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Abstract— We leverage the buffering capabilities of end-
systems to achieve scalable, asynchronous delivery of streams
in a peer-to-peer environment. Unlike existing cache-and-relay
schemes, we propose a distributed prefetching protocol where
peers prefetch and store portions of the streaming media ahead
of their playout time, thus not only turning themselves to possible
sources for other peers but their prefetched data can allow them
to overcome the departure of their source-peer. This stands in
sharp contrast to existing cache-and-relay schemes where the
departure of the source-peer forces its peer children to go the
original server, thus disrupting their service and increasing server
and network load. Through mathematical analysis and simula-
tions, we show the effectiveness of maintaining such asynchronous
multicasts from several source-peers to other children peers, and
the efficacy of prefetching in the face of peer departures. We
confirm the scalability of our dPAM protocol as it is shown to
significantly reduce server load.

Index Terms— Streaming content delivery; Peer-to-Peer sys-
tems; Asynchronous multicast; Modeling, analysis, and perfor-
mance evaluation.

I. INTRODUCTION

Motivating Application: In a large-scale peer-to-peer (P2P)
network community, any node in the system may become the
source of an interesting live, real-time feed that is (or may
quickly become) of interest to a large number of nodes. For
example, a P2P node may witness an interesting phenomenon
or event, e.g., capturing a video feed from a webcam in a dis-
aster scene, or capturing an interesting clip from a live event—
say a super bowl entertainment “mishap.” In such a setting, it
is unrealistic to assume that all requests for such a feed will
arrive synchronously. Rather, it is likely that such requests will
be distributed over time, with each node interested in receiving
the entire feed (or a prefix thereof). Clearly, directing all such
requests for the content to the “source” of the feed (which we
would term as the “server” of the content) is neither scalable
nor practical. Also, using asynchronous multicast approaches
requiring multicast capabilities (e.g., periodic broadcasts [26],
[12], [14]) is not practical. For starters, the server may not
even realize that the feed it is sharing with its P2P community
is popular enough that it is “worth” multicasting! Finally,
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assuming that every node in the system is capable (or willing)
to store the entire feed for future access by other nodes is
not warranted since nodes may have limited storage capacities
and/or nodes may opt to arbitrarily leave the P2P system.
Rather, what is needed is a scalable protocol for the unicast
dissemination of such content so that it is available on-demand
to any P2P node requesting it, with minimal assumptions
about the resources made available to such a protocol by the
constituent nodes in the system. Specifically, it is prudent to
assume that a node in the system is willing to contribute its
limited storage and communication capacity as long as it is
interested in receiving the content, but not beyond.

Leveraging Local Storage for Scalable Asynchronous Mul-
ticast in P2P Systems: Recently Jin and Bestavros proposed
a scalable “cache-and-relay” approach [17] that could be used
for scenarios similar to the one motivated above. Using this
approach, a recipient of the feed would “cache” the most
recently played out portion of the feed (after playing it out).
Such cached content could then be used by other nodes in
the system who request the feed within some bounded delay.
This process of caching and relaying the content was shown
to scale well in terms of server as well as network loads. In
[6], a detailed analysis of this approach was presented.

There are two problematic aspects of the cache-and-relay
approach. First, when a node leaves the system, any other
nodes receiving the feed from that node are disconnected.
This means that such nodes will experience a disruption in
service. Second, to resume, such disconnected nodes must
be treated as new arrivals, which in turn presents added load
to the server (and network). This latter issue is especially
significant because recent results by Jin and Bestavros
[16] have shown that asynchronous multicast techniques do
not scale as advertised when content is not accessed from
beginning to end (e.g., due to nodes prematurely leaving the
multicast and/or when non-sequential access is allowed to
support VCR functionality). Specifically, Jin and Bestavros
showed that techniques that ensured asymptotic logarithmic
server scalability under a sequential access model would
in effect behave polynomially under non-sequential access
models (e.g., in the presence of premature departures and/or
jumps).



Fig. 1. Overlay-based asynchronous streaming: Illustrative Example.

Contributions: In this paper we show that a more effective
use of the local storage at P2P nodes (for purposes of asyn-
chronous multicast) must involve prefetching. In particular,
rather than caching content already played out, a node is
also allowed to cache content that will be played out in
the future. Such prefetching is possible if we assume that a
node can retrieve content at a rate higher (even if by a small
factor) than the playout rate. Such an assumption is common
(and realistic) [26], [12], [14]. This “lookahead” buffering
capability provides each node with an opportunity to recover
from the premature departures of its source. Not only does this
allow the node to avoid a disruption of its playout, but also
it allows the node to resume the reception of the feed from
sources other than the server—thus reducing the load on the
server and improving scalability. In this paper, in addition to
presenting the algorithmic underpinnings of our protocol, we
also provide a complete model and analysis of its scalability
under a workload with independent arrivals and departures.
Our analysis is backed up by extensive simulations, which
demonstrate the superiority of dPAM when compared to the
cache-and-relay approach studied in [17], [6].

II. PRE-FETCH-AND-RELAY: DETAILS

In this section, we present the Pre-fetch-and-relay strat-
egy for asynchronous delivery of streams through overlay
networks. We illustrate the Pre-fetch-and-relay strategy in
Figures 1 and 2. Assume that each client is able to buffer the
streamed content for a certain amount of time after playback
by overwriting its buffer in a circular manner. As shown in
Fig.1, R1 has enough buffer to store content for time length
W1; i.e. the data cached in the buffer is replaced by fresh
data after an interval of W1 time units. When the request R2

arrives at time t = t2, the content that R2 wants to download is
available in R1’s buffer and, hence, R2 starts streaming from
R1 instead of going to the server. Similarly, R3 streams from
R2 instead of the server. Thus, in Fig.1, leveraging the caches
at end-hosts helps to serve three clients using just one stream
from the server.

In Fig.2, by the time request R2 arrives, part of the content
that it wants to download is missing from R1’s buffer. This

Fig. 2. Overlay-based aynchronous streaming: Illustrative Example.

missing content is shown as H in Fig.2. If the download
rate is the same as the playout rate, then R2 has no option
but to download from the server. However, if the network
(total) download rate is greater than the playback rate, then
R2 can open two simultaneous streams - one from R1 and
the other from the server. It can start downloading from
R1 at the playback rate (assuming that R1’s buffer is being
overwritten at the playback rate 1) and obtain the content H
from the server. After it has finished downloading H from the
server, it can terminate its stream from the server and continue
downloading from R1. This stream patching technique to
reduce server bandwidth was proposed in [13] . Assuming a
total download rate of α bytes/second and a playback rate of 1
byte/second, the download rate of the stream from the server
should be α − 1 bytes/second. Hence, for this technique to
work α−1 ≥ 1 ⇒ α ≥ 2. Hence, we need the total download
rate to be at least twice the playback rate for stream patching
to work for a new arrival.

In the event that a client departs from the peer-to-peer net-
work, all clients downloading from the buffer of the departing
client will have to switch their streaming session either to
some other client, or the server. The stream patching technique
can be used by a client in this situation as well to avoid
downloading from the server. As shown in Section II-C, unlike
the case for a new arrival, the stream patching technique may
work in this situation even when the total download rate is
less than twice the playout rate, i.e. α < 2.

When the download rate is greater than the playout rate, a
client can pre-fetch content to its buffer before it is time to
playout that content. Pre-fetching content can help achieve a
better playout quality in overlay multicast. In a realistic setting,
there would be a certain delay involved in searching for a peer
to download from; for example, consider the situation depicted
in Fig. 3. R3 starts streaming from R2 on arrival. After R2

departs, as shown in Fig. 3, it takes R3 D seconds (time units)
to discover the new source of download R1. If the pre-fetched
“future” content in R3’s buffer, at the time of R2’s departure,
requires more than D seconds (time units) to playout (i.e. the
size of the future content is greater than D bytes, assuming

1We discuss the condition under which R1’s buffer will be refreshed at the
playout rate instead of the download rate in Section III.



Fig. 3. Delay in finding a new source for a download: Illustration.

a playout rate of 1 byte/second) then the playout at R3 does
not suffer any disruption on R2’s departure. If the size of the
“future” content is smaller than D bytes, then R3 will have
to open a stream from the server, after it has finished playing
out its pre-fetched content, till it discovers R1. In a Cache-
and-relay strategy, clients do not pre-fetch content2.Thus, in
the case of Cache-and-relay, R3 will have to open a stream
from the server as soon as it realizes that R2 has departed and
continue downloading from the server for D seconds (till it
discovers that it can download from R1). R3 cannot know a
priori when R2 is going to depart. Due to the delays involved
in opening a stream from the server, it is quite likely that the
playout at R3 would be disrupted on R2’s departure in the
case of Cache-and-relay. In the case of Pre-fetch-and-relay, if
the time required to playout the pre-fetched content is larger
than the delay involved in finding a new source to download
from, the playout at R3 would not be disrupted upon R2’s
departure from the peer-to-peer network. Pre-fetching content
is also advantageous when the download rate is variable. A
client can absorb a temporary degradation in download rate
without affecting the playout quality if it has sufficient pre-
fetched content in its buffer.

A. Control Parameters

In this paper, we analyze the importance and effect of the
following three parameters in achieving scalable (in terms
of server bandwidth), asynchronous delivery of streams in a
peer-to-peer environment through analysis and simulations.

1) α = Download rate
Playout rate . Without loss of generality, we

take the Playout rate to be equal to 1 byte/second and,
hence the Download rate becomes α bytes/second. We
assume α > 1.

2) Tb : The time it takes to fill the buffer available at a
client at the download rate. The actual buffer size at
a client is, hence, α × Tb bytes. The available buffer
size at a client limits the time for which a client can

2It can be due to the fact that the playout rate is equal to the download
rate or clients may choose not to pre-fetch content.

download the stream at a rate higher than the playout
rate.

3) β = Future Content
Past Content . β represents the ratio of the

content yet to be played out, “future content”, to the
content already played out, “past content”, in the buffer.

Next, we discuss the constraints, in terms of α, β and Tb,
that must be satisfied for a client to be able to download the
stream from the buffer of another client available in the peer-
to-peer network.

B. Constraints in the case of an arrival

The following theorem is stated from [23].

Theorem 1: A newly arriving client R0 can download from
the buffer of R1 if one of the following conditions is satisfied:

– The inter-arrival time between R1 and R0 is less than Tb.
– If the inter-arrival time between R1 and R0 is greater than

Tb, then α should be greater than or equal to 2, R1 must
be over-writing the content in its buffer at the playout
rate and the size of the content missing from R1’s buffer
should be less than or equal to α × Tb.

The first condition in the above theorem ensures that the
content needed by R0 is present in R1’s buffer. The second
condition defines the scenario in which the stream patching
technique can be used by R0. Due to space limitation, please
refer to [23] for a detailed discussion.

C. Constraints in the event of a departure

Let us assume that R0 was streaming from R1’s buffer. R1

leaves the peer-to-peer network at time t = td. If the available
buffer size at R0 is α × Tb bytes and at t = td, the ratio of
“future” content to “past” content in R0’s buffer is β, then
R0 has

(
βαTb

1+β

)
bytes of the “future” content and αTb

1+β bytes
of the “past” content in its buffer. At a Playout rate of 1
byte/time unit, R0 has

(
βαTb

1+β

)
time units to find a new source

to download from after R1 departs.
If α = 1, then after R1’s departure, R0 can download from

another client R2’s buffer if and only if the content in their
buffers overlaps (partially). Fig. 4(a) shows the situation when
the buffers of R0 and R2 are contiguous. Any client that is
ahead of R0, in terms of playing out the stream, would have
some content that R0 needs to download missing from its
buffer and hence, unsuitable for R0 to download from. Fig.
4(b) depicts such a situation.

With reference to Fig. 4(b), let us assume that the ratio of
“future” content to “past” content in R0’s buffer is β and
hence, it currently has

(
βαTb

1+β

)
bytes of pre-fetched data.

Assume that the “missing” content is TH bytes and that the
playout rate is 1 byte/second. If α > 1, then R0 can open two
simultaneous streams, one from the server and the other from
R2 , and terminate its stream from the server after it has down-
loaded the “missing” content and continue to download from
R2 thereafter. Note that for this stream patching technique to
work, R2 should be over-writing contents in its buffer at a rate



Fig. 4. Possible buffer overlap/non-overlap scenarios for R0 and R2.

less than α; in our model we assume that clients over-write
the content in their buffer either at the download rate (α) or
at the playout rate. Hence, in this case, R2 should be over-
writing its buffer at the rate of 1 byte/second. If this is the
case, then R0 can download from R2 at the playout rate of
1 byte/second and download the “missing” content from the
server at the rate of (α − 1) bytes/second.

The following constraints must be satisfied by the size of
the “missing” content, TH bytes, for R0 to able to stream from
R2’s buffer [23]:

(1) Constraint imposed due to α:
The time taken by R0 to playout the pre-fetched content
in its buffer and the “missing” content, TH bytes, is
equal to (α × Tb)

(
β

1+β

)
+ TH seconds (at the playout

rate of 1 byte/second). The total time needed by R0

to download TH bytes from the server at the rate of
(α − 1) bytes/second is TH

α−1 seconds. In order to have
the “missing” content available at R0 before its playout
time, the following inequality must be satisfied:

(α × Tb)
(

β

1 + β

)
+ TH ≥ TH

α − 1
(1)

The above inequality demands that the time taken
to playout the pre-fetched and the “missing” content
should be greater than the time taken to download
the “missing” content. Note that if α ≥ 2, then the
condition (1) is always satisfied. The stream patching
can be used in this case of a departure even when
1 < α < 2 if a client has sufficient pre-fetched content.

(2) Constraint imposed by the size of the buffer:
Suppose that R0 starts downloading simultaneously

from the server and R2 at time t = td. Since it is
downloading from R2 at the playout rate, at any time
instant the size of data downloaded from R2 is exactly
equal to the size of the data played out by R2 after td.
Thus, to store the content downloaded from the server,
R0 will have to over-write the “past” content in its
buffer. Hence, TH cannot be greater than the size of the
“past” content in R0’s buffer at td. By our assumption,
the “past” content in R0’s buffer at td is

(
αTb

1+β

)
bytes

and hence,

TH ≤ αTb

1 + β
(2)

III. SERVER BANDWIDTH REQUIREMENT: ANALYSIS

We consider the case of a single CBR media distribution.
The playback rate is assumed to be 1 byte/time unit. The client
requests are generated according to a Poisson process with
rate λ. The time spent by a client downloading the stream is
exponentially distributed with rate µ.

Let us assume that a client is able to determine whether it
should download the stream from the server or from the buffer
of some other client without any delays both in the case of a
new arrival as well as in the event of a departure; i.e. we do
not take delays like propagation delay and the delay involved
in searching the peer-to-peer network for a suitable client to
download from into consideration. We later incorporate such
delays in Section III-D.

A. Arrivals

A new arrival, R0, would have to download from the server
in either of the following two cases:

• The inter-arrival time between R0 and the arrival imme-
diately preceding R0, say R1, is greater than W ; where
W = Tb if 1 < α < 2 or W = (α × Tb)

(
2+β
1+β

)
if

α ≥ 2. As mentioned in Theorem 1 in Section II-B,
if α ≥ 2, R0 can use the stream-patching technique to
“catch-up” with R1 iff the size of the content “missing”
from R1’s buffer is less than or equal to α × Tb. If R1

maintains the ratio β in its buffer, then the maximum
value of W for R0 is

W = max. “missing” content

+“past” content at R1

= (α × Tb) +
(

αTb

1 + β

)

= (α × Tb)
(

2 + β

1 + β

)

• Suppose R0 arrives at time t = t0. It can be easily verified
that as a consequence of Theorem 1, Section II-B, R0 can
download from only those users that arrived during the
interval TD = [t0 − W, t0). If all the users that arrived
during the interval TD have already departed from the
peer-to-peer network by t = t0, then R0 would have to
download from the server.



Fig. 5. Timeline illustration of an arrival event (for R0).

Let w represent the inter-arrival time between any two client
requests. Since the arrival process is Poisson with rate λ, the
inter-arrival time is exponentially distributed with mean 1

λ ,
hence:

P{w > W} = e−λW (3)

Suppose a new client request, R0, arrives at time t = t0. Let
N represent the number of arrivals in the interval TD = [t0 −
W, t0). Let N = n. As mentioned earlier, R0 would have to
download from the server if all the n users that arrived during
the interval TD have departed by t = t0. Let Ri, i = 1, ..., n,
represent the n users that arrived during the interval TD. Let yi

be the time spent by client Ri downloading the stream before
it departs. Let the inter-arrival time between user Ri and R0

be wi. If yi ≤ wi, Ri would have departed by the time R0

arrives (see Fig. 5). Let A represent the event that R0 has
to download from the server because all the users that arrived
during the interval TD departed before R0’s arrival. Then:

P{Event A|N = n, yi, wi} =

P{N = n}
n∏

i=1

P{yi ≤ wi} × P{wi}

where P{wi} is the probability that the inter-arrival time
between Ri and R0 is wi.

Let the inter-arrival time between Ri and Ri−1 be ti with
t1 being the inter-arrival time between R1 and R0 and hence,
t1 = w1. Note that because of the memoryless nature of the
Poisson arrival process, each ti is exponentially distributed
with mean 1

λ time units. Thus,

w2 = t1 + t2

w3 = t1 + t2 + t3
...

wn = t1 + t2 + · · · + tn

Since each wi (i ≥ 2) is a sum of i i.i.d. exponential random
variables with mean 1

λ , wi is an Erlang random variable of
order i with mean i

λ . Hence,

P{wi} =
λ(λwi)i−1e−λwi

(i − 1)!
.

Since wi ∈ [0,W ) ∀i = 1, · · · , n,

P{Event A} =
∞∑

n=1

∫ W

0

· · ·
∫ W

0

(Integrand) dw1 · · · dwn

where the Integrand is

P{N = n}
n∏

i=1

P{yi ≤ wi}P{wi}

To keep the analysis tractable, we solve the above equation
for N = 1. Then,
P{Event A}

=
∫ W

0

P{N = 1} × P{y1 ≤ w1} × P{w1}dw1

=
∫ W

0

λWe−λW × (1 − e−µw1) × λe−λw1dw1

= λWe−λW ×
(

µ

λ + µ
+

λe−(λ+µ)W

λ + µ
− e−λW

)
(4)

Thus,

P{a new arrival goes to the server}
= P{w > W} + P{Event A}

where P{w > W} and P{Event A} are given by equations
(3) and (4), respectively.

B. Departures

Suppose user R0 is downloading the stream from the buffer
of user R1. Let R1 depart from the peer-to-peer network at
time t = td such that by this time R0 has been downloading
and playing out the stream for a duration of ts time units;
i.e. R0 has been in the peer-to-peer network for ts time units
when R1 departs. We assume that ts is long enough for R0

to have achieved the desired ratio, β, between its “future” and
“past” content.

Fig. 4 presents a snapshot of buffer of R0 and another user,
R2, from whose buffer R0 can start downloading from instead
of going to the server after R1 has departed. Since we have
assumed a sequential access model for client requests, i.e.
each client downloads the stream from the beginning and the
playout speed is 1 byte/time unit, after R0 has spent ts time
units downloading the content, its “present” is ts bytes away
from the beginning of the content.

The difference, in terms of number of bytes, between the
“present” of R0 and R2, represented by Tf in Fig. 4(b), is

Tf = “future” content at R0

+“missing” content + “past” content at R2

=⇒ Tf =
(

βαTb

1 + β

)
+ TH +

(
αTb

1 + β

)

The size of the “future” content at R0 and the “past” content
at R2 have been calculated using the assumption that both R0

and R2 maintain the ratio β. As discussed in Section II-C the
download rate α and the buffer size impose certain constraints



Fig. 6. Timeline illustration of a departure event (for R1).

on the size of the “missing” content, TH , for R2 to be suitable
for R0 to download from. The maximum value of Tf is

Tf =




(α × Tb)
(

β−α+2
(1+β)(2−α)

)
if α ≤

(
2+β
1+β

)
(α × Tb)

(
2+β
1+β

)
otherwise

(5)

We provide a detailed derivation of Equation 5 in the appendix.
After the departure of R1, only those clients whose

“present” is ahead of R0’s “present” by a value less than or
equal to the maximum value of Tf are suitable for R0 to start
downloading from, assuming that all such clients maintain the
same ratio β in their buffers.

Since we have assumed the playout speed to be 1
byte/second, a client whose “present” is Tf bytes ahead of
R0 must have arrived Tf time units before R0. Hence, the
constraint on the suitability of a client (mentioned in the
preceding paragraph) can be re-stated as: on R1’s departure
R0 can download from only those clients that arrived at most
Tf time units before R0; where the value of Tf is given by
(5).

Suppose that the client request R0 arrives at t = t0. Let N
represent the number of arrivals in the interval [t0 − Tf , t0).
Let N = n and Ri, i = 1, · · · , n be the n client requests.
Suppose R0 starts downloading the stream from R1 and R1

departs the peer-to-peer network at td = t0 + ts. Thus, R0 has
spent ts time units downloading the stream when R1 departs.
Let wi be the inter-arrival time between Ri and R0 and yi be
the time spent by Ri downloading the stream (see Fig. 6).
If all the clients Ri, i = 2, · · · , n have departed by the time
td = t0 + ts, i.e. yi ≤ ts + wi, then R0 would have no option
but to download from the server on R1’s departure. Let event
B represent the situation that R0 downloads from the server
on R1’s departure. Then,

P{Event B|N = n, ts, yi, wi} =

P{N = n}P{ts}
n∏

i=2

P{wi}P{yi ≤ ts + wi}

where P{ts} is the probability that R0 has downloaded the
stream for ts time units by the time R1 departs, P{wi} is the
probability that the inter-arrival time between Ri and R0 is
wi and i = 2, · · · , n.

To keep the analysis tractable, let us assume N = 2; this
represents the scenario where R0 starts downloading from R1

on arrival and could potentially download from R2 on R1’s
departure. We have,

P{Event B} =
∫ ∞

0

∫ Tf

0

(Expression) dw2dts (6)

where Expression3 is:(
e−λTf (λTf )2

2!

)
(µe−µts)

(
λ(λw2)e

−λw2

1!

)
(1 − e−µ(ts+w2))

C. Server Load

Let event S represent the situation that a client request
downloads the stream from the server. From the preceding
discussion in Section III-A and III-B,

P{Event S} = P{w > W} + P{Event A} + P{Event B}
where the right-hand terms are given by equations (3), (4) and
(6), respectively.

In our model we have assumed that client requests are
generated according to a Poisson process with rate λ. Hence,
in steady state, i.e. after there are enough end-hosts in the
peer-to-peer network, the average number of client requests
that download the stream from the server is λ×P{Event S}.

D. Incorporating the delays

Let us revisit the scenario discussed in Section II-C. Sup-
pose that R2 is a suitable client for R0 to start downloading
from after R1’s departure but it takes R0 D time units after
R1’s departure to determine this. R0 needs to know what is
available on each client’s buffer and process that information
to determine the suitability of each client. There will also be
some propagation delay involved in the transmission of the
meta-data4 traffic amongst clients in the overlay network.

At the time of R1’s departure, R0 has
(

βαTb

1+β

)
time units

of “future” data. We assume that if R0 is not able to find
R2 by the time it finishes playing out its “future” content
(D > βαTb

1+β ), R0 starts downloading from the server. If

D ≤
(

βαTb

1+β

)
, R0 can absorb the delay without any disruption

of its playout. In the next section, we present analytical
results after incorporating the delay involved in the event of a
departure into our model assuming that the delay is uniformly
distributed.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Pre-fetch-
and-relay based on the analytical model presented in this
paper and compare it with simulation results. We also present
analytical and simulation results after incorporating the various
delays into our model (as discussed in Section III-D). We also

3The integrand for computing P{Event B} is computed assuming that R0

starts downloading from R1 on arrival.
4The messages exchanged in determining the clients who are still present

in the peer-to-peer network and their buffer contents.
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Fig. 7. Importance of Pre-fetched content

compare the performance of Pre-fetch-and-relay with Cache-
and-relay with respect to savings in server bandwidth. We
refer to the protocols oStream [6] and OSMOSIS [17] by the
generic term Cache-and-relay because they correspond to the
situation when α = 1 (hence, a client cannot pre-fetch any
content).

A. Advantage of Pre-fetching

If a client does not pre-fetch content (as in Cache-and-
relay), then on premature departure of its current source it has
no option but to start downloading from the server till the time
it is able to locate another source in the peer-to-peer network.
In this section, we analytically compare the performance of
our Pre-fetch-and-relay scheme against the Cache-and-relay
scheme proposed in [6].

Suppose R0 starts downloading the stream from R1 upon
arrival. Let the inter-arrival time between R0 and R1 be w1

and the time spent by Ri (i = 0, 1) downloading the stream
be ti. Under the Cache-and-relay scheme, R0 will have to
start downloading from the server at some point if R1 departs
before R0. In both Cache-and-relay as well as Pre-fetch-and-
relay, a client that is forced to download from the server after
the premature departure of its source can stop downloading
from the server after it has found another source in the peer-
to-peer network. To keep the analysis tractable, we have not
considered this “optimization” in this analysis. But since this
“optimization” technique to reduce the server bandwidth is
possible under both schemes, the trend exhibited by the results
presented in this section would remain the same. Using the
same analytical model of Section III,

P{R1 departs before R0}
= P{t1 ≤ t0 + w1} × P{t0} × P{w1}
= (1 − e−µ(t0+w1)) × µe−µt0 × λe−λw1

Thus, the probability that R0 will have to download from the
server under the Cache-and-relay scheme due to the premature
departure of its current source, represented by Pd, is

Pd =

∫ W

0

∫ ∞

0

(1 − e−µ(t0+w1)) × µe−µt0 × λe−λw1dt0dw1

In the Pre-fetch-and-relay scheme, as calculated in Section
III, the probability that R0 downloads from the server after
the premature departure of its current source is given by
P{Event B}. Note that in computing P{Event B} we had
not taken the various delays mentioned in Section III-D, into
consideration. Let p represent the probability that R0 is not
able to locate a new source to download from, after R1’s
departure, before it finishes playing out its pre-fetched content.
R0 would be forced to start downloading from the server in
such a scenario. Thus, under the Pre-fetch-and-relay scheme,
the probability that R0 will download from the server due to
the premature departure of its current source, represented by
PF , is

PF = Pd × P{Event B} + Pd × (1 − P{Event B}) × p

where the first term represents the scenario where there are no
new sources in the peer-to-peer network for R0 to download
from after the departure of its current source, and the second
term represents the situation where R0 finishes playing out its
pre-fetched content before it is able to locate a new source.

The probability p can be thought of as the fraction of time
when a client does not have enough pre-fetched content to be
able to locate a new source after the departure of its current
source. Fig. 7 compares the performance of Cache-and-relay
and Pre-fetch-and-relay for different values of p. Note that PF

degenerates to Pd for p = 1. The ratio of the server bandwidth
requirement for Pre-fetch-and-relay to the server bandwidth
requirement for Cache-and-relay is plotted along the y-axis.
The value of α is 2 and β is 100,000. The buffer size is 10 time
units. It is evident from the figure that in the presence of client
departures, pre-fetching “sufficient” content by clients can help
reduce the server bandwidth requirement significantly.

B. Simulation Model

Table I presents the settings of the various parameters used
to obtain the results presented in this section.

Figure Buffer size β (1/µ) Delay
8 5 100,000 1000 No
9 10 100,000 1000 No
10 20 100,000 1000 No
11 10 100,000 100 No
12 10 1 1000 Yes
13 10 100,000 1000 Yes

TABLE I

SETTINGS OF VARIOUS PARAMETERS USED IN SIMULATIONS.

The quantity (1/µ) represents the average time spent by a
client downloading the stream. A “No” in the column labeled
“Delay” indicates that the various delays discussed in Section
III-D were not considered in calculating the server bandwidth
requirement; a “Yes” indicates that the delays were considered.

The plots on the left-hand-side of Figures 8, 9, and 10
show the server bandwidth requirements obtained from our
analytical model for the simplified cases when N = 1 in
Section III-A and N = 2 in Section III-B. The plots on
the right-hand-side show the corresponding simulation results.



10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

request arrival rate (req./60 time units)

se
rv

er
 c

os
t (

pe
r 

60
 ti

m
e 

un
its

)

Buffer size = 5 time units

alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

11
Buffer size = 5 time units

request arrival rate (req./ 60 time units)

se
rv

er
 c

os
t(

pe
r 

60
 ti

m
e 

un
its

)

CR
alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2
alpha = 5
alpha = 10

Fig. 8. Analysis (left) and simulation (right) when mean download time = 1000 time units and buffer size = 5 time units.
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Fig. 9. Analysis (left) and simulation (right) when mean download time = 1000 time units and buffer size = 10 time units.
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Fig. 10. Analysis (left) and simulation (right) when mean download time = 1000 time units and buffer size = 20 time units.

All of these results are under an assumption of Delay=No.
This assumption is relaxed in the results shown in Figures
12 and 13. Namely, we assume that the total delay involved
in switching the streaming session to another client after a
departure is uniformly distributed over the interval [0,9]. With
a buffer size of 10 time units and β = 100, 000, a client will
have 9.999 time units of “future” content in its buffer after it
achieves the ratio β whereas with β = 1 it will have only 5
time units of “future” content.

In all simulations, the total number of client arrivals was
set at 3,000. Each point on a graph represents an average over
10 independent runs.

C. Summary of Observations

If the download rate is sufficiently high, α ≥ 2, dPAM
has an advantage over Cache-and-relay in reducing the server
bandwidth when the resources available for overlay stream
multicast are constrained, for example when the buffer size is
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Fig. 11. Simulation results when mean download time = 100 time units and
buffer size = 10 time units.

small or when the request arrival rate is low. The advantage
stems from the fact that a higher download rate enables a client
to open two simultaneous connections for a short duration to
“catch-up” with the buffer of another client using the technique
of stream patching. This advantage is more pronounced for
higher client departure rate. If clients depart frequently from
the peer-to-peer network, it reduces the caching capacity of the
peer-to-peer network, thus patching content from the server
becomes more beneficial. As the buffer size and the request
arrival rate increase, the advantage of our dPAM protocol over
Cache-and-relay is mitigated and for a given buffer size, at a
sufficiently high request arrival rate, Cache-and-relay matches
the performance of dPAM in terms of server bandwidth even
when the download rate is very high.

When 1 < α < 2, Pre-fetch-and-relay leads to a greater
server load than Cache-and-relay for small arrival rates. As we
increase α, the time taken to fill the buffer at download speed,
Tb decreases. For example, for a buffer size of 5 time units,
for Cache-and-relay (α = 1), Tb = 5; whereas when α=1.8,
Tb=2.78. Thus, in the former case, a new arrival can reuse the
stream from someone who arrived at most 5 time units earlier
whereas in the latter case a new arrival can download from
someone who arrived at most 2.78 time units earlier. Hence, in
the latter case, more new arrivals have to download from the
server. This effect can be mitigated by increasing the buffer
size and also for increasing client arrival rate.

The results presented in this section also show that as the
available buffer at the client increases, the required server
bandwidth to support a particular request arrival rate decreases,
both in Cache-and-relay as well as Pre-fetch-and-relay (for all
values of α). This observation is in agreement with the results
obtained in [6].

The amount of time that clients spend downloading a
stream is an important factor in determining server bandwidth
requirements. Peer-to-peer network based asynchronous media
content distribution is suited for situations in which the content
being distributed is large; so that the end-hosts participating
in the peer-to-peer network are available for a long time. In a
scenario where end-hosts keep departing after a short interval,
the server load can be considerably high due to the fact that a
lot of requests may have to start downloading from the server

due to the departure of clients they were downloading from.
Fig. 11 presents the simulation results when the mean time
spent by a client downloading the stream (1/µ) is 100 time
units. Compared to the case when 1/µ = 1000, the server
bandwidth requirement is considerably higher even for very
high client arrival rates.

We refer the reader to [23] for a more detailed discussion on
the simulation results presented in Figures 8(right), 9(right),
10(right) and 11.

The server bandwidth requirements obtained from our an-
alytical model (Figures 8(left), 9(left), 10(left)) display the
same trends as observed through simulations. The analytical
results are more optimistic than the results obtained through
simulations because of the assumption that clients are able
to achieve the ratio β in the buffer before they are forced to
switch their streaming session because of client departures.
If the ratio between the “future” and the “past” content in
a client’s buffer is less than β, then not only does it have
less time to discover another client to download from but the
number of suitable clients available in the peer-to-peer network
is also reduced because of a smaller Tf .5

Figures 12 and 13 present the results from analysis and
simulations after incorporating the various delays into our
model. In Figure 12, with β = 1, clients have 5 time units
of “future” content whereas the delays involved are uniformly
distributed over the interval [0,9]. Hence, in a significant
number of cases, a client would be forced to download the
stream from the server after a departure because it would
be unable to find another client to download from before it
finishes playing out the “future” content. As a result, the server
bandwidth requirement keeps on increasing even for high
client arrival rate. In Figure 13, with β = 100, 000, clients have
9.99 time units of “future” content. Hence, clients are able
to absorb the delays without any disruption to their playout
and are not forced to download from the server. As a result,
the server bandwidth requirement displays the same trend as
observed when delays were not considered. These results aim
to underscore the importance of taking advantage of a higher
download rate to pre-fetch content in achieving a better playout
performance and lower server bandwidth requirement.

V. IMPLEMENTATION ISSUES

There are two main components to dPAM: (1) Buffer
Management: How should a node manage its buffer? and (2)
Content Location: How does a node locate a set of potential
sources from which to prefetch its content upon arrival, or
upon being disconnected due to the premature departure of its
current source? In this paper, we have focused on the buffer
management component of dPAM. In this section, we briefly
outline how the content location component of dPAM could
be readily implemented.

First, we note that the content cached in any P2P node is
uniquely identifiable by the absolute time of the first byte of
the feed currently being played out at that node. For example,
if at time t a node i is playing out the dth second of a feed

5As discussed in Section III-B, the size of Tf is related to the “future” and
the “past” content in the buffers of the clients.



10 20 30 40 50 60 70 80 90
5

10

15

20

25

30

35

40

45

request arrival rate (req./60 time units)

se
rv

er
 c

os
t (

pe
r 

60
 ti

m
e 

un
its

)

Buffer size = 10 time units

alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2

alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2  
alpha = 5  
alpha = 10 

0 50 100 150 200 250
3

4

5

6

7

8

9

10

11

request arrival rate (req./60 time units)

se
rv

er
 c

os
t (

pe
r 

60
 ti

m
e 

un
its

)

alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2
alpha = 5
alpha = 10

Fig. 12. Analysis (left) and simulation (right) with delay when mean download time = 1000 time units and buffer size = 10 time units, β = 1
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Fig. 13. Analysis (left) and simulation (right) with delay when mean download time = 1000 time units, buffer size = 10 time units, β = 100, 000

f , then the content of node i storage at any point in time
is uniquely identified by the string f@t0 where t0 = t −
d. Thus one can treat f@t0 as the unique reference string
for the content available at node i. Similarly, it also follows
that a node j searching for content could uniquely generate
the reference string for the cached content it is seeking by
specifying the name of the feed and its own starting time for
that feed.

Our ability to uniquely name the cache content at any node
in the system gives us a simple mechanism for implementing
dPAM’s content location component. Specifically, this could
be done using any number of existing P2P content location
protocols, ranging from widely deployed controlled flooding
protocols (e.g., gnutella [1]) to more scalable DHT-based
protocols (e.g., CAN [21] and CHORD [25]), or recently
proposed hybrids thereof [10].

Upon joining (leaving) the asynchronous multicast of a feed
f , a node would advertise the availability of its cached portion
of f by adding (removing) the appropriate reference string
into (from) the pool of available content (this is akin to a node
adding/removing a file to/from the set of files it is contributing
to a P2P file sharing application). When a node needs to locate
a new source of content, it would query the system using
an appropriately formed reference string (possibly including
wild-cards to allow for ranges, etc.) In our dPAM scheme,

a node arriving at t0 needs to query a string range that
spans the arrival times [t0 − W, t0). If matches exist (or are
locatable using the content location protocol), that node would
receive a list of all candidate sources, possibly with additional
meta information coded into the matching reference strings
(e.g., load information, network distance, etc.) From such a
candidate list, the node would select the most appropriate
source. If matches do not exist, or if the candidate list is not
responsive (perhaps due to delays in propagating departures
through the P2P name space), the node will resort back to the
server.

VI. RELATED WORK

Delivery of streams to asynchronous clients has been the
focus of many studies, including periodic broadcasting [26],
[14], [12], [18] and stream patching/merging techniques [5],
[11], [7], [8]. In periodic broadcasting, segments of the media
object (with increasing sizes) are periodically broadcasted on
dedicated channels, and asynchronous clients join one or more
broadcasting channels to download the content. The approach
of patching [13] allows asynchronous client requests to “catch
up” with an ongoing multicast session by downloading the
missing portion through server unicast. In merging techniques
[9], clients merge into larger and larger multicast session
repeatedly, thus reducing both the server bandwidth and the



network link cost. These techniques rely on the availability of
a multicast delivery infrastructure at the lower level.

The idea of utilizing client-side caches has been proposed
in several previous work [24], [20], [15]. The authors of [6],
propose an overlay, multicast strategy, oStream, that leverages
client-side caching to reduce the server bandwidth as well the
network link cost. Assuming the client arrivals to be Poisson
distributed, they also derive analytical bounds on the server
bandwidth and network link cost. However, this work does not
consider the effect of the departure of the end-systems from
the overlay network on the efficiency of overlay multicast.
As mention earlier, oStream, does not consider the effect of
streaming rate, it is a Cache-and-relay strategy, and hence,
does not incorporate patching techniques to reduce server
bandwidth when the download rate is high. The main objective
of the protocol, OSMOSIS, proposed in [17] is to reduce the
network link cost. The effect of patching on server load has
not been studied.

A different approach to content delivery is the use of peri-
odic broadcasting of encoded content as was done over broad-
cast disks [2] using IDA [19], and more recently using the
Digital Fountain approach which relies on Tornado encoding
[4], [3]. These techniques enable end-hosts to reconstruct the
original content of size n using a subset of any n symbols from
a large set of encoded symbols. Reliability and a substantial
degree of application layer flexibility can be achieved using
such techniques. But these techniques are not able to efficiently
deal with real-time (live or near-live) streaming media content
due to the necessity of encoding/decoding rather large stored
data segments.

VII. CONCLUSION AND FUTURE WORK

We proposed dPAM, a pre-fetch-and-relay protocol that
allows a peer to serve as a source for other peers, while
prefetching a portion of the stream ahead of its playout time. In
contrast to existing cache-and-relay schemes, dPAM is more
scalable in highly dynamic P2P systems. This is because a
departure of a peer does not necessarily force its children peers
(for whom it is serving as source) to go to the original server.
Rather a child peer can continue its playout uninterrupted
from its prefetched data until it discovers a new source-peer.
Through mathematical analysis and extensive simulations, we
show that, if the download rate is sufficiently greater than
the playout rate (α ≥ 2), our distributed prefetching scheme
significantly reduces the load on the server as it effectively
increases the capacity of the P2P system. At the same time,
clients can achieve a better playout performance.

One aspect of dPAM that we did not evaluate (but should
be evidently obvious) is that the prefetching buffer allows a
client to withstand, not only the departure of source-peers,
but also network jitters associated with the bandwidth from
the source. Indeed, buffering (via prefetching) is commonly
used in streaming media players for that purpose, suggesting
that the same storage capacity at a client could be used for
smoothing network jitters as well as improving the scalability
of P2P asynchronous multicast.

In this paper, we have assumed that a client starts the process
of replacing a source-peer upon discovering the departure

of such a source, and that the replenishment of the client’s
buffer is done by contacting only one source-peer. Clearly, a
client can minimize the delay experienced in finding a new
peer to download from after the departure of its source-peer
by pre-computing and maintaining a list of other potential
source-peers. In the event of the departure of its source-peer,
a client can reduce its search time for a new peer by first
checking out the peers on its list. Also, when replinishing its
prefetched buffer, a client may be able to leverage multiple
sources concurrently [22].

More importantly, a client can proactively switch from one
source-peer to another in order to reduce the transmission
delay of its download or to optimize the overall network
link cost. To that end, maintaining a list of potential source-
peers can also help reduce the delay in finding the “opti-
mal” source- peer. In effect, one may think of this process
as a distributed optimization process whereby each peer in
the P2P asynchronous multicast overlay is performing local
optimization (by proactively selecting its source from many
potential candidates). Currently, we are exploring the impact
of the above mentioned optimizations on the performance of
our protocol. This includes issues of convergence and stability.

APPENDIX

As discussed in Section II-C the download rate α and
the buffer size impose certain constraints on the size of
the “missing” content, TH , for R2 to be suitable for R0 to
download from (see Fig. 4). If α ≥ 2, condition (1), Section
II-C is always satisfied and hence, the maximum size of the
“missing” content is given by condition (2), Section II-C.
Hence, when α ≥ 2, the maximum value of Tf , assuming
that both R2 and R0 maintain the ratio β in their buffers, is

Tf =
(

βαTb

1 + β

)
+

(
αTb

1 + β

)
+

(
αTb

1 + β

)

=⇒ Tf = (α × Tb)
(

2 + β

1 + β

)

Now consider the case of 1 < α < 2. Condition (1), Section
II-C can be restated as

TH ≤
(

αβTb

1 + β

)(
α − 1
2 − α

)

We can derive the condition on α that determines whether
condition (1), Section II-C or condition (2), Section II-C
restricts the maximum size of the “missing” content; condition
(1), Section II-C determines the maximum size of the missing
content iff (

αβTb

1 + β

) (
α − 1
2 − α

)
≤

(
αTb

1 + β

)

=⇒ α ≤
(

2 + β

1 + β

)
(7)

If (7) is satisfied then the maximum value of Tf , assuming
that both R2 and R0 maintain the ratio β in their buffers, is

Tf =
(

βαTb

1 + β

)
+

(
αβTb

1 + β

)(
α − 1
2 − α

)
+

(
αTb

1 + β

)

= (α × Tb)
(

β − α + 2
(1 + β)(2 − α)

)
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