
Inference and Labeling of Metric-Induced Network Topologies
Azer Bestavros, John Byers, Khaled Harfoush

Abstract— The development and deployment of distributed network-
aware applications and services require the ability to compile and maintain
a model of the underlying network resources with respect to (one or more)
characteristic properties of interest. To bemanageable, suchmodels must be
compact, and to be general-purpose, they should enable a representation of
properties along temporal, spatial, andmeasurement resolution dimensions.
In this paper, we propose MINT—a general framework for the construction
of suchmetric-induced models using end-to-end measurements. We present
the basic theoretical underpinnings of MINT for a broad class of metrics
obeying certain properties. We instantiate MINT for two metrics of inter-
est, namely packet loss rates and bottleneck bandwidth. For the loss rate
metric, we leverage recently proposed end-to-end techniques for the estima-
tion of shared losses to characterize loss topologies. We present results of
simulations and Internet measurements that confirm the effectiveness and
robustness of our loss topology constructions over a wide range of network
conditions.

I. Introduction

Many of today’s Internet services are administered through co-
location facilities that are distributed over the wide area. Exam-
ples includeContentDistributionNetworks (CDNs) andApplica-
tion Service Providers (ASPs). Internet servers at such facilities
typically command a large number of concurrent unicast connec-
tions. We use the term Mass Servers to refer to such Massively
Accessed Servers.

A collection of Mass servers distributed over a WAN is in a
unique position to infer valuable network state information that
could be effectively used to maximize resource utilization and
optimize content delivery and distribution. In order for such
network-aware strategies to be practical, an endpoint must be
able to quickly and accurately infer the conditions of network
resources connecting it to other endpoints. Typically, these con-
ditions are measured in terms of one or more metrics of interest,
such as available bandwidth, hop-count, loss rate, delay, and jit-
ter.

Previous studies aimed at the identificationof network-internal
conditions (whether static or dynamic) have focused on the char-
acterization of physical network entities (e.g., routers, links, AS
boundaries). For the resource management problems that face
Mass servers, an accurate characterization of all physical re-
sources between the server and its clients is not necessary, nor
feasible. It is overkill. Rather, an abstraction that captures the
conditions of only those shared resources to be judiciously man-
aged is sufficient. For a streaming media delivery application, a
model of the network that captures pathbottleneck bandwidth and
jitter may be used for server selection purposes. Alternatively,

The authors are with the Computer Science Department at Boston University.
E-mail: {best,byers,harfoush}@cs.bu.edu. This work was partially supported by
NSF research grants ANI-9986397, ANI-0095988 and CAREER ANI-0093296.

for a distributed caching or content distribution application, a
model of the network that captures loss rates on congested paths
may be used for optimizing replica placement.

End-to-end measurements made in the course of normal op-
erations by a Mass server provide a wealth of information about
the end-to-end characteristics of a particular path in the network.
For example, end-to-end bottleneck bandwidth rates, round-trip
times and packet loss statistics can all be inferred from the dy-
namics of a TCP connection [1]. In addition to these connection-
specific statistics, end-to-end measurements correlated across
different connections (at one or more Mass servers) can be used
to infer conditions at a level that is more granular than that en-
compassing an entire path, and yet less granular than that at a
specific network resource (e.g., for a portion of a path as opposed
to for every hop along the path). This paper proposes a frame-
work for achieving this efficiently for a wide range of metrics. In
particular, it proposes a framework that enables a parametrized
abstraction (or summarization) of the topology connecting a set
of endpoints with respect to a given metric of interest.

Metric-Induced Network Topologies: Given a set of net-
work endpoints, we define a Metric-Induced Network Topology
(MINT) to be a weighted, directed graph. The vertices of this
graph represent network endpoints as well as routers, while an
edge in this graph represents a sequence of one or more phys-
ical network links. The weight on each edge corresponds to a
real-valued quantity that a specific metric function attributes to
the sequence of physical links represented by the edge. Only
those sequences of links which collectively have a metric value
above a threshold c ≥ 0 are represented by edges in this topol-
ogy. The threshold c acts as a “compression parameter”—the
larger the value of c, the less granular (i.e. less detailed) the re-
sulting MINT graph will be. By hiding uninteresting details of a
physical topology (e.g. sequences of links with abundant band-
width, negligible jitter, or insignificant losses), MINT graphs
enable a compact representation of those resources that need to
be accounted for by network-aware applications at Mass servers.

Paper Contributions and Overview: Existing techniques for
making inferences from end-to-end observations are special-
purpose, each targeting specific metrics of interest, such as es-
timation of bottleneck bandwidth, packet loss rate, propagation
delay or jitter.

In this paper, we study the extent to which such end-to-end
methods can be effective, not by considering individual special-
ized techniques, but by reasoning about properties of the metrics
themselves.

Our work introduces the concept of Metric-Induced Network
Topologies (MINT) and proposes general procedures for the in-
ference and labeling of MINT topologies, as well as the integra-
tion of MINT topologies obtained at different points in time and
from different network vantage points. We specify a broad class
of metrics for which MINT procedures are applicable, focusing
on two specific metrics defined over a network path—namely,
packet loss rate and bottleneck bandwidth.

For the loss ratemetric, we demonstrate that recently proposed
end-to-end techniques for the estimation of shared losses can be
leveraged to enable the characterization of loss topologies. We
present results both of extensive simulations and of Internet de-
ployment results that demonstrate the accuracy and convergence
of our loss topology inference and labeling techniques.

II. Related Work

ATaxonomy: One widely adopted strategy for the characteriza-
tion of network properties/conditions is to analyze data collected
from network-internal resources (e.g. router ICMP replies, BGP
routing tables) to generate performance reports [15], [20], [16]
or to perform Internet topology characterization [10], [9], [22].
This approach is best applied over long time scales to produce
aggregated analyses, but does not lend itself well to providing
answers to the fine-grained needs of network-aware applications.

Another approach, applicable at shorter time scales, is sta-
tistical inference of network internal characteristics based on
end-to-end measurements of point-to-point traffic. Although this
strategy has been employed in networking contexts for at least a
decade, starting with the use of packet-pair probes [17], [3], re-
cent efforts have greatly expanded the set of available techniques
[27], [24], [23], [26].

The diversity of inference techniques cut across approaches
which are sender-driven, receiver-driven, those which employ
multicast and those which employ unicast probes, and span met-
rics ranging from static metrics (e.g. bottleneck bandwidth) to
dynamic metrics (e.g. packet loss rates). However, none of
these studies attempt to provide a general framework to describe
when inferences may be drawn. Our approach does so, by focus-
ing not on the specific probing technique, but by concentrating
on the metrics of interest, and by developing an understanding
of which metrics are amenable to inference techniques.

EstimationofSharedLossUsingEnd-to-EndMeasurements:
The specific problem of inferring and labelling loss topologies
is motivated in part by recent work on topological inference
over multicast sessions [4], [7], [24]. By making purely end-
to-end observations of packet loss at endpoints of multicast ses-
sions, Ratnasamy and McCanne [24] and Cáceres et al. [4] have
demonstrated how to make unbiased, maximum likelihood esti-
mation inferences of (a) the multicast tree topology and (b) the
packet loss rates on the edges of the tree, respectively.

At the coreof ourmethodology for constructing loss topologies

is the need for a procedure for the measurement of shared losses
between one source and multiple destinations.

A number of recent efforts have addressed this problem; all
would be suitable as underlying procedures in our framework.
In [25], Rubenstein, Kurose, and Towsley propose the use of end-
to-end probing to detect shared points of congestion (POCs). By
their definition, a point of congestion is shared when a set of
routers are dropping and/or delaying packets from both flows.
Their probing technique for identifying POCs uses a Poisson pro-
cess to generate probe traffic to a pair of remote endpoints and
computes cross-correlation measures between pairs of packets
from these flows. In [12], we presented an alternative technique
for the identification of shared losses using a Bayesian Probing
(BP) approach. Using BP, packet-pair probes are sent to a pair of
different receivers to introduce loss and delay correlation, much
the same way a multicast packet to these two receivers intro-
duces correlation. Other similar techniques have been recently
proposed [8], [5], [18], [19]. For example, the striped unicast
probing of Duffield, LoPresti, Paxson, and Towsley uses a se-
quence of back-to-back packets sent to different receivers as an
approximation of a multicast probe, thus enabling them to use
link loss and delay inference techniques devised for multicast
probes [7].

III. Metric-Induced Network Topologies

As motivated in the introduction, for many applications, it is
often convenient to cluster clients of a Mass Server according
to the extent to which they consume a shared network resource.
Such sharing is often quantified by one of a number of metrics,
including shared jitter, shared network delay or shared packet
loss.

A. Basic Definitions
The labeled topology from the server to the clients with respect to
a given performance metric is aMetric-Induced Network Topol-
ogy (MINT). In many instances, edges with small labels, repre-
senting negligible, or statistically insignificant amounts of delay,
jitter or loss, can safely be disregarded. Therefore, effective
methods for producing a metric-induced topology must be sen-
sitive to different possible thresholds for what constitutes an ob-
servable value of the metric. In this sense, the MINT framework
provides a multiscale representation of a metric-induced topol-
ogy. Beginning with basic definitions used also in prior work,
we formalize these notions below.

Consider the set of links used to route unicast traffic between
a server and a set of clients. Together these links form a tree
T = (V,E) rooted at the server, with the clients at the leaves
and routers at the internal nodes. The flows of packets sent from
a server to an arbitrary subset of its clients share some (possibly
none) of T ’s links and eventually diverge on separate links en
route to the different clients.

3

54

8

11 12

10 13

14

97

6

2

1

0
1%

2%

2%

1%

4%

3%

5%

0%

1%

2%

1%0%

3%

2%
3

54

8

11 12

10

14

9

6

0

5%

1%

4%

3%

5%

0%

3%

0%

4%

2%
3

54

8

11 12 14

9

6

0

5%

1%

4%

3%

5%

0%

3%

4%

5% 3

54

8

11 12 14

9

0

5%

1%

3%

9%

0%

3%

8%

5%

(a) Physical tree (b) Loss tree (c = 0) (c) Loss tree (0.03 < c ≤ 0.04) (d) Loss tree (0.04 < c ≤ 0.05)

Fig. 1. Relationship between physical and loss topologies under various sensitivity parameter (c).

Definition 1: The physical topology connecting a server to a
set of clients is the tree T induced by IP routing with the server
at the root, clients at the leaves and routers at the internal nodes
of the tree.

The following operation is needed to help us define the portion
of a physical topology observable through end-to-end measure-
ments. We say that we collapse a node i of into its parent j if
we delete edge (i, j) from the tree and attach all children of i to
j, by replacing all edges (i, k) with edges (j, k) for all k �= j.
Note that when this operation is applied to a tree, the resulting
topology is also a tree.

Definition 2: The logical topology induced by a physical
topology T is formed from T after all internal nodes with only
one child have been collapsed into their parent recursively.

A logical topology reflects the topology made visible by end-to-
end measurements, as end-to-end techniques will be unable to
assign metrical labels on a link-by-link basis to a sequence of
physical links in a chain with no branching.

We now extend our definitions to apply to topologies with
edges labeled according to a metric. For the purpose of our
discussion, we define a metric to be a function f whose domain
is the set of paths in a tree (or set of simple paths in a graph)
and whose range is the reals. We refer to a labeled topology as
any topology in which values of the metric have been applied to
each link in the topology, noting that links may correspond to
multi-hop physical paths as well as physical links.

For some metrics, end-to-end observations will have difficulty
distinguishing a small metrical value ε from zero and as a result,
may misclassify incidence of sharing. For this reason, we pa-
rameterize any labeling algorithm with a sensitivity parameter
c which is the minimum value of a label that can be applied to
any internal link in the resulting topology Tc. Our definition of
metric-induced topology incorporates such a parameter:

Definition 3: A metric-induced topology with sensitivity pa-
rameter c is the labelled topology formed when all internal nodes
i in a logical topologywhose parent linkLi has a value f(Li) ≤ c

have been collapsed into their parent.1

1The values on adjusted links must be updated in a metric-specific way after

Basedon these definitions, an edge in aMINTgraph represents
a sequence of one ormore physical network hops that collectively
exhibit observable values of that metric. Clearly, the larger the
value of the sensitivity parameter c, the smaller the number of
links present in the topology Tc. In this sense, Tc represents a
“condensed” version of the original topology, and increasing the
value of the sensitivity parameter c has the effect of increasing
the level of condensation.

We refer to the metric-induced topology for which c = 0
(i.e. T0) as the base topology, while a metric-induced topology
with c > 0 can result in more extensive condensation, in which
arbitrary connected subgraphs of internal nodesmay collapse into
a single node. The following example illustrates this behavior
for the specific case of loss topologies.

Consider the physical tree topology shown in Figure 1(a).
Node 0 is the server, nodes 4, 5, 8, 11, 12, and 14 are the clients
and the remaining nodes are routers. The links in Figure 1(a)
are labeled with the actual loss rates on these links. Figure 1(b)
shows the loss topologyT0 for this physical treewhen c = 0. No-
tice that in T0, paths with intermediate nodes of unit out-degree
(e.g. the path between nodes 0 and 3 and the path between nodes
6 and 8) are collapsed into a single (logical) link. Figures 1(c)
and 1(d) show the loss topologies for this physical tree when
0.03 < c ≤ 0.04 and when 0.04 < c ≤ 0.05, respectively.
These topologies are obtained from T0 by collapsing internal
links with loss probabilities that are less than the sensitivity pa-
rameter c. For the sake of simplicity in this example, we have
taken the liberty of merging loss probabilities on consecutive
links by using simple addition (at the cost of a small degree of
inaccuracy).

B. MINT Inference and Labeling

The topology inference framework we present next applies to
a broad class of metrics (encompassing packet loss rates, prop-
agation delay, and network bandwidth) satisfying three techni-
cal conditions. We will define those conditions next, then go
on to demonstrate how our inference techniques can be (1) re-
cursively applied to large topologies, (2) applied to incorporate

each collapse operation. We discuss the significance of this in Section III-B.

observations taken at multiple points in time, and (3) applied to
incorporate observations taken at multiple points in space.

To define these conditions, we need a bit more terminology.
We denote a path between 2 hostsA andB by pA→B and denote a
general path between any two end hosts as pi, where the subscript
represents a path identifier. We refer to path pi as a subpath of
pj if the sequence of edges forming pi is a subsequence of the
edges forming pj . Let us then denote pi.j as the maximal subpath
common to both pi and pj , i.e. pi.j is the shared portion of pi

and pj .

We classify metrics based on three different properties:

Monotonicity: A metric f is monotonically non-decreasing
(non-increasing) if for any pair of paths pi, pj for which pi is
a subpath of pj , f(pi) ≤ f(pj) (f(pi) ≥ f(pj)).

Separability: A metric f is separable if for any path p com-
posed of the union of two disjoint subpaths pi and pj , f(pj) =
g(f(p), f(pi)) for some function g.

Symmetry: A metric f is symmetric if for any path pi the value
f(pi) is equal as observed from either end of pi.

Metrics of interest are diverse with respect to these three prop-
erties. For example, the loss rate metric is monotone, separable
but not symmetric; propagation delay is monotone, separable
and (often) symmetric; available bandwidth is monotone, but
not necessarily symmetric and definitely not separable; and jitter
is neither monotone, nor separable, nor symmetric.

Wewill now show how the presence (or absence) of each these
properties in a metric f affect our ability to infer, label and ag-
gregate topologies induced by f using end-to-endmeasurements.
We do so through a sequence of theorems. Complete proofs of
these theorems are available in an expanded version of this pa-
per [2]. Algorithmic steps used in the sketch of Theorem 1 are
representative of those required to prove the other theorems, and
are similar to those discussed in [6].

Theorem 1: Given a procedure that enables the evaluation of
f(pa), f(pb), and f(pa.b) for some monotone metric f between
a source s0 and any two endpoints a and b, one can efficiently
infer the base topology induced by f over an arbitrary physi-
cal topology T . In the event that f is separable, one can also
efficiently label the topology induced by f for any sensitivity
parameter c > 0.

Proof: (Sketch). We first demonstrate how to recursively
infer the base topology based on end-to-end evaluations of a
monotone function f . Consider a set ofn endpointss1, s2, . . . sn.
Sort all pairs of endpoints (su, sv) sorting on the value of
f(psu.sv). Let si and sj be the pair2 of endpoints for which
f(psi.sj) is maximum.

2In general, there may be a set of nodes whose pairwise evaluations are all
equal and maximum. These nodes would all be grouped together in the reduction
operation.

Reduction: Monotonicity ensures that path psi.sj
cannot be a

subpath of any other path connecting the source s0 to any end-
point other than si and sj . Thus there exists an internal node r
at which the paths from s0 to si and sj diverge; moreover, r is
not on any path connecting s0 to any endpoint other than i and
j. The subtree rooted at r is therefore completely specified.

Recursion: The above construction identifies an internal node
r in the logical topology, and gives a method for computing
f(pr) = f(psi.sj

). This construction therefore allows us to
remove si and sj and replace them with r, thereby reducing the
problem of finding the logical topology connecting a server s0 to
n endpoints to the smaller problemoffinding the logical topology
connecting that same server to strictly fewer than n endpoints.
Applying this reduction recursively, one can produce the base
topology with respect to f .

In the event that the metric f is also separable, we can prove the
second part of Theorem 1 for any sensitivity parameter c > 0 by
repeatedly applying the following step:

Compression and Relabeling: In a bottom-up fashion, we
collapse an internal node ri into its parent node rj iff
g(f(pri

), f(prj
)) < c. Recall that collapsing ri into rj entails

deleting edge (ri, rj) from the tree and attaching all children of
ri to rj . The label of the edges connecting former children of
ri to rj must be updated; by the separability condition, that is
by an amount equal to g(f(pri

), f(prj
)). The result is a labeled

topology as depicted in Figure 1.

Theorem 2: Given a procedure that enables the evaluation of
f(psi→a), f(psj→a), and f(psi→a.sj→a) for some monotone
metric f between any two sources si and sj and an endpoint a,
one can efficiently infer the base topology induced by f over
an arbitrary physical topology T connecting any set of sources
to endpoint a. In the event that f is separable, one can also
efficiently label the topology induced by f for any sensitivity
parameter c > 0.

C. Integrating MINT Snapshots

For non-stationary metrics (such as loss rates), it is evident that
the labels placed on the edges of a metric-induced topology will
change over time. Moreover, at different points in time, measured
observations over a link or set of links may fail to reach the
threshold specified by the sensitivity parameter. For bothof these
reasons, time-varying observations of a metric-induced topology
measured from the same endpoints may contain different sets of
observable internal edges. Therefore, one can hope to integrate
a set of MINT snapshots generated at different points in time
to produce an inferred (but unlabelled) topology which includes
the union of all internal edges observed in the snapshots. It is
natural to wonder whether one can produce such an integrated
topology from a set of mutually consistent topological snapshots
efficiently. The following theorems demonstrate that this can in
fact be achieved.

Definition 4: Consider a set of unlabeled metric-induced tree
topologies T1,T2, . . . ,Tk rooted at the same source and spanning
destination sets E1, E2, . . . Ek respectively. We say that these
trees aremutually consistent if there exists a tree T ′ spanning all
destinations in

⋃
Ei from which we can generate Ti for any i by

repeated application of the collapse operation defined earlier.

Theorem 3: The minimal tree T ′ spanning a set of mutually
consistent tree topologies T1, T2, . . . , Tn connecting a server to a
set ofm clients is unique and can be constructed inO(nm2 log d)
time.

Another important problem that is similar to the integration
of time-varying observations is that of integrating observations
made from spatially distinct vantage points. As motivated in the
introduction, a content delivery network (CDN) consisting of a
number of distributed servers already performs a vast number
of end-to-end observations in the normal course of daily oper-
ations and could benefit from a methodology to integrate these
observations.

We provide the following additional definitions to generalize
the notions above to enable the integration of metric-induced
topological snapshots made from different points in space—
namely, how to produce a graph which is mutually consistent
with a set of consistent snapshots collected from a set of dis-
tributed servers.

Definition 5: Consider a set of metric-induced topologies
T1, T2, . . . , Tk rooted at different sources. We say that these
topologies aremutually consistent if there exists a graphG span-
ning all endpoints in

⋃
Ti and when G is restricted to the routing

tree induced by IP routing and spanning endpoints in Ti, G|Ti,
Ti can be generated from that subgraph by repeated application
of the collapse operation.

The following theorem generalizes the topology integration
process to merge consistent topologies observed from an arbi-
trary set of sources to arbitrary subsets of clients (or between an
arbitrary set of collaborating sources).

Theorem 4: Given a set of n sources s0, s1, . . . , sn−1, a set
of m clients c0, c1, . . . , cm−1, and a procedure that enables the
mutually consistent evaluation of:

1. f(psi,ck
),∀i, k : 0 ≤ i < n, 0 ≤ k < m

2. f(psi,ck.si,cl
), ∀i, l, k : 0 ≤ i < n, 0 ≤ l, k < m, l �= k, and

3. f(psi,ck.sj ,ck
), ∀i, j, k : 0 ≤ i, j < n, i �= j, 0 ≤ k < m

for some monotone, separable and symmetric metric f , one can
efficiently infer and label the base topology G induced by f over
the physical topology induced through IP routing and connecting
the n sources to them clients for any sensitivity parameter c > 0.

As with temporally distinct observations, we have an efficient
algorithm for determining whether a set of topologies are mutu-
ally consistent, and if so, generating a spanning graph G as in
the definition above [2].

With these two combining mechanisms, we may merge a set
of metric-topological views collected at multiple points in time
and multiple points in space to produce an (unlabeled) topology
incorporating the available information.

IV. Case Study:
Unicast Loss Topology Identiification

As established byTheorem 1, any end-to-end procedure which is
capable of labeling a metric-induced topology with two clients
can be recursively applied to label an arbitrarily large metric
topology provided the metric is monotone and separable. How-
ever, since the exact nature of a particular procedure used to label
a topology with respect to a particular metric may vary widely,
the accuracy of such procedure as well as the extent to which
such a labeling process scales must be analyzed in the context
of the particular algorithm used. In this section, we focus our
presentation on applying the theoretical results to a particular
metric—namely loss rate. We use the term loss topology to refer
to the instantiation of MINT for the loss rate metric.

We begin this case study with a presentation of three criteria
that enable us to evaluate the goodness of MINT inference and
labeling. We then proceed to describe the specific procedure we
used to measure shared losses between a sender and a pair of
receivers. We then describe our experimental evaluation of our
approach, conducted both by extensive ns [21] simulations and
by Internet validation using Periscope—an embodiement of the
MINT framework in Linux [14].

Success Criteria for Inference and Labeling: We now intro-
duce the three criteria we use to evaluate the success of an exper-
imental MINT inference and labeling technique. The first two
evaluate the goodness of a MINT inference technique, whereas
the third evaluates the goodness of a MINT labeling technique.
In practice, all three of these values will be computed by running
experiments over a representative set of similar trees, computing
the values over those inputs, then averaging the results to derive
an estimate. In each of the definitions below, we assume that the
inference/labeling process starts at time t = 0.

Definition 6: The inference accuracy A(t) of a MINT infer-
ence strategy at time t is the probability that the strategy yields
the correct topology at time t.

In our experiments, to measure accuracy at time t, we calculate
the percentage of experiments in which the correct MINT topol-
ogy was identified at time t. The accuracy criterion is absolute in
the sense that it does not allow for a quantification of how “close”
an inferred MINT topology is to the exact MINT topology, in the
event that it is inaccurate. The discrepancy measure provides
such a relative quantification for tree topologies.

Definition 7: The inference discrepancyD(t) of a MINT in-
ference strategy on a tree topology T at time t is given by:
D(t) =

√∑
i,j:i�=j

(d̂i,j(t) − di,j)2/
(

M
2

)
where di,j denotes the

depth of the least common ancestor of a pair of clients i and

3

54

8

11 12 14

9

0

3

54

8

11 12 14

9

0

5%

1%

3%

8%

0%

4%

6%

6%

Inferred Tree Labeled Tree
(a) (b)

Fig. 2. Illustration of the use of the Inference Discrepancy and Labeling Error
Measures.

j in the actual topology induced by T , d̂i,j(t) denotes the depth
of least common ancestor of a pair of clients i and j in the inferred
topology at time t, andM is the number of nodes in T .

To give an intuition for the discrepancy criterion, consider the
loss topology shown in Figure 1 (a) and assume that as a result
of applying an inference procedure with c = 0.05, the topology
shown in Figure 2 (left) is obtained. The inferred topology is not
identical to the correct T0.05 loss topology shown in Figure 1 (d)
and the discrepancy between the inferred topology and T0.05 is√

3/15 = 0.447.

Unlike quantification of the success of an inference process,
which can be done independent of the metric(s) used to develop
inferences, quantifying the success of a labelling process must
necessarily reflect the metrical labels. The following definition
applies specifically to labelled loss topologies.

Definition 8: The labeling error E(t) of a loss topology
labeling process on a topology T at time t is E(t) =√∑L

l=1(êl(t) − el)2/L, where el denotes the correct loss prob-
ability (i.e. label) for link l, êl(t) denotes the measured loss
probability for link l at time t, and L is the number of links in T .

To give an intuition for the labeling error measure, which can
be interpreted as the average inaccuaracy in the labeling of an
arbitrary link in a topology, consider the tree shown in Figure 1
(a). Assume that the labeled topology shown in Figure 2 (right)
is obtained. as a result of applying a labeling procedure with
c = 0.05, Obviously, the labels on that topology are not identical
to the labels on the T0.05 loss topology shown in Figure 1 (d). The
labeling error is then

√
(0.022 + 0.012 + 0.012)/8 = 0.00866.

Bayesian Probing: Our procedure for identifying shared loss
between a pair of clients is the Bayesian Probing (BP) technique
developed in [12]. Consider clients 11 and 14 in the topology
shown in Figure 1(a). Using the terminology of Section III, paths
p11 and p14 from the server to each of these clients can be par-
titioned into two subpaths: the portion that is shared between
the two paths, p11.14, and the portion that is not. Specifically,

L6L9 is a shared segment, whereas L10L11 and L13L14 are not.
The BP technique provides us with a simple probing methodol-
ogy that enables the estimation of pi, pj and pi.j for all i, j as
required by Theorem 1. To that end the technique uses two types
of probe sequences:

Definition 9: A 1-packet probe sequence Si(∆) is a sequence
of packets destined to client i such that any two packets in Si(∆)
are separated by at least ∆ time units.

Definition 10: A 2-packet probe sequence Si,j(∆, ε) is a se-
quence of packet-pairs where one packet in each packet-pair is
destined to i and the other is destined to j, and where the intra-
pair packet spacing is at most ε and the inter-pair spacing is at
least ∆ time units.

1-packet probe sequences provide a baseline loss rate over
end-to-end paths while 2-packet probe sequences enable mea-
surement of loss rates over shared links. The intuition is that
because of their temporal proximity, packets within a packet pair
have a high probability of experiencing a shared fate on the shared
links. If the incidence of shared loss on the shared links is high,
this leads to an increased probability ofwitnessing coupled losses
within a packet pair.

While we describe appropriate settings of∆ and ε in the exper-
imental results, we generally find that setting ε to be on the order
of a millisecond and ∆ to be on the order of hundreds of mil-
liseconds achieves high dependence and ensures independence,
respectively. Using statistics of successful packet delivery of
1-packet and 2-packet probes, the BP techniques enables the es-
timation of the magnitude of packet losses on the shared segment
of paths from a server to two clients.

Basic BP Assumptions: As spelled out in [12], the BP probing
technique and associated analyses (leading to the estimation of
packet loss rates) are subject to several significant assumptions:
(1) Link loss rates are stationary over the time scale it takes the
BP technique to converge. (2) Losses on the links occur only due
to queue overflows. (3) ∀i, j : Losses on link Li are independent
from losses on link Lj . (4) There exists a reliable feedback
mechanism to determine the fate of a given probe packet. (5) The
temporal constraints imposed on probe sequences are preserved
throughout the journey of the probes from sender to receivers.
While these assumptions (with the exception of assumption 5)
are satisfied in our simulation studies presented in Section IV-A,
none could be guaranteed for our experiments over the Internet
presented in Section IV-B! Nevertheless, our results show that
the BP approach is robust enough to enable accurate Internet loss
topology inference and labeling.

A. Performance Evaluation in ns

In this section we present results of extensive ns [21] simulations
that demonstrate the accuracy, convergence and robustness of our
approach.

Link Baseline Model: Each of the links in our simulations is

modeled by a DropTail queue. The link delays were all set to
40ms and the link buffer sizes were all set to 20 packets. Each
link was subjected to bursty background traffic resulting from
aggregating a set of Pareto ON/OFF UDP sources with a con-
stant bit rate of 36Kbps during the ON times using a packet size
of 200 bytes. The average ON and OFF times were set to 2 and
1 seconds, respectively. The Pareto shape parameter (α) was
set to 1.2. After a “warm-up” period of 10 seconds, the prob-
ing processes (and associated inference and labeling processes)
begin.

Setting High Mild Low
Link Bandwidth 1Mbps 1Mbps 100Mbps
of background flows 60 56 44
Observed Loss Rate 7-15% < 7% < 1%

Fig. 3. Link congestion settings and resulting loss rates.

To represent the various levels of congestion that any of these
links may exhibit, we have chosen three sets of parameters that
reflect “High”, “Mild”, and “Low” levels of congestion. The
baseline parameter settings for these congestion levels (and the
resulting loss rates) are tabulated in Figure 3. Our choice of very
high loss rates (7-15%) for highly congested links was meant to
stress-test our technique under severe congestion (we observed
many instances of lightly congested links in the wide area when
testing our implementation). We set the value of the sensitivity
parameter c to a fixed loss rate of 0.04. This value was chosen
empirically based on our experimental set-up; we imagine that
in general, the sensitivity parameter will have to be chosen in
an application- and metric-specific way. We note that the exact
upper bound on link losses is unimportant since the sensitivity
parameter setting (c = 4%) is small enough to observe links
with losses > 4%. Our simulation results are actually slightly
worse with such high maximum loss rates because the presence
of highly lossy links slows BP’s ability to characterize subtopolo-
gies downstream of those links.

Topology Baseline Model: In order to test our inference and
labeling techniques, we generated a baseline test set of random
tree topologies of varying shape, depth, and with variable fanout
(up to degree 4) on 14 nodes, ofwhich 5 leaveswere then selected
as clients. Details of our methodology are provided in the full
version of the paper [2]. The congestion level for each tree edge
was then chosen at random from the link baseline models with
the following distribution: 50% Low, 30% Mild and 20% High.

Configuring Bayesian Probing: The BP technique requires
specification of the ∆ and ε parameters describing the temporal
constraints imposed on 1-packet and 2-packet probe sequences.
In our experiments, each probe sequence was generated using
an independent Poisson process with a mean probing rate of
5 probes/sec, or 200ms average inter-packet spacing. A lower
bound on∆was not guaranteed. For 2-packet probing processes,
the value of ε was set to 0; that is packets within a packet-pair
were sent back-to-back, with no time separation. The 2-packet

probes in a probe sequence alternate between the two possible
packet orderings.

Experimental Setup: To determine the accuracy of our loss
topology inference technique, we generated 20 5-client baseline
trees at random (as described earlier). We ran the loss topol-
ogy inference technique from the server (root node) by creating
an ns agent that sends the probes, collects statistics about these
probes, calculates the needed estimates, and executes our topol-
ogy inference procedure. The setup of the labeling experiment
was similar; except that the ns server agent ran the labeling pro-
cedure on a provided (i.e., correct) loss topology. For each one
of the 20 randomly generated trees, we ran the inference and la-
beling experiments 20 times; each time seeding the cross-traffic
with a different random seed. The results reported below were
then averaged over these 400 experiments.

Results: Figure 4 shows the accuracy and discrepancy for our
loss topology inference experiments as functions of time, for dif-
ferent values of the sensitivity parameter c. Our inference tech-
nique converges rapidly as a function of the number of probing
rounds. Figure 4 indicates that both accuracy and discrepancy
settle to within 10% of their steady-state values within 50 sec-
onds.3

Figure 4 (right) shows the labeling error as a function of time.
The labeling error converges to within 1% of the actual links loss
rates. We noted that in most of the cases the labeling results
are very close to the actual losses; except for the cases where
the shared links between 2 clients contain more than one highly
congested bottleneck. In this case, cross-traffic packets intervene
between the packet-pair probes and space the packet-pair out
after the first bottleneck, causing less correlated behavior when
passing through the second bottleneck. This leads to an accurate
assessment of the first bottleneck loss rate while most of the
second shared bottleneck loss rate is assigned incorrectly to the
independent links.

Large-Scale Simulations: The above observation (regarding
the effect of multiple bottlenecks) points to one of several is-
sues which may negatively impact the performance of the BP
approach to loss topology inference. Specifically, while a server
can ensure that packets used in 2-packet probes are not separated
by more than ε, it cannot “guarantee” that such a constraint is
satisfied throughout the network. In practice, it is likely that
the separation between packets in a packet-pair increases as the
number of hops traversed increases.

To assess the robustness of our approach and its effectiveness
for larger loss topologies, we have conducted experiments on a
relatively large tree. We used the same tree generation procedure
described in Section IV-A, except that the number of base clients
was increased to 50 and the number of dummy clients was in-

3Since the probing rate was set to 5 probes/sec, it follows that the accuracy
and discrepancy measures settle to within 10% of their steady-state values within
250 probing rounds.

Fig. 4. Accuracy (left), Discrepancy (middle), and Labeling Error (right) of Loss Topology over Time

creased to 200. The resulting trees had an average depth of over 8
levels and in excess of 400 nodes. Also, the congestion level for
each of the links of the treewas selected fromone of the three link
b a seline mo d e ls d e scr ib ed e ar lier. We used a d istr ibutio n with
90% Low, 7%Mild and 3% High congestion to keep the end-to-
end congestion level reasonable. Results from these simulations
show that while the convergence of loss topology inference for
this large tree is slightly slower than that presented in Figure 4,
the accuracy of the inference in steady-state remains robust (over
90% after 150 seconds). More details of these experiments are
available in [2].

B. Internet Validation using Periscope

We have embodied our MINT framework in Linux by develop-
ing anAPI called Periscope (a Probing Engine for the Recovery
of Internet Subgraphs) that implements the functionality nec-
essary to infer and label metric-induced topologies, using the
constructions presented in Section III. Details of the design and
implementation of Periscope as well as its use to characterize
MINT topologies between a server and a set of clients across the
Internet are described in [14].

To validate the ability of Periscope to correctly infer and la-
bel loss topologies in an Internet setting, we hand-picked a set of
seven hosts and used Periscope to infer and label the loss topol-
ogy to these endpoints from a local server (Pentium II processor
running RedHat Linux version 2.2.14). The seven endpoints
were selected to ensure the existence of different lossy paths that
are shared between the server and various subsets of endpoints.
In addition, by placing the server below a slow uplink, we en-
sured the existence of a (possibly) lossy path between the server
and all endpoints. These choices were all made with the goal of
stress-testing our inference and labeling techniques in mind.4

Figure 5 depicts the logical topology between the server and

4Validating our tool requires observing loss-topologies of appreciable
structure—hence our choice of an inter-continental set of endpoints. Our on-
going work on Internet loss topology characterizations to small sets of random
endpoints (such as from CAIDA/NLANR logs) do not often yield rich/interesting
structures. The depicted topology is meant to be illustrative, not representative.
Also, experiments to the selected set of endpoints did not consistently reveal high
losses. Figure 5(right) was constructed only after integrating consistent inferred
loss topologies viewed at different times.

the seven hosts, constructed by collapsing chains of hops in the
tree as explained in Section III-A and Figure 1). Intermediate
router IP addresses were obtained through the use of traceroute.
The server is in the continental U.S. Hosts A,B and C are in
China with hostsA and B on the same LAN of Beijing University
of Aeronautics and Astronautics and host C in Northeast China
Institute of Electric Power Engineering. Hosts D and E are in
Egypt, on the same LAN of the Arab Academy for Science and
Technology (AAST). Hosts F and G are in Italy at two different
universities: Politecnico di Bari and Universita Degli-Studi di
Bergano.

To validate the accuracy of Periscope we need to establish
a “reference” against which we could compare the inferred and
labeled loss trees we obtain for a given sensitivity parameter
c. The logical tree (shown in Figure 5) is such a reference for
c = 0. Obtaining such a reference for a non-zero sensitivity
parameter is impossible since it requires knowledge of loss rates
on all links of the logical tree. Moreover, loss rates cannot be
assumed stationary for the duration of a Periscope experiment
and may not always be above the sensitivity parameter specified
in Periscope.

While the logical tree in Figure 5 cannot be used to directly
validate loss trees inferred by Periscope it can be used to check
whether the loss trees generated by Periscope aremutually con-
sistent, as defined in Section III. We performed 20 experiments
using Periscope to infer and label the loss topology to the seven
endpoints of the logical topology in Figure 5. These 20 ex-
periments were conducted at different times. Each experiment
consisted of 100 probing phases with 64-byte probes. At a prob-
ing rate of 5 probes/sec, it takes Periscope about 4 minutes to
complete 100 phases of probing. Notice that this time could be
decreased by reducing the number of phases or by increasing
the probing rate. Indeed, in most experiments, the loss topology
tree “stabilized” within less than 10 phases—i.e. less than 24
seconds. However, increasing the probing rate is not desirable
because it may result in the violation of the inter-probe inde-
pendence assumption of the BP approach alluded to in Section
IV.

Figure 6 (left) shows the percentage of Periscope inferred

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

A
cc

ur
ac

y

Time

c=0.03
c=0.04
c=0.05 0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300

D
is

cr
ep

an
cy

Time

c=0.03
c=0.04
c=0.05

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

50 100 150 200 250 300

L
ab

el
in

g
E

rr
or

Time

202.112.1.62

202.112.128.55

A B
D E

F G

S

C

209.247.10.38

212.1.200.26

193.204.250.4193.204.49.37

163.121.43.3163.121.43.2

202.198.8.5

202.112.128.5
A B

D E

F G

S

C

A B
D E

F G

S

C

202.112.42.3

Fig. 5. PeriscopeValidation: Logical tree used as a test case (left), most frequent inferred loss tree (middle) and minimal loss tree spanning all inferred trees (right).

trees that are found to be inconsistent with the logical tree
in Figure 5 for various values of the sensitivity parameter c.
This relationship is shown for three different periods of running
Periscope—namely, after 20, 40 and 80 phases. As expected,
the inconsistency of the inferred tree decreases as the sensitivity
parameter increases.

As explained in Section III, the non-stationarity of losses on
the various links in a logical topology makes it unlikely that
all of the potentially lossy links will be observable in a given
experiment at a given time. Thus, one would expect that the loss
topologies inferred by Periscope will be different when run on
the tree inFigure 5 (left). Indeed,Periscope inferred six different
loss topologies. Over the 20 experiments we conducted, the
most frequently inferred loss topology tree is shown in Figure
5 (middle). This tree was inferred 11 times at times ranging
between 3am and 7am EST (consistent with the fact that the
lossy paths were the ones connecting our server to the hosts in
China).

Using the procedure described in Theorem 2, we constructed
the minimal loss tree spanning all six of the loss topologies in-
ferred by Periscope when c = 0.01. The resulting tree (which
itself is not one of the trees inferred by Periscope) is shown in
Figure 5 (right). Clearly, that tree is consistent with the logical
tree in Figure 5 (left).

To validate the labeling accuracy of Periscope, we imple-
mented a simple tool which repeatedly probes all nodes, includ-
ing internal nodes (i.e. along subpaths to endpoints), of the logi-
cal tree of Figure 5 concurrentlywith our use of Periscope. Loss
statistics obtained from this Poisson probing tool are compiled
to yield the loss rates on the various links of Figure 5. Finally,
the resulting labeled tree is compressed using the same sensitiv-
ity parameter of Periscope. The discrepancy and labeling error
between the loss trees obtained using this tool and those obtained
using Periscope are measured and presented in Figure 6.

Figure 6 (middle) shows the discrepancy between the
Periscope-inferred loss trees and the loss trees obtained using
the tool described above for various values of c. The results show
that the discrepancy decreases slightly as c decreases.

To demonstrate the convergence characteristics of Periscope,
Figure 6 (right) shows the reduction in the labeling error as the
number of phases executed increases from 0 to 100 phases, span-
ning approximately 4 minutes.

V. Bandwidth Induced Network Topologies

In Section IV, we presented an instantiation of MINT for a spe-
cific metric—namely, packet loss rate. Other instantiations of
MINT are also possible and have been pursued in [11]. In this
section, we briefly describe one such instantiation using the “bot-
tleneck bandwidth” metric.

The bottleneck bandwidth (BB) of a given network path is
the maximum transmission rate possible over that path (which
is equal to the transmission rate of the “slowest” link along the
path). The characterization of the BB topology between a set
of endpoints could be quite valuable for an array of network-
aware applications and services. Examples include the effective
construction of ad-hoc networks in peer-to-peer communication
settings, dynamic overlay networks, end-system multicast and
content delivery systems.

With reference to the metric properties discussed earlier in this
paper, the BB metric is monotonic but not separable. According
to the results of Theorem 1, if an oracle capable of measuring the
shared BB for two paths with a common endpoint exists, then it
is possible to infer the BB topology between a set of endpoints.
However, the complete labeling of the resulting topology is not
straighforward due to the fact that the BB metric is not separa-
ble. In [13],we describe an end-to-end unicast probing technique
(“Cartouche Probing”) for the measurement of shared BB. Thus,
using Cartouche Probing and the construction presented inTheo-
rem 1, one can effectively infer the BB topology between a set of
endpoints. Indeed Cartouche probing has been implemented in
Periscope, allowing for an empirical inference of BB topologies
between Internet endpoints.

The absence of the separability property implies that labeling
BB topologies using the (metric-independent) constructions in
Theorem 1 is not possible. However, this does not imply that la-
beling BB topologies using other (metric-specific) constructions

Fig. 6. Periscope: Inference inconsistency (left), discrepancy (middle) and labeling error (right) for the Internet topology of Figure 5

is not possible. Indeed, in [13] we present an efficient end-to-end
approach to the measurement of BB of an arbitrary path segment,
which enables a complete labeling of BB topologies, but relies
on properties that are specific to the BB metric.

VI. Conclusion

In this paper, we presented the theoretical underpinnings of
MINT—a framework for the representation of shared network
resources as captured by some metrics of interest. We presented
two instantiations ofMINT for the packet loss rate and bottleneck
bandwidth metrics. For the loss rate metric, we presented results
of extensive simulations and Internet measurement experiments
that confirmed the effectiveness of our constructions over a wide
range of network conditions.

Our work differs from prior efforts targeted at discern-
ing network-internal structures using end-to-end measurements
(e.g., [6]) in that it is targeted at unicast applications and is appli-
cable to classes of metrics obeying certain properties as opposed
to a single metric of interest.

Our current work focuses on the use of passive unicast prob-
ing (i.e., using feedback from established TCP connections) to
derive real-time MINT representations of the shared resources
between a set of endpoints, and on the use of such information
in making informed resource allocation decisions for network-
aware applications.

References

[1] M. Allman and V. Paxson. On Estimating End-to-End Network Path
Properties. In Proceedings of ACM SIGCOMM ’99, 1999.

[2] A. Bestavros, J. Byers, and K. Harfoush. Inference and Labeling of
Metric-Induced Network Topologies. Technical Report
BUCS-TR-2001-010, Boston University, Computer Science Department,
June 2001.

[3] J. C. Bolot. End-to-end Packet Delay and Loss Behavior in the Internet.
In SIGCOMM ’93, pages 289–298, September 1993.

[4] R. Cáceres, N. G. Duffield, J. Horowitz, D. Towsley, and T. Bu. Multicast
Based Inference of Network-Internal Characteristics: Accuracy of
Packet-Loss Estimation. In INFOCOM ’99, March 1999.

[5] M. Coates and R. Nowak. Network Loss Inference Using Unicast
End-to-End Measurement. In Proceedings of ITC Conference on IP
Traffic, Modelling and Management, Monterey, CA, September 2000.

[6] N. Duffield, J. Horowitz, and F. Lo Presti. Adaptive Multicast Topology
Inference. In Proceedings of IEEE INFOCOM ’01, April 2001.

[7] N. Duffield, V. Paxson, and D. Towsley. MINC: Multicast-based Inference
of Network-Internal Characteristics. http://www-net.cs.umass.edu/minc/.

[8] N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring Link Loss
Using Striped Unicast Probes. In IEEE INFOCOM 2001, April 2001.

[9] R. Govindan and A. Reddy. An analysis of internet inter-domain routing
and route stability. In Proceedings of IEEE INFOCOM ’97, April 1997.

[10] T. Griffin and G. Wilfong. An Analysis of BGP Convergence Properties.
In ACM SIGCOMM, pages 277–88, Cambridge, MA, September 1999.

[11] K. Harfoush. MINT: A Framework and Toolkit for the Effective
Measurement and Representation of Internet Internal Characteristics.
PhD thesis, Boston University, Computer Science Department, Boston,
MA, June 2002.

[12] K. Harfoush, A. Bestavros, and J. Byers. Robust Identification of Shared
Losses Using End-to-End Unicast Probes. In 8th International
Conference on Network Protocols (ICNP), Osaka, Japan, November
2000. (Errata available as Technical Report BUCS-TR-2001-001, Boston
University, Computer Science Department.).

[13] K. Harfoush, A. Bestavros, and J. Byers. Measuring Bottleneck
Bandwidth of Targeted Path Segments. Technical Report
BUCS-TR-2001-016, Boston University, Computer Science Department,
July 2001.

[14] K. Harfoush, A. Bestavros, and J. Byers. PeriScope: An Active
Measurement API. In Proceedings of IEEE PAM’2002, March 2002.

[15] IPMA : Internet Performance Measurement and Analysis.
http://www.merit.edu/ipma.

[16] V. Jacobson. Pathchar: A Tool to Infer Characteristics of Internet Paths.
ftp://ftp.ee.lbl.gov/pathchar.

[17] S. Keshav. Congestion Control in Computer Networks. PhD thesis,
University of California at Berkeley, September 1991.

[18] K. Lai and M. Baker. Measuring Link Bandwidths Using a Deterministic
Model of Packet Delay. In SIGCOMM’ 00, Aug 2000.

[19] K. Lai and M. Baker. Nettimer: A tool for Measuring Bottleneck Link
Bandwidth. In USENIX Symposium on Internet Technologies and
Systems, March 2001.

[20] Mtrace: Tracing multicast path between a source and a receiver.
ftp://ftp.parc.xerox.com/pub/netsearch/ipmulti.

[21] ns: Network Simulator. http://www-mash.cs.berkeley.edu/ns/ns.html.
[22] J.-J. Pansiot and D. Grad. On Routes and Multicast Trees in the Internet.

Computer Communication Review, 28(1):41–50, January 1998.
[23] V. Paxson. Measurements and Analysis of End-to-end Internet Dynamics.

PhD thesis, U.C. Berkeley and Lawrence Berkeley Laboratory, 1997.
[24] S. Ratnasamy and S. McCanne. Inference of multicast routing trees and

bottleneck bandwidths using end-to-end measurements. In IEEE
INFOCOM ’99, March 1999.

[25] D. Rubenstein, J. Kurose, and D. Towsley. Detecting Shared Congestion
of Flows Via End-to-end Measurement. In ACM SIGMETRICS ’00, Santa
Clara, Ca, June 2000.

[26] S. Seshan, M. Stemm, and R. Katz. SPAND: Shared Passive Network
Performance Discovery. In Proc. of Usenix Symposium on Internet
Technologies and Systems (USITS) ’97, Monterey, CA, December 1997.

[27] M.Yajnik, S. Moon, J. Kurose, and D. Towsley. Measurement and
modelling of the temporal dependence in packet loss. In IEEE
INFOCOM ’99, pages 345–52, March 1999.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.01 0.02 0.03 0.04 0.05

Fr
ac

tio
n

of
 I

nc
on

si
st

en
ci

es

Sensitivity (C)

phase #20
phase #40
phase #80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.01 0.02 0.03 0.04 0.05

D
is

cr
ep

an
cy

Sensitivity (C)

phase #20
phase #40
phase #80

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

L
ab

el
in

g
E

rr
or

Phase No

