architectures (e.g. the Connection Machine) by having the array of processing elements (PEs)
execute the task in parallel on the di�erent data sets.

It is often the case, however, that the task to be performed involves the repetitive appli-
cation of the same sequence of steps, a body, for a number of times that depend on the input
or computed data. If the usual task-level synchronization is used, the utilization of the array
of PEs degrades substantially. In this paper, we propose a body-level synchronization scheme
that would boost the utilization of the array of PEs while keeping the required overhead to a
minimum. We mathematically analyze the proposed technique and show how to optimize its
performance for a given application. Our technique is particularily e�cient when the number
of tasks to be executed is much larger than the number of physical PEs available.

�This work was supported partially by DARPA N00039-88-C-0163

1

1 Introduction

Lots of scienti�c applications [Marchuk:80] require the execution of a large number of identical tasks,

each on a di�erent set of data. For example, estimating the area under a curve using Monte-Carlo

simulation [Rubinstein:81, Onion:90] involves deciding whether a point lies on or under a curve. This

task is applied to a large number of randomly generated points. The proportion of points under the

curve to the total number of points can be used to estimate the area under the curve, and thus the

result of the integration. Such applications can easily bene�t from the power of SIMD architectures

(e.g. the Connection Machine) by having the array of Processing Elements (PEs) execute the task in

parallel on the di�erent data sets kept on the di�erent PEs.

It is often the case, however, that the task to be performed involves the repetitive application of

the same sequence of steps, a body, for a number of times that depends on the input or computed data.

For example, in simulating the transmission of Neutrons through a plate of Beryllium [Onion:90], a while

loop is entered, calculating for each iteration, the next horizontal position of a given Neutron, and testing

whether it has escaped, or has been absorbed. If so, it is deactivated. Otherwise, another iteration is

executed with possibly di�erent initial conditions due to possible collision with Beryllium atoms. To

accurately determine the re
ection, absorption, and pass through probabilities, the experiment has to

be conducted on millions of Neutrons. Using a SIMD architecture where each Neutron is assigned to a

PE becomes a necessity.

The usual technique used to encode such applications uses a coarse grain task-level synchro-

nization. The idea is to execute repetitively the body of the loop in a SIMD manner [Bestavros:88].

When a PE is done with its task, it simply deactivates itself so it will not participate in the following

iterations. This process continues until no PEs are active. For example, in the Neutron/Beryllium

experiment, each Neutron is associated to a PE. The PE keeps executing the body of the while loop

until it determines that its Neutron has escaped or has been absorbed. The randomness associated with

each Neutron's journey results in a large variance of the total number of iterations. Using task-level

synchronization, the utilization of the array of PEs degrades substantially. In particular, the average

execution time of a task becomes the maximum of the execution times of all the PEs (or tasks). The

utilization of the array of PEs degrades even more when virtual processing is used. Virtual processing

[CM-ref-2] allows programmers to scale-up their problems without worrying about the limited number

of PEs in the available SIMD architecture.

In this paper, we propose a body-level synchronization scheme that would boost the utilization

of the array of PEs while keeping the required overhead to a minimum. In particular, we aim at

achieving an average task execution time that is the mean of the execution times of all the PEs. We

mathematically analyze the proposed technique and show how to �ne-tune its parameters to optimize its

performance for a given application. Contrary to task-level synchronization, our technique becomes even

2

more e�cient when virtual processing is used. In this paper, we base our presentation and discussion

on the Connection Machine architecture. Our methodology, however, can be easily applied to any other

SIMD architecture.

2 Statement of the Problem

The problem that we wish to address is as follows. We assume that there is a set of tasks T1; � � � ; TK

to perform and that task Tj is accomplished by carrying out the following three steps:

1. Get some input and/or execute some initialization code.

2. Execute a body of computational steps for a number of times.

3. Execute some exit code and/or report results.

We refer to the body of computation in step 2 as the �-cycle. Also, we refer to the initialization

and exit code in steps 1 and 3 as the �-code and !-code, respectively, and as the
-code, collectively.

There are certain applications in which supplying actual inputs is not necessary, examples being

Monte Carlo processes that compute their inputs as random numbers. For such applications we want

to take advantage of the fact that we do not have to deal with explicit inputs. Similarly, there are

many applications where we are not interested in reporting the individual results but only in some

summarization thereo�. For such applications we want to accomodate doing the summarization as the

results are computed so that we do not have to save them, only the summarization.

The basic issue addressed here is how to minimize the computational cost of carrying out the

K tasks and disposing of the results, where it is assumed that K is large, relative to the number of

available physical processors, P . If the number of steps, nj , to complete task Tj is not a constant then

it is probably a bad idea to simply assign the work to K virtual processors (even if there is su�cient

memory to do so), because the cost would be on the order of:

K

P
max

1�j�K
nj

where K
P

is the VP ratio (The ratio between Virtual processors and Physical processors [CM-ref-2]).

What we hope to achieve is a cost closer to the average:

K

P

KX
j=1

nj

K

In other words, we are aiming at an e�ective VP ratio of:

E�ective VP ratio =
K

P

PK

j=1
nj
K

max1�j�K nj
(1)

3

3 Proposed Methodology

As we hinted before, the usual technique used to encode such applications on SIMD architectures1 is

to have each virtual processor take on the execution of one of the tasks. The whole procedure follows:

1. The input data (if any) is distributed to all PEs, and all PEs execute the �-code.

2. The �-cycle is executed repetitively. When a PE is done with its task, it simply deactivates

itself so it will not participate in the following �-cycles. This step is repeated until no PEs

remain active.

3. All PEs execute the !-code, and, if necessary, the results are gathered.

As noted before, the problem with the above procedure is that, as tasks are completed and PEs

become inactive, the utilization of the PE array degrades dramatically. In particular, the average task

execution time becomes the maximum of the execution times of all tasks. In this section, we propose

a scheme that would boost the utilization of the PE array while keeping the required overhead to a

minimum. In particular, we aim at achieving an average task execution time that is the mean of the

execution times of all the tasks.

The solution that we propose works as follows. Instead of repetitively executing �-cycles until

all tasks are �nished, we execute �-cycles for a constant number of times m. At the end of these m

cycles, tasks that �nished their requested �-cycles are allowed to execute the !-code and report their

results. PEs associated with completed tasks become free and are allowed to start new tasks by getting

input data and executing the �-code. Once this is done, another round of m �-cycles is executed, and

the same process repeats. We use the term �-cycle to mean the sequence consisting of assigning tasks

to free PEs, executing m �-cycles, and freeing PEs assigned to terminated tasks (see �gure 1). Thus a

�-cycle consists of (see �gure 1):

1. The input data (if any) is distributed to free PEs. All such PEs are labeled as busy and start

by executing the �-code.

2. The �-cycle is executed exactly m times. Only busy PEs participate. When a PE is done with

its task, it simply deactivates itself so it will not participate in the remaining �-cycles.

3. Deactivated PEs execute the !-code, and, if necessary, the results are gathered. Such PEs are

declared free.

1for example the Connection Machine

4

6

?

6

?

While more tasks exist, do:

�-cycle�-cycle

!-code

�-code

Repeat m times:

Figure 1: The �-cycle

4 Performance Analysis

In this section, we start by deriving the average task execution time using our proposed technique. Next,

we derive an expression for the number of �-cycles to be executed in every �-cycle so as to achieve a

minimal average task execution time. Finally, we derive an estimate for the total time required to

terminate the execution of any K tasks on a SIMD architecture with P physical processors.

4.1 Average task execution time

Let t� be the time it takes to execute an �-cycle and t
 be the overhead time2 associated with a �-

cycle. Furthermore, let m be the number of �-cycles executed in every �-cycle. It follows that the time

necessary to execute one �-cycle is given by

t� = mt� + t
 (2)

Let n be the discrete random variable denoting the number of �-cycles necessary to execute a

task Q. The probability density function of n is problem dependent. For the purpose of this paper, we

assume that n follows a uniform distribution [1; N],3 where N = rm+ s. The total number of �-cycles

necessary to terminate the task Q is d n
m
e. Using equation 2, it follows that the total time it takes to

2Namely, the time to assign tasks to free PEs and to gather results from terminated tasks
3The uniform distribution assumption is not necessarily realistic for many applications. We adopt it for the purpose

of simplifying the analysis. Our method is applicable to any other distribution.

5

terminate Q is given by

tQ = d
n

m
e(mt� + t
) (3)

To compute the expected value of tQ, the task execution time,we proceed as follows:4

TQ = E(tQ)

=
1

N

NX
n=1

d
n

m
e(mt� + t
)

=
1

N
(mt� + t
)

NX
n=1

d
n

m
e

=
1

N
(mt� + t
)

"
mX
n=1

d
n

m
e+

2mX
n=m+1

d
n

m
e+ . . . +

rm+sX
n=rm+1

d
n

m
e

#

=
1

N
(mt� + t
)

"
mX
n=1

1 +

2mX
n=m+1

2 + . . . +

rm+sX
n=rm+1

(r + 1)

#

=
1

N
(mt� + t
) [m(1 + 2 + . . . + r) + s(r + 1)]

=
1

N
(mt� + t
)

hrm
2
(r + 1) + s(r + 1)

i
=

1

N
(mt� + t
)

h
(
rm

2
+ s)(r + 1)

i
=

1

rm+ s
(mt� + t
)

�
r + 1

2
(rm+ 2s)

�

=
r + 1

2
(mt� + t
)(1 +

s

rm+ s
)

TQ =
r + 1

2
(mt� + t
)(1 +

s

N
) (4)

Equation 4 indicates that two factors contribute to TQ, the average task execution time. The

term (r + 1)t
 re
ects the e�ect of �-cycles overhead, whereas the term (1 + s
N
) re
ects the e�ect of

synchronization overhead.

For a constant m, and as the value of N (and consequently r) increases, the e�ect of t
 , the

overhead associated with �-cycles, becomes an issue. This, of course, depends on the ratio between t

and t�.
5 Generally speaking, the smaller the value of r the lesser the e�ect of �-cycles overhead. On the

other hand, as the value of N decreases, the synchronization overhead becomes signi�cant. Obviously,

some kind of a balance is needed.

4We assume that the variables N , t� and t
 are all independent of the random variable n.
5For any practical scienti�c problem the ratio

t

t�

is expected to be very small.

6

4.2 Optimizing the Average Task Execution time

If we assume that N is much larger than m, and since s is necessarily smaller than m, we get the

following approximations:

s

N
� 0

r �
N

m

Using the above approximation in equation 4, we get:

TQ =
N
m
+ 1

2
(mt� + t
)

TQ =
N +m

2
(t� +

1

m
t
) (5)

To �nd the value of m that would minimize the average task execution time in equation 5, we

proceed as follows:

�

�m
(TQ) = 0

t� �
N

m2
t
 = 0

m =

r
N
t

t�
(6)

Equation 6 is valid as long as N � m. This condition, however, can be easily satis�ed. For

instance, if N = 100 and
t

t�

= 0:25 (very conservative), we get m = 5, which is indeed much smaller

than N .

4.3 Average Cost

Let P be the total number of physical processors and K be the total number of tasks to be executed.

From the analysis above, and on the average a total of P tasks can be executed every TQ unit of time.

It follows that the average time (cost) to terminate the execution of the K tasks is given by:

C =
K

P

N +m

2
(t� +

1

m
t
) (7)

In the Connection Machine literature, the ratio between the declared number of virtual processors

and the actual number of physical processors is called the Virtual Processing Ratio (VP ratio). The VP

ratio measures the level of parallelism achievable for a given problem size. A VP ratio of 1 identi�es

the highest achievable parallelism. A VP ratio greater than 1 indicates that the physical array of PEs

is simulating (by multiplexing in time and space) a larger virtual array of PEs. For a VP ratio v, the

total simulation time is v-fold longer, and the available memory per PE is v-fold tighter.

7

In order to compare our proposed technique to other ones (e.g. the task-level syncronization

approach), we de�ne the e�ective VP ratio to be the ratio between the total time required to terminate

all the K tasks and the maximum execution time of any one of the K tasks. Using our proposed

technique, the e�ective VP ratio is reduced to:

E�ectiveVPratio =
K

P

N+m
2 (t� +

1
m
t
)

(max1�j�K(nj))t� + t

(8)

For a large value of K, and a uniform distribution [1; N] the value of max1�K(nj) can be

approximated by N .6 Furthermore, we assume that t
 is small compared to t�,
7 and, as justi�ed

earlier, N is much larger than m. Applying the above approximations to equation 8, we get:

E�ective VP ratio �
K

P

N
2 t�

Nt�

�
1

2

K

P
(9)

Equation 9 means that our body-level synchronization scheme achieves an e�ective VP ratio of

one half that achieved using a straightforward task-level synchronization. In other words, it reduces the

cost of the computation by 50 percent. This saving is, of course, dependent on the distribution of the

task execution times, and is valid only when K � P , N � m, and t�� t
.

4.4 Utilization of the PEs

In this section, we derive a formula for the expected utilization of the available capacity of a SIMD

architecture. In particular, we obtain equations for the percentage of useful cycles (used cycles) to

the total available cycles. Keeping this percentage as close to 100% as possible is obviously a desired

property of any e�cient scheme for load balancing. As we shall see, achieving this goal does not

necessarily mean achieving the minimum average task execution time.

4.4.1 �-Cycle Utilization

In order to compute the average utilization during �-cycles, we start by calculating the expected number

of idle cycles within each group of m �-cycles. The probability of a task terminating at the ith �-cycle,

0 < i � m, is given by:

Prob(termination at cycle i) =
1

N

The Processing Element associated with such a task will be idle for m � i �-cycles (until the start of

the next �-cycle.) Thus, the expected number of waisted �-cycles per PE per �-cycle can be estimated

6Actually, it can be easily shown that, for a uniform distribution [1;N], we get: limK !1max1�K(nj) = N .
7This is inevitably the case in real scienti�c problems

8

by:
mX
i=1

(m� i)

N
=

m(m� 1)

2N

Thus, the average utilization per PE over the m �-cycles in a �-cycle is given by:

U� =
(m� m(m�1)

2N)

m

= 1�
(m� 1)

2N
(10)

4.4.2
-cycle Utilization

For tasks with a number of iterations n following a uniform distribution [1; N], the probability of

terminating after executing m cycles is given by m
N
. Thus, the average number of �nished tasks amongst

a total of P tasks after executing m cycles is given by P � m
N
. Processing Elements associated with these

tasks will be busy reporting the results of the �nished tasks and starting new ones during the following

�-cycle. Meanwhile, the remaining Processing Elements, P � (1 � m
N
), will be idle. Thus, the average

utilization during �-cycles is given by:

U
 =
m

N
(11)

4.4.3 Overall �-cycle Utilization

For every �-cycle, we have m �-cycles each taking t� units of time. In addition, t
 units of time are

spent for overhead computation. Using equations 11 and 10, we get:

U� =
mt�(1�

(m�1)
2N) + t

m
N

mt� + t

(12)

4.5 Optimizing the Average Utilization

In this section, we obtain an expression for the value of m that maximizes the average overall utilization

of a SIMD architecture using the body-level synchronization technique. Equating to 0 the derivative of

equation 12 with respect to m, we get:
�

�m
(U�) = 0

(mt� + t
)(t� +
t�

2N
�
mt�

N
+
t

N
)� t�(mt�(1�

m

2N
+

1

2N
) + t
) = 0

Solving the above equation for m, we get the following approximation:

m � d
t

t�
(

s
3 + (2N + 1)

t�

t

� 1)e (13)

9

Notice that equation 13 gives an optimum value for m di�erent from that given by equation 6. This

means that reducing the average task execution time does not necessarily mean getting the maximum

utilization of a SIMD architecture. To illustrate that, consider the case where N = 10, and
t

t�

= 2:5.

For the best task average execution time, we get m = 5. The utilization at this choice of m will be 70

percent. If, instead, we pick m = 6, we get a utilization of 71 percent.

5 Connection Machine Implementation

In this section, we look at the potentials of our body-level synchronization when applied to Connection

Machine applications. (We are currently working on di�erent Connection Machine implementations.

Results should be available in the �nal version of the paper.) Here, we show how much gain we should

expect, just by looking at the CM timing information [CM-ref-1]. All our calculations are based on a

CM-2 with 4K PEs with computation and communication done on 32 bits.

In order to judge the performance of our technique we have to estimate the overhead time,

t
 . The bulk of t
 will be spent distributing data to the free PEs and collecting results from �nished

tasks. A straightforward technique for performing these tasks is using a parallel rendez-vous algorithm

[Hillis:86]. The idea is to keep the data for the tasks to be started in a virtual processor set (the input-

VP-set), and, using a Parallel Pre�x ranking procedure, each free processor is assigned a unique index.

That index should be used to get the data for a new task from the input-VP-set. The time it takes

to compute the rendez-vous index is 894 time units (see [CM-ref-1], pages 24-35.) The time it takes to

send the data from the input-VP-set to the set of free PEs is 1111. Thus, distributing the data to the

free PEs should take approximately 2000 time units. Gathering the results from the �nished tasks can

be done using the same rendez-vous technique, thus bringing the total overhead time to 4000. Now,

let's assume an applications where the body of the computation takes 1000 units of time (An addition

or a multiplication on the CM takes approximately 100 units.) Moreover, assume that the number of

iterations required per task is uniformly distributed and ranges from 1 to 10000, and that the total

number of tasks to be executed is 64,000. Therefore we get the following parameters:

N = 10000

P = 64000

t� = 1000

t
 = 4000

Substituting with the above numbers in Equation 6, we get:

m = 200

10

Now substituting in Equation 5, we get an average execution time per task of 5; 202; 000.8 If

task-level synchronization were used, this number would bounce to almost 10; 000; 000,9 almost double

the time we achieve as we already predicted in Equation 9.

The merits of our methodology become even more compelling if we look at the total execu-

tion time to �nish all 64,000 tasks, using the available 4K PEs. Using task-level synchronization, it

would take approximately 160; 000; 000 units of time, compared to only 83; 232; 000 using our body-level

synchronization.

Obviously, our technique achieves a much better utilization of the CM. Substituting in Equation

12, we get U� = 97%, compared to utilization of almost 50% using the task-level synchronization.

All of the above gains become even more accentuated when, for an application like the Neu-

tron/Beryllium experiment mentioned earlier, the number of tasks p is orders of magnitude larger and

the number of iterations per task is unbounded.

6 Conclusion and Future work

In this paper we have presented a new methodology for the e�cient execution of homogeneous tasks

with unequal run times on SIMD architectures (with a special emphasis on the Connection Machine.)

We showed that, for some applications, our technique cuts the expected execution time by (almost) one

half when compared to the usual virtual processing techniques. Moreover, it ensures a higher utilization

of the PE array. Currently, we are working on applying our technique to a number of scienti�c problems.

Our technique extends quite well to support arbitrarily nested computations. As a matter of fact, it

can be easily shown that for a task with k levels of nesting, the achievable speedup is in the order of

2k.

The analysis in this paper assumes a uniform distribution of run times for the set of homoge-

neous tasks. This assumption leads to conservative (pessimistic) performance expectation. For more

realistic assumptions (e.g. normal or exponential distributions), our methodology results in even better

performance gains.

Body level synchronization can be easily and e�ciently implemented by compilers. In particular,

handling virtual processor sets in SIMD architectures (e.g. the CM) can be made much more e�cient

if our approach rather than the usual task level synchronization approach is adopted.

In this paper we assumed that it is possible to �ne tune the parameters of our technique so as to

optimize its performance. This, however, requires some domain knowledge (for example the probability

distribution for the number of iterations required to complete a task). Such information might be

8Notice that a lower bound on this average is 5; 000; 000, if we didn't have to su�er any overhead.
9assuming that among 4K tasks, it's highly probable that one of them will need approximately 10000 iterations. As a

matter of fact, it is very easy to prove that statement (proof ommitted for space limitation.)

11

di�cult to obtain, or even not available. In this case, experimentation10 (sample executions on much

smaller scale) might be necessary to estimate these parameters.

More work remains in order to reduce the overhead associated with distributing/gathering data

to/from PEs. In particular, techniques to avoid the expensive \send" communication { using \news"

communication instead { should greatly reduce the overhead time, and further improve the performance

of our methodology. We are experimenting with a number of such alternatives (using pipelining and

bu�ering) [Cheatham:90, Bestavros:90].

References

[Bestavros:90] Azer Bestavros, Thomas Cheatham, and Dan Stefanescu, \Parallel approaches for bin
packing on the Connection Machine." Proceedings of the IEEE Symposium on Parallel and Dis-
tributed Processing, Dallas, Texas, December 1990.

[Bestavros:88] Azer Bestavros and William McKeeman, \Parallel bin packing using �rst-�t and k-
delayed best-�t heuristics." Technical Report TR-16-88, Department of Computer Science, Har-
vard University. August 1988. A shorter version appeared in the Proceedings of the ISMM Inter-
national Conference on Parallel and Distributed Computing, and Systems, New York, New York,
October 1990.

[Cheatham:90] Thomas Cheatham, \The Workers Model of Computation for the Connection Machine,"
Internal Report, Department of Computer Science, Harvard University, In progress.

[Hillis:86] W. Hillis, G. Steele, \Data Parallel Algorithms," Communications of the ACM, December
1986.

[Onion:90] Frederick Onion, \PMCML: A Parallel Monte Carlo Modeling Language", B.A. Thesis,
Department of Computer Science, Harvard University, May 1990.

[Marchuk:80] G. Marchuk, G, Mikhailov, M. Nazaraliev, M. Darbinjan, R. Kargin, and B. Elepov, The
Monte Carlo methods in atmospheric optics, Springer-Verlag, Berlin, 1980.

[Rubinstein:81] R. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons, Inc., 1981.

[Sabot:86] G. Sabot, \Bulk processing of text on a massively parallel computer", Proceedings of the
24th annual meeting of the association for computational linguistics, June 1986.

[Waltz:87] D. Waltz, \Applications of the Connection Machine", IEEE Computer 20(1), January 1987.

[CM-ref-1] \The Connection Machine Parallel Instruction Set { Ver 5.2", Thinking Machines Corpora-
tion, October 1989.

[CM-ref-2] \Introduction to Programming in C/Paris { Ver 5.0", Thinking Machines Corporation, June
1989.

10whether compiler driven or user driven

12

