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Abstract— In many networked applications, independent
caching agents cooperate by servicing each other’s miss streams,
without revealing the operational details of the caching mecha-
nisms they employ. Inference of such details could be instru-
mental for many other processes. For example, it could be
used for optimized forwarding (or routing) of one’s own miss
stream (or content) to available proxy caches, or for making
cache-aware resource management decisions. In this paper, we
introduce the Cache Inference Problem (CIP) as that of inferring
the characteristics of a caching agent, given the miss stream of
that agent. While CIP is insolvable in its most general form, there
are special cases of practical importance in which it is, including
when the request stream follows an Independent Reference Model
(IRM) with generalized power-law (GPL) demand distribution.
To that end, we design two basic “litmus” tests that are able
to detect the LFU and LRU replacement policies, the effective
size of the cache and of the object universe, and the skewness
of the GPL demand for objects. Using extensive experiments
under synthetic as well as real traces, we show that our methods
infer such characteristics accurately and quite efficiently, and
that they remain robust even when the IRM/GPL assumptions
do not hold, and even when the underlying replacement policies
are not “pure” LFU or LRU. We demonstrate the value of our
inference framework by considering example applications.

I. INTRODUCTION

Motivation: Caching is a fundamental building block of
computing and networking systems and subsystems. In a given
system, multiple caching agents may co-exist to provide a
single service or functionality. A canonical example is the use
of caching in multiple levels of a memory system to implement
the abstraction of a “memory hierarchy”.

For distributed systems, the use of caching is paramount:
route caches are used to store recently-used IP routing entries
and is consulted before routing tables are accessed; route
caches are also used in peer-to-peer overlays to cache hub and
hub cluster information as well as Globally Unique IDentifiers
(GUIDs) to IP translations for content and query routing
purposes [1]; DNS lookups are cached by DNS resolvers to
reduce the load on upper-level DNS servers [2]; distributed
host caching systems are used in support of P2P networks
to allow peers to find and connect to one another [3]; web
proxy and reverse proxy caches are used for efficient content
distribution and delivery [4], [5], and the list goes on.

When multiple caching agents are used to support a single
operation, be it a single end-host or a large CDN overlay
network, the “design” of such agents is carefully coordinated
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to ensure efficient operation. For instance, the size and replace-
ment strategies of the caching mechanisms used to implement
traditional memory hierarchies are matched up carefully to
maximize overall performance under a given workload (typi-
cally characterized by reference models or benchmarks). Sim-
ilarily, the placement, sizing, and cache replacement schemes
used for various proxies in a CDN are carefully coordinated
to optimize the content delivery process subject to typically-
skewed demand profile from various client populations.

Increasingly, however, a system may be forced to rely on
one or more caching agents that are not necessarily part of
its autonomous domain and as such may benefit from infering
the characteristics of such agents. Next, we give a concrete
example to motivate the work presented in this paper.

Application to Informed Caching Proxy Selection: Consider
a web server (or a proxy thereof), which must decide which
one of potentially many candidate reverse caching proxies
(possibly belonging to competing ISPs) it should use to “front
end” its popular content. Clearly, in such a setting, it cannot be
assumed that details of the design or policies of such caching
agents would be known to (let alone controlled or tuned by)
the entity that wishes to use such agents. Yet, it is clear that
such knowledge could be quite valuable. For example, given
a choice, a web server would be better off selecting a reverse
proxy cache with a larger cache size. Alternatively, if the web
server needs to partition its content across multiple reverse
proxies, it would be better off delegating content that exhibits
popularity over long time scales to proxies employing an LFU-
like replacement policy, while delegating content that exhibits
popularity over shorter time scales to proxies employing an
LRU-like replacement policy. Even if the web server has no
choice in terms of the reverse caching proxy to use, it may
be useful for the web server to ascertain the characteristics of
the reference stream served by the caching proxy.

The above are examples of how knowledge of the charac-
teristics of remote caching agents could empower a server to
make judicious decisions. Later, in Section VIII, we show how
the same information could also empower a client-side caching
proxy to make judicious decisions regarding which other
caching proxies to use to service its own miss stream. Both
of these are examples of Informed Caching Proxy Selection,
which has applications in any system that allows autonomous
entities the flexibility of selecting from among (or routing
content or requests across) multiple remote caching agents.

The Cache Inference Problem: In many of the distributed ap-
plications and networking systems (to which we have alluded
above), a caching agent that receives a request which it cannot
service from its local storage redirects (or routes) such requests
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to other subsystems – e.g., another caching agent, or an origin
server. Such redirected requests constitute the “miss stream”
of the caching agent. Clearly, such a miss stream carries in it
information about the caching mechanisms employed by the
caching agent. While the subsystems at the receiving end of
such miss streams may not be privy to the “design” of the
caching agent producing such a miss stream, it is natural to
ask whether “Is it possible to use the information contained
in a miss stream to infer some of the characteristics of the
remote cache that produced that stream?”

Accordingly, the most general Cache Inference Problem
(CIP) could be stated as follows: “Given the miss stream of
a caching agent, infer the replacement policy, the capacity,
and the characteristics of the input request stream”. The
above question is too unconstrained to be solvable, as it
allows arbitrary reference streams as inputs to the cache.
Thus, we argue that a more realistic problem statement would
be one in which assumptions about common characteristics
of the cache reference stream (i.e., the access pattern) are
made. We single out two such assumptions, both of which
are empirically justified, commonly made in the literature,
and indeed leveraged in many existing systems. The first is
that the reference stream follows the Independent Reference
Model (IRM) [6], whereas the second is that the demand
for objects follows a Generalized Power Law (GPL). As we
show in Section II, CIP when subjected to the IRM and GPL
assumptions is solvable.

As we hinted above, we underscore that the GPL and IRM
assumptions on the request stream have substantial empirical
justification, making the solution of the CIP problem of
significant practical value to many systems. Moreover, as will
be evident later in this paper, the solutions we devise for the
CIP problem subject to GPL and IRM work well even when the
request stream does not satisfy the GPL and IRM assumptions.

Beyond Inference of Caching Characteristics: So far, we
have framed the scope of our work as that of “infering” the
characteristics of an underlying caching agent. While that is
the main technical challenge we consider in this paper (with
many direct applications), we note that the techniques we
develop have much wider applicability and value. In particular,
we note that our techniques could be seen as “modeling”
as opposed to “inference” tools. For instance, in this paper
we provide analytical and numerical approaches that allow
us to discern whether an underlying cache uses LFU or LRU
replacement. In many instances, however, the underlying cache
may be using one of many other more elaborate replace-
ment strategies (e.g., GreedyDual, LRFU, LRU(k), etc.) or
replacement strategies that use specific domain knowledge
(e.g., incorporating variable miss penalties, or variable object
sizes, or expiration times, etc.). The fact that an underlying
cache may be using a replacement strategy other than LFU
and LRU does not mean that our techniques cannot be used
effectively to build a robust model of the underlying cache.
By its nature, a model is a simplifcation or an abstraction of
an underlying complex reality, which is useful as long as it
exhibits verifiable predictive powers that could assist/inform
the processes using such models – e.g., to inform resource
schedulers or resource allocation processes.

The inherent value of the techniques we devise in this paper
for modeling purposes is an important point that we would
like to emphasize at the outset. To drive this point home, we
discuss below an example in which modeling an underlying
cache could be used for informed resource management.

Application to Caching-Aware Resource Management:
Consider the operation of a hosting service. Typically, such
a service would employ a variety of mechanisms to improve
performance and to provide proper allocation of resources
across all hosted web sites. For instance, the hosting service
may be employing traffic shapers to apportion its out-bound
bandwidth across the various web sites to ensure fairness,
while at the same time, it may be using a third-party caching
network to front-end popular content. For simplicity, consider
the case in which two web sites A and B are hosted under
equal Service Level Agreements (SLAs). As such, a natural
setting for the traffic shaper might be to assign equal out-
bound bandwidth to both A and B. Now, assume that web
site A features content with a highly-skewed popularity profile
and which is accessed with high intensity, whereas web site B
features content with a more uniform popularity and which is
accessed with equally high intensity. Using the techniques we
devise in this paper, by observing the miss streams of A and
B, the hosting service would be able to construct a “model”
of the effective caches for A and B. We emphasize “effective”
because in reality, there is no physical separate caches for A
and for B, but rather, the caching network is shared by A
and B (and possibly many other web sites). In other words,
using the techniques we devise in this paper would allow us to
construct models of the “virtual” caches for A and B. Using
such models, we may be able to estimate (say) the hit rates
rA and rB that the caching network delivers for A and B. For
instance, given the different cacheability of the workloads for
A and B, we may get rA � rB. Given such knoweldge, the
hosting service may opt to alter its traffic shaping decision so
as to allocate a larger chunk of the out-bound bandwidth to
B to compensate it for its inability to reap the benefits from
the caching network. This is an example of caching-aware
resource management which benefits from the ability to build
effective models of underlying caching processes.1

Paper Overview and Contributions: In addition to concisely
formulating the cache inference problem in Section II, this
paper presents a general framework that allows us to solve
these problems in Section III. In Sections IV and V, we
develop analytical and numerical approaches that allow us to
obtain quite efficient instantiations of our inference procedure
for LFU and LRU. In Section VI, we generalize our instanti-
ations to allow for the inference of the size of the underlying
cache and that of the object universe. In Section VII, we
present evidence of the robustness of our inference techniques,
using extensive simulations, driven with both synthetic and
real traces. In Section VIII, we present experimental results
that illustrate the use of our inference techniques for informed
request routing. We conclude the paper in Sections IX and X
with a summary of related work and on-going research.

1 The ability to infer the relative benefits from a shared cache in order to
inform resource management decisions has been contemplated quite recently
for CPU scheduling in emerging multi-core architectures [7], [8].
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II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider an object set O = {o1, . . . , oN}, where oi denotes
the ith unit-sized object.2 Now, assume that there exists a
client that generates requests for the objects in O. Let Xn

denote the nth request and let Xn = i indicate that the
nth request refers to object oi. The requests constitute the
input of a cache memory with space that accommodates up
to C objects, operating under an unknown replacement policy
ALG.3 If the requested object is currently cached, then Xn

leads to a cache hit, meaning that the requested object can
be sent back to the client immediately. If oi is not currently
cached, then Xn leads to a cache miss, meaning that the
object has to be fetched first before it can be forwarded to the
client, and potentially cached for future use. Let Ym denote
the mth miss that appears on the “output” of the cache, where
by output we mean the communication channel that connects
the cache to a subsystem that is able to produce a copy of
all requested objects, e.g., an “origin server” that maintains
permanent copies of all objects: Ym = Xn if the mth miss is
due to the nth request, n ≥ m. In both cases (hit or miss),
a request affects the information maintained for the operation
of ALG, and in the case of a miss, it also triggers the eviction
of the object currently specified by ALG.

Definition 1: (CIP) Given: the miss-stream Ym, 1 ≤ m ≤
mmax, and the cache size C and the object universe size N ,
find: the input request stream Xn, 1 ≤ n ≤ nmax, and the
replacement policy ALG.
If one thinks of ALG as being a function Y =ALG(X), then
CIP amounts to inverting the output Y and obtaining the input
X and the function ALG itself.

Can the above general CIP be solved? The answer is no. To
see that, it suffices to note that even if we were are also given
ALG, we still could not infer the Xn’s from the Ym’s and, in
fact, we cannot even determine nmax. For instance, consider
the case in which some very popular objects appear on the
miss-stream only when they are requested for the first time
and never again as all subsequent requests for them lead to
hits. These objects are in effect “invisible” as they can affect
nmax and Xn in arbitrary ways that leave no sign in the miss-
stream and thus cannot be infered.4

Since the general CIP is too unconstrained to be solvable,
we lower our ambition, and target more constrained versions
that are indeed solvable. A first step in this direction is to
impose the following assumption (constraint).

Assumption 1: Requests occur under the Independent Ref-
erence Model (IRM): requests are generated independently
and follow identical stationary distributions, i.e., P [Xn =
i|Xl, 1 ≤ l < n] = P [Xn = i] = pi, where p = {p1, . . . , pN}
is a Probability Mass Function (PMF) over the object set O.

2 The unit-sized object assumption is a standard one in analytic studies of
replacement algorithms [6], [9] to avoid adding 0/1-knapsack-type complex-
ities to a problem that is already combinatorial. Practically, it is justified on
the basis that in many caching systems the objects are much smaller than the
available cache size, and that for many applications the objects are indeed of
the same size (e.g., entries in a routing table).

3 We refer interested readers to [10] for a fairly recent survey of cache
replacement strategies.

4 Similar examples illustrating the insolvability of CIP can be given without
having to resort to such pathological cases.

The IRM assumption [6] has long being used to characterize
cache access patterns [11], [12] by abstracting out the impact
of temporal correlations, which was shown in [13] to be
minuscule, especially under typical, Zipf-like object popularity
profiles. Another justification for making the IRM assumption
is that prior work [14] has showed that temporal correlations
decrease rapidly with the distance between any two references.
Thus, as long as the cache size is not minuscule, temporal
correlations do not impact fundamentally the i.i.d. assumption
in IRM. Regarding the stationarity assumption of IRM, we
note that previous cache modeling and analysis works have
assumed that the request distribution is stationary over some
long-enough time scale. Moreover, for many application do-
mains, this assumption is well supported by measurement and
characterization studies.5

The IRM assumption makes CIP simpler since rather than
identifying the input stream Xn, it suffices to characterize Xn

statistically by infering the p of the Xn’s. Still, it is easy to
see that CIP remains insolvable even in this form (see the
Appendix of [15] for details). We, therefore, make one more
assumption that makes CIP solvable.

Assumption 2: The PMF p of the requests is a Generalized
Power Law (GPL), i.e., the ith most popular object, hereafter
(without loss of generality) assumed to be object oi is re-
quested with probability pi = Λ/ia, where a is the skewness of
the GPL and Λ = (

∑N
i′=1

1
i′a )−1 is a normalization constant.

The GPL assumption allows for an exact specification of the
input using only a single unknown — the skewness parameter
a.6 Combining the IRM and GPL assumptions leads to the
following simpler version of CIP, which we call CIP2.

Definition 2: (CIP2) Given: the miss-stream Ym, 1 ≤ m ≤
mmax, and the cache size C and the object universe size N ,
find: the skewness parameter a of the IRM/GPL input, and the
replacement policy ALG.

Before concluding this section, we should emphasize that
the IRM/GPL assumptions were made to obtain a framework
within which the CIP problem becomes solvable using sound
analysis and/or numerical methods. However, as we will show
in later sections of this paper, the inference techniques we
devise are quite robust even when one or both of the IRM and
GPL assumptions do not hold.

III. A GENERAL INFERENCE FRAMEWORK

Let qi denote the steady state appearance probability of the
ith most popular object in a sufficiently long miss stream Ym

of CIP2 — let this be object og(i). For a cache of size C,
under LFU replacement g(i) = C + i, whereas under LRU
replacement g(i) may assume any value between i and C + i,
depending on demand skewness and cache size (more details in
Section V). In both cases, qi = (1/mmax)

∑mmax

m=1 I{Ym=g(i)},
where I{} is the indicator function. Below, we present our
general inference framework for solving CIP2. It consists of
the following three steps:

5 Obviously, if the demand is non-stationary and radically changing over
shorter small time scales, then no analysis can be carried out.

6 Without the GPL assumption the input introduces N unknowns, whereas
without the IRM assumption it introduces nmax unknowns, that can be
arbitrary many, and even exceed N .
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1. Hypothesis: In this step we hypothesize that a known
replacement policy ALG operates in the cache.
2. Prediction: Subject to the hypothesis above, we want to
predict the PMF q̃ of the miss stream obtained when ALG
operates on an IRM GPL input request stream. This requires
the following: (i) obtain an estimate ã of the exact skewness
a of the unknown GPL(a) input PMF p, and (ii) derive the
steady-state hit probabilities for different objects under the
hypothesized ALG and ã, i.e., π̃i, 1 ≤ i ≤ N . The π̃i’s and
the p̃i’s (corresponding to a GPL(ã)) lead to our predicted
miss-stream q̃i as follows:

q̃i =
p̃g(i) · (1 − π̃g(i))∑

oj∈O p̃g(j) · (1 − π̃g(j))
(1)

3. Validation: In this step we compare our predicted PMF q̃ to
the PMF q of the actual (observed) miss stream, and decide
whether our hypothesis about ALG was correct. In order to
define a similarity measure between q̃ and q, we view each
PMF as a (high-dimensional) vector, and define the distance
between them to be the Lp-norm distance between their corre-
sponding vectors. Thus, the error between the predicted PMF
and the observed one is given by e(q̃, q) = (

∑N
i=1(q̃i−qi)p)

1
p .

In this work, unless otherwise stated, we use the L2-norm. A
positive validation implies a solution to CIP2 as we would
have inferred both the unknown replacement algorithm and
the PMF of the input stream, using only the observed miss
stream.

In the above procedure, the prediction step must be cus-
tomized for different ALGs assumed in the hypothesis step.
In Sections IV and V, we do so for LFU and LRU, using a
combination of analytic and fast numerical methods.

The above inference procedure has important advantages
over an alternative naive “simulation-based” approach that
assumes an ã and an ALG, performs the corresponding sim-
ulation, and then validates the assumptions by comparing the
actual and the predicted PMFs. While the overall approach is
similar, we take special care to employ analytic or fast numeric
techniques where possible and thus avoid time-consuming
simulations (mainly for the prediction step). Such advantages
will be evident when we present our analytic method for
deriving ã under LFU, and the corresponding analytic and fast
numerical methods for obtaining the predicted miss streams
for both LFU and LRU. Needless to say, fast inference is
important if it is to be performed in an real-time fashion.

IV. THE PREDICTION STEP FOR LFU

The main challenge here is to obtain an estimate of a
by using the observed miss stream q of an LFU cache. We
start with some known techniques from the literature and then
present our own SPAI analytic method. Having obtained the
estimate ã and the corresponding p̃, it is straightforward to
construct the predicted PMF q̃ of the actual miss stream PMF
q. This is so because LFU acts as a cut-off filter on the C most-
popular objects in the request stream, leading to the following
relationship for q̃.

q̃i =
p̃C+i

1 −∑C
j=1 p̃j

, 1 ≤ i ≤ N − C (2)

A. Existing Methods: MLE, OLS, and RAT

There are several methods for estimating the skewness of
a power-law distribution through samples of its tail. In this
section we will briefly present three popular ones: the Maxi-
mum Likelihood Estimator (MLE), the Linear Least Squares
(OLS) estimator, and the RAT estimator. MLS and OLS
are numeric methods of significant computational complexity,
whereas RAT is analytic.
The Maximum Likelihood Estimator (MLE): Given a vector
of N miss stream observations x we would like to determine
the value of the exponent α which maximizes the probability
(likelihood) of the sampled data [16]. Using the power law
input demand, we can derive an equation that can be solved
using standard iterative numerical methods and provide an
unbiased estimate of α.
A Linear Least-Squares Estimator (OLS): Yet another method
to estimate a is to use linear least-squares estimation on the
log− log plot of qi, i.e., the PMF of the miss stream. This
graphical method is well documented and perhaps one of the
most commonly used (e.g., in [17]).
An Alternative Analytic Estimator (RAT): MLE is asymptot-
ically optimal. In practice we may be interested in obtaining
an estimate with a limited number of observations. A (poorer)
estimator uses qC+1 and qC+2 to get α. Equating qi to
i−α ÷∑U

j=C+1 j−α we get

qC+1

qC+2
=

(C + 1)−α

(C + 2)−α
(3)

log
qC+1

qC+2
= −α log(C + 1) + α log(C + 2) (4)

α =
log(qC+1/qC+2)

log(C + 2) − log(C + 1)
(5)

B. SPAI: Our Single Point Analytic Inversion Method

As its name suggests, SPAI considers a single (measurement)
“point” – the appearance frequency of the most popular object
in the miss stream of an LFU cache, which is subject to GPL
demand with skewness parameter a – and uses it to derive an
estimate for a.

An outline of SPAI follows: We start with an equation that
associates the measured frequency q1 at the miss-stream with
the request frequency pC+1 of the unknown input stream. We
use our assumption (that the input is GPL) to substitute all pi’s
by analytic expressions of i and a. We employ a number of
algebraic approximations to transform our initial non-algebraic
equation into a polynomial equation of our single unknown
a. We then obtain a closed-form expression for a by solving
a corresponding cubic equation obtained by an appropriate
truncation of our original polynomial equation. The details
are presented next.

q1 =
pC+1(∑N

i=1 pi

)
−
(∑C

i=1 pi

)=
1/(C + 1)a(∑N

i=1 1/ia
)
−
(∑C

i=1 1/ia
)

=
1/(C + 1)a

H
(a)
N − H

(a)
C
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Fig. 1. SPAI vs MLE, OLS, and RAT on inferring the exponent of a GPL from samples of its tail (objects with rank C + 1 and higher) shown with 95%
confidence intervals.

Using the integral approximation H
(a)
k ≈ k1−a−1

1−a for the kth

generalized Harmonic number of order a, H
(a)
k , we can write:

q1 ≈ 1/(C + 1)a

N1−a−1
1−a

− C1−a−1
1−a

=
1 − a

(C + 1)a(N1−a − C1−a)

For large C we have (C +1)a ≈ Ca, leading to the following
approximation.

q1 ≈ 1 − a

Ca(N1−a − C1−a)
=

1 − a

CaN1−a − C
=

(1 − a)C−1

(N/C)1−a − 1

After term re-arrangement, we re-write the last equation as

(N/C)1−a − 1

q1C
(1 − a) − 1 = 0 (6)

or equivalently as

βx − γx − 1 = 0 where: x = 1 − a < 1
β = N/C > 1

γ =
1

p̃1C
> 0

(7)

Expanding the exponential form βx on x around point 0 we
get βx = 1 +

∑∞
k=1

(x ln β)k

k! . By substituting in Eq. (7), we
get the following master equation:( ∞∑

k=1

(x ln β)k

k!

)
− γx = 0 (8)

Equation (8) can be approximated through “truncation”, i.e.,
by limiting k to K instead of ∞. For K = 2 we get a quadratic
equation which has one non-zero real solution. For K = 3 we
get a cubic equation with two real solutions and we can choose
the positive one. Finally, for K = 4 we get:7

1

24
x
(

x
3
log

4
(β) + 4x

2
log

3
(β) + 12x log

2
(β) + 24 log(β) − 24γ

)
= 0

(9)

At least one of the roots of the cubic equation in the paren-
theses of Eq. (9) is real — we select the one in [0, 1] and use
it to obtain the skewness parameter a through a = 1 − x.

7 Notice that for K = 4 we actually have a cubic equation of x (inside
the parentheses) after factoring out the common term x. We can therefore use
the cubic formula [18] to obtain a closed-form solution for the unknown
x. Theoretically we could go even further and consider K = 5, which
would put a quartic equation in the parentheses. The solution of the general
quartic equation, however, involves very cumbersome formulas for the roots
and is marginally valuable since the cubic equation already provides a close
approximation as will be demonstrated later on. K = 5 and the quartic
equation is actually as far as we can go because for K = 6 we would have
a quintic equation in the parentheses for which there does not exist a general
solution over the rationals in terms of radicals (the “Abel-Ruffini” theorem).

C. SPAI Versus Existing Approaches

We perform the following experiment in order to compare
the performance of SPAI to existing approaches that could be
used for the prediction step. We simulate an LFU cache of
size C, driven by a GPL(a) input request stream. In Figure 1
we plot the estimated skewness ã obtained from SPAI and
the other methods (on the y-axis) for different numbers of
miss-stream samples (on the x-axis). We use low (a = 0.2)
and high (a = 0.8) skewness, and low C/N = 1% and high
(C/N = 5%) relative cache sizes. These results indicate that
SPAI performs as well as (and most of the time better than)
MLE and OLS, over which it has the additional advantage
of being an analytic method, thus incurring no computational
complexity. SPAI’s rival analytic method, RAT, performs much
worse.

V. THE PREDICTION STEP FOR LRU

The steady-state hit probabilities of LRU bear no simple
characterization, and this has several consequences on the
prediction step of our cache inference framework presented
in Section III. First, even if we had ã, it is not trivial to
derive the π̃i’s (and therefore get the q̃i’s through Eq. (1)).
Computing exact steady-state hit probabilities for LRU under
IRM is a hard combinatorial problem, for which there exist
mostly numerical approximation techniques [19], [20], [21].
Second, and most importantly, the steady-state hit probabilities
depend on the skewness of the input through a function
π(a,C). Since we do not have a simple analytic expression
for π(a,C), it is impossible to invert Eq. (1) and obtain a
closed-form expression for a, as with our SPAI method for
LFU. Unfortunately, our analytical derivation of π(a,C) [22]
cannot be used for this purpose as it involves a complex non-
algebraic function8 that leads to a final equation for a (through
Eq. (1)) that admits no simple closed-form solution.

In light of the discussion above, our approach for the
prediction step for LRU replacement is the following. We
resort to a numeric search technique for obtaining ã, i.e.,
we start with an arbitrary initial value a0 ∈ [0, 1], compute
the corresponding steady-state hit probabilities π̃(a0) using
either the numeric technique of Dan and Towsley [19], or
our own analytical one from [22], and compute the miss
probability for each object of the input. Next, we sort these
in decreasing popularity to obtain the predicted miss stream
q̃(a0) and, finally, the error e(q̃(a0), q). We then use a local
search approach to find the ã that minimizes the error e.

8 The unknown a appearing in complex polynomial and exponential forms
over multiple different bases.
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C=20 C=40 C=60 C=80 C=100 C=120 C=140 C=160 C=180 C=200
α = 0.2 0.20 20 0.20 41 0.20 49 0.20 75 0.19 66 0.18 66 0.17 75 0.15 51 0.16 78 0.15 78
α = 0.4 0.41 24 0.40 41 0.39 51 0.39 66 0.39 88 0.38 97 0.38 118 0.36 107 0.36 134 0.37 158
α = 0.6 0.60 21 0.62 46 0.60 63 0.60 82 0.58 89 0.56 96 0.54 100 0.56 136 0.54 141 0.55 160
α = 0.8 0.80 21 0.81 42 0.81 61 0.79 76 0.79 93 0.78 109 0.80 135 0.78 147 0.78 165 0.80 200
α = 1.0 1.04 24 1.01 41 1.01 63 1.00 82 0.99 97 1.01 127 0.96 125 1.00 159 1.00 179 0.96 180

TABLE I

INFERENCE USING OUR 1−DIMENSIONAL SEARCH METHOD ON THE MISS-STREAM OF AN LFU(α, C) CACHE.

C=20 C=40 C=60 C=80 C=100 C=120 C=140 C=160 C=180 C=200
α = 0.2 0.31 250 0.31 250 0.27 225 0.28 250 0.27 225 0.30 250 0.24 188 0.22 183 0.23 225 0.27 250
α = 0.4 0.40 27 0.41 75 0.41 75 0.40 101 0.42 135 0.42 135 0.41 154 0.43 197 0.43 209 0.39 187
α = 0.6 0.65 41 0.61 51 0.58 58 0.58 88 0.64 119 0.60 124 0.64 161 0.61 161 0.63 192 0.60 202
α = 0.8 0.80 25 0.87 45 0.77 58 0.86 101 0.83 119 0.79 119 0.80 144 0.84 174 0.81 187 0.85 207
α = 1.0 0.93 14 0.93 38 0.97 58 0.91 57 0.94 107 0.93 106 0.98 139 0.98 156 0.91 166 0.93 194

TABLE II

INFERENCE USING OUR 2−DIMENSIONAL SEARCH METHOD ON THE MISS-STREAM OF AN LRU(α, C) CACHE.

VI. INFERRING SIZE OF CACHE AND OBJECT UNIVERSE

In this section we show how to extend the prediction
techniques of the previous sections to make them useful under
unknown cache size C and object universe size N .

A. Handling LFU Using One-dimensional Search

Let U denote the number of unique distinct objects that appear
on the miss stream Ym of an LFU cache. Assume also that
Cmax is an upper bound on the (unknown) cache size. We can
pick an arbitrary cache size C̃ ≤ Cmax. This leads directly
to an object universe size Ñ = U + C̃. Our approach will
be to perform a numeric search by setting our “free” variable
C̃, obtain the corresponding Ñ , applying our LFU test using
(C̃, Ñ), computing the corresponding error e(q̃(C̃, Ñ), q), and
changing C̃ in the direction of minimizing the aforementioned
error between the observed and predicted PMFs.

B. Handling LRU Using Two-dimensional Search

A similar approach can be used for LRU. In this case, however,
there is a non-zero probability that any object may appear on
the miss stream, and thus U = N . This means that the numeric
search on C̃ doesn’t effect N . However, since the standard
prediction step for LRU already includes a numeric search
over the skewness ã, it follows that the resulting numeric
search when N and C are not known will have to be over
a two-dimensional free variable (ã, C̃). We use a general non-
convex optimization method, namely the differential evolution
method [23], to find the best values for ã and C̃.

VII. PERFORMANCE EVALUATION

In this section, we verify the quality of the results obtained
through the application of our inference framework (for both
LRU and LFU), when N and C are unknown. We will start by
demonstrating the very high accuracy of our inference tech-
niques in a conformant setting, in which the assumptions used
for designing our methods are satisfied. Next, we demonstrate
the robustness of our methods in non-conformant settings, in
which these assumptions do not hold. We do so by using real
datasets, which are neither strictly GPL, nor IRM, and by
applying our inference techniques when a replacement policy
other than “pure” LFU or LRU is in use.

A. Results in Conformant Settings

Our goal is to show that 1D and 2D searches for LFU and
LRU under unknown N,C are possible as: (1) when we have
a perfect PMF of a miss-stream of an exact GPL input, then
the error is convex and thus such searches find an almost exact
solution; (2) even when the miss-stream PMF is not perfect
(not produced from an infinite number of samples), meaning
it contains some sampling noise, still our methods detect a,C
quite accurately.

Table I presents the results of our 1−dimensional search
method on the miss-stream of an LFU(α, C) cache. The input
demand is synthetically generated by sampling a GPL(α)
distribution. Our inference method is applied on the miss-
stream once 106 misses have been observed. Similarly, Table
II presents the results of our 2−dimensional search method
on the miss-stream of an LRU(α, C) cache. Each cell in these
tables includes the inferred (ã, C̃) pair corresponding to the
actual (a,C) pair defined by the coordinates of the cell. As
it may be seen from these results, the inferred values are
quite accurate in most cases. Generally, it is easier to infer
a with high accuracy than C. A possible reason for this is
that since a characterizes the entire distribution, it suffices
to look at the correct place for getting a robust estimate of
it. The correct place being in this case the most popular
objects of the miss-stream. These objects stabilize quickly
around their expected appearance probabilities after relatively
few samples thus revealing the skewness of the GPL; SPAI
is largely build around this observation. Regarding C, we see
that getting a robust estimation on it becomes increasingly
difficult with decreasing skewness and increasing cache size.
Our explanation for this is that in these cases, the objects
that are around the border of the cache tend to have similar,
very low request probabilities and thus it becomes increasingly
harder to estimate the exact cache size.

B. Results under Non-Conformant Input

To check the robustness of our techniques, we conducted
experiments using the following “real” datasets, for which the
pefect GPL and IRM assumptions do not hold.
- Stocks: A stock quote datastream [24] collected on April
4, 2006, comprising 937,565 requests for its top 400 most-
popular objects
- UCB: UC Berkeley Home IP Web Traces [25] of 2,575,144
references to over 5,000 objects, spanning the period from
November 1, 1996 to November 19, 1996.
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α = 0.85 α = 0.78

Fig. 2. Stocks (left) and UCB (right) datasets used in our experiments (and
GPL(α) approximation thereof).

We subject each input data stream to LFU replacement
with a cache size C and we infer the value of α by using
SPAI. Given this estimate of the power-law exponent, α̂, we
attempt to minimize the error between the observed miss-
stream and the miss-stream that would result from performing
LFU replacement with a cache size Ĉ on a GPL(α̂) distributed
input. The value Ĉ which minimizes the L2 error between the
two vectors is our guess for C. The results are presented in
Tables III and IV. Despite the fact that these datasets are not
strictly GPL in popularity profile, the obtained estimation is
quite accurate.

Unlike LFU, LRU is sensitive to temporal correlations of the
input stream and these datasets include a substantial amount
of such correlation [26]. To quantify the effect of temporal
correlations on our method we produced a random permutation
of the Stocks dataset and subjected it to LRU replacement for
the same range of cache sizes as the original. As can be seen
in Table IV the effect of this shuffling is a greater miss rate,
which implies more information for our algorithm and hence
greater accuracy in our results. Having said that we note that
even when the IRM assumptions breaks, our results are fairly
accurate and can be further improved by collecting a larger
number of observations.

ALG C 20 40 60 80 100
LFU Ĉ 46 70 85 93 87

α̂ 0.89 0.9 0.88 0.85 0.8
LRU Ĉ 25 53 70 91 110

α̂ 0.73 0.76 0.78 0.81 0.82

TABLE III

ESTIMATING α AND C FOR THE UCB DATASET

C. Results under Non-Conformant Replacement

Reference locality is the main criterion that caching sub-
systems capitalize on. Various replacement policies exploit
different manifestations of reference locality in the request
stream. The two canonical examples being LFU, which ex-
ploits frequency, and LRU, which exploits recency. More
nuanced replacement policies attempt to exploit both of these
basic manifestations of reference locality (as well as others). In
this section, we show that our inference techniques are able to
robustly discern whether an underlying replacement operates
“more like” LFU than LRU (or vice versa).

To that end, we implemented a hybrid replacement strategy
Hybrid(λ), which splits the available storage space C in two
parts of size (1−λ)C and λC respectively, where 0 ≤ λ ≤ 1.
The first part is devoted to LFU replacement, effectively
storing the most popular objects in the input stream. The
second part is used to perform LRU replacement on the rest
of the objects in our universe. By varying λ, we are able

ALG C 10 20 30 40 50
LFU Ĉ 20 33 34 49 43

α̂ 0.99 1.01 0.93 0.96 0.86
LRU Ĉ 23 32 41 48 58

α̂ 0.73 0.73 0.73 0.72 0.73
Miss-rate 46.30% 40.10% 35.79% 32.44% 29.66%

LRU Ĉ 14 22 32 44 56
(shuffled) α̂ 0.82 0.85 0.88 0.93 0.96

Miss-rate 90.99% 83.27% 76.55% 70.74% 65.59%

TABLE IV

ESTIMATING α AND C FOR THE STOCKS DATASET. BOTTOM ROW SHOWS

RESULTS WHEN REQUEST STREAM IS SHUFFLED TO SATISFY IRM.

to make Hybrid(λ) behave “more like” either LFU or LRU,
with Hybrid(0)=LRU and Hybrid(1)=LFU. In this section,
we consider the case in which Hybrid(λ) is the unknown
replacement algorithm operating in the cache.9

Let δ(λ, LRU) denote the real L2 distance between the
PMFs of the miss streams of a Hybrid(λ) cache and an LRU
cache driven by the same GPL(a) request stream assuming we
know the probability of occurrence of every object in the miss-
stream, including the objects we never see, i.e., those whose
probability is zero. We similarly define δ(λ, LFU). For large λ,
Hybrid(λ) is closer to LFU and, thus, δ(λ, LRU)− δ(λ, LFU)
will be positive. Inversely, for small λ, Hybrid(λ) is closer to
LRU and, thus, δ(λ, LRU) − δ(λ, LFU) will be negative.

The normalized difference between δ(λ, LRU) and
δ(λ, LFU) — namely (δ(λ, LRU) - δ(λ, LFU))/(δ(λ, LRU)
+ δ(λ, LFU)) could be used as an indicator function (Ī).
A more positive (closer to +1) value of Ī indicates that
the underlying replacement is “more like” LFU, whereas a
more negative (closer to −1) value of Ī indicates that the
underlying replacement is “more like” LRU. Notice that an
oracle that also knows the input rank of the objects would be
able to obtain an even more authoritative indicator function,
which we call I .

Computing Ī (not to mention I) is not possible, if all what
we are given is the miss stream from a cache with unknown
characteristics. In particular, we are not given the GPL(a)
request stream nor are we privy to the replacement strategy or
its parameters (λ in our case), and thus we cannot compute I .
For that we must rely on an estimate of the indicator function.
We do so next, using the methods of Sections IV and V.

Let e(λ, LRU) be the error between the PMF of the observed
miss stream and the predicted PMF for that stream, obtained
by executing our LRU test from Section V on the underlying
Hybrid(λ) replacement algorithm. Similarly, let e(λ, LFU) de-
note the corresponding error from applying the LFU test from
Section IV.10 The normalized difference between e(λ, LRU)
and e(λ, LFU) could be use as an estimate Î of the indicator
function I . Figure 3 shows how Î tracks I and Ī , and
thus provides for an efficient, robust discrimination between
different flavors of Hybrid(λ).

9 We note that Hybrid(λ) resembles the Least Recently/Frequently Used
(LRFU) replacement policy of Lee et al. [27]. LRFU has a parameter λ,
0 ≤ λ ≤ 1, which allows LRFU to subsume the entire spectrum of policies
between in-cache LFU (as opposed to ideal LFU) and LRU. LRFU degenerates
to in-cache LFU for λ = 0 and to LRU for λ = 1, whereas it becomes a
joint frequency/recency based replacement policy for intermediate values of
λ.

10 In both cases we assume that objects are sorted by their miss-stream
popularity as their actual input rank is in most cases unknown.
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VIII. APPLICATION TO INFORMED REQUEST ROUTING

In this section, we revisit one of the examples presented in
Section I to motivate the CIP problem. We present results that
quantify the benefits to a client-side caching proxy P0 (the
gateway) from being able to route its miss stream to one of
many candidate peer proxy caches Pi, 1 ≤ i ≤ n, based on
knoweldge acquired using our inference techniques about the
characteristics of the caches at these proxies.

In the experiments that follow, we assume that the input
request streams for the set of cooperating caching agents Pi,
0 ≤ i ≤ n, follow GPL profiles with common rank, but with
different skew over the object universe O. Such an assumption
is consistent with a setting in which the caches cater to
different local populations, with consistent popularity ranking
of objects, but with different absolute preferences.11 Also, we
note that as is typical in caching networks [4], [5], requests
routed to a proxy cache from a remote peer do not affect the
local state of the proxy cache (as opposed to a hierarchical
caching system in which a lower level cache operate as an
L2 cache). Thus the gateway’s routing of its miss stream to a
proxy Pi does not change the state of Pi’s cache.12

Let ai denote the skewness of demand presented to Pi,
where 0 ≤ i ≤ n. Also, let Ci, ALGi, and πi denote the storage
capacity, the replacement algorithm, and the steady-state hit
vector of proxy Pi, respectively. Suppose that the gateway P0

uses our cache inference technique to effectively infer (ai, Ci,
ALGi) for each one of its peer proxies Pi, 1 ≤ i ≤ n. Then
depending on ALGi, P0 can employ an analytical or numeric
technique to derive πi(ai,Ci, ALGi), i.e., the per-object hit
probabilities at Pi. In such a case, the gateway’s routing of its
miss stream to Pi would yield a hit ratio hi and a service cost
ci, where hi=q0(a0)*πi(ai,Ci, ALGi), and ci = d(P0,Pi) · hi,
respectively.13 Thus, the gateway P0 can choose an optimal
proxy Pi� so as to obtain ci� , a minimal service cost for its
miss-stream.

To quantify the benefit from using the above informed re-
quest routing, we present results from two sets of experiments
in which a gateway P0 uses our cache inference techniques to
inform its decision regarding which one of two peer caching
proxies (P1 and P2) to select as targets of its own miss stream.

11 In other words, while object oi is the ith most popular object for all Pi,
0 ≤ i ≤ n, its access probability pi is different across all Pi, 0 ≤ i ≤ n.

12 In [28] we showed that cache pollution phenomena may arise if such
decoupling of cache state is not in place.

13 By “*” we denote the inner product operator for vectors, whereas
d(P0,Pi) denotes the distance (say, delay) between P0 and Pi).
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Fig. 4. Hit rates resulting from routing the miss stream of an LRU (top) and
LFU (bottom) caching gateway to an LFU versus LRU peer cache.

In the first experiment, the gateway P0 operates as an
LRU(0.6, C) — i.e., it employs an LRU cache of size
C, driven by a local reference stream with skew 0.6 —
over a 1, 000-object universe. Furthermore, the gateway P0

may direct its miss stream to proxy P1, which operates as
an LFU(0.8, 50), or to proxy P2, which operates as an
LRU(0.8, 100). Figure 4 (top) shows the hit rates (on the
y-axis) that the LRU gateway’s miss stream is able to secure
at each one of the two proxies, P1 and P2, while varying the
gateway’s cache size C (on the x-axis). The results of this
experiment show for small local cache size, the gateway is
better off routing its miss stream to the LFU proxy P1, whereas
for large local cache sizes, the gateway is better off routing
its miss stream to the LRU proxy P2.

In the second experiment, the gateway P0 operates as an
LFU(0.6, C) cache, whereas proxies P1 and P2 operate as
LFU(0.8, 50) and LRU(0.8, 50), respectively, over a 1, 000-
object universe. Figure 4 (bottom) shows the hit rates (on the
y-axis) that the LFU gateway’s miss stream is able to secure
at each one of the two proxies, P1 and P2, while varying the
gateway’s cache size C (on the x-axis). These results show
a trend similar to that observed for an LFU gateway, albeit
with a much more pronounced difference in hit rates for small
and large local cache sizes, suggesting that the benefit from
employing our inference techniques could be significant (in
terms of the relative hit rates achievable at P1 versus P2).

IX. RELATED WORK

The only previous work on the cache inference problem that
we are aware of is due to Burnett et al. [29]. This work presents
the design and performance evaluation of the Dust software
used for inferring the buffer management policy of popular
operating systems. Dust is shown to be able to infer both
the available buffer capacity and the employed replacement
strategy. It achieves its goal by using long streams of probe
requests to bring the underlying buffer into a controlled initial
state and then inferring the replacement strategy by observing
the transitions out of this state with additional probe requests.
The fundamental difference to our work is that the inference
technique employed by Dust is active, in the sense that it relies
heavily on the use of the aforementioned probes. Long probe
streams are feasible since the Dust software and the unknown
buffer management sub-system reside within the same physical
host and, thus, there’s no communication cost to be paid for
the probes. Our methods on the other hand are passive, in
the sense that they rely solely on the miss-stream caused by
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a cache’s own input stream (which is also unknown). Such
passive operation is more suitable in distributed environments,
in which bringing the target caching system to a “controlled
state” (through active probing) is not feasible (not to mention
that it could be construed as adversarial behavior!)

Vanichpun and Makowski [30], [31], [32] have presented
a series of papers on the characterization of the miss stream
of a cache under different input request models (independent
reference model, higher-order Markov chain model, partial
Markov chain model, LRU stack model). These works focus
on the effect of locality of reference, either due to long term
popularity or due to short term temporal correlation, on the
miss-stream and the cache miss ratio and, therefore, examine
caching in the inverse direction as compared to what we do;
they are trying to characterize the output given the input,
whereas we try to characterize the input (and what is in the
box) given the output.

The analysis of replacement strategies is a decades-old
problem, see for example [19], [20], [21], [22], [28] and
references therein. These works assume a given model for
requests and derive numeric or analytic approximate per-object
hit probabilities under given replacement strategies. We use
these methods as stubs in our work when testing hypotheses
regarding the unknown replacement algorithm that we try to
infer.

X. SUMMARY AND CONCLUSION

This paper provides a succint definition of the cache infer-
ence problem, and presents effective and robust procedures for
the inference of the attributes of a remote caching agent, as
well as the characteristics of the request stream to which it is
subjected, using only passive observation of the cache miss
stream. In addition to demonstrating the robustness of our
procedures, we presented results that illustrate the potential
utility of our techniques to informed request/content routing.

Our current work is focusing on the use of our inference
techniques for modeling purposes. In doing so, our goal is
not to discover the specifics of the caching solution deployed
at a remote caching agent or service (which could be quite
elaborate), but rather our goal is to obtain a model of the
remote cache – a model that could be used to predict the
implications from local resource management decisions. In
that regard, we are investigating the possible integration of
our techniques into content and request routing applications
that could benefit from such information.
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