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Abstract— The effectiveness of service provisioning in large-
scale networks is highly dependent on the number and location
of service facilities deployed at various hosts. The classical,
centralized approach to determining the latter would amount
to formulating and solving the uncapacitated k-median (UKM)
problem (if the requested number of facilities is fixed), or the
uncapacitated facility location (UFL) problem (if the number
of facilities is also to be optimized). Clearly, such centralized
approaches require knowledge of global topological and demand
information, and thus do not scale and are not practical for large
networks. The key question posed and answered in this paper
is the following: “How can we determine in a distributed and
scalable manner the number and location of service facilities?”
We propose an innovative approach in which topology and
demand information is limited to neighborhoods, or balls of small
radius around selected facilities, whereas demand information is
captured implicitly for the remaining (remote) clients outside
these neighborhoods, by mapping them to clients on the edge of
the neighborhood; the ball radius regulates the trade-off between
scalability and performance. We develop a scalable, distributed
approach that answers our key question through an iterative re-
optimization of the location and the number of facilities within
such balls. We show that even for small values of the radius (1 or
2), our distributed approach achieves performance under various
synthetic and real Internet topologies that is comparable to that
of optimal, centralized approaches requiring full topology and
demand information.

I. INTRODUCTION

Motivation: Imagine a large-scale bandwidth/processing-
intensive service such as the real-time distribution of software
updates and patches, or of virus definition files [1], etc. Such
services must cope with the typically voluminous and bursty
demand — both in terms of overall load and geographical
distribution of the sources of demand — due to recently
observed flash-crowd phenomena. To deploy such services,
decisions must be made on: (1) the location, and optionally,
(2) the number of nodes (or hosting infrastructures) used to
deliver the service. Two well-known formulations of classic
Facility Location Theory [2] can be used as starting points
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for addressing decisions (1) and (2), respectively: The unca-
pacitated k-median (UKM) problem prescribes the locations
for instantiating a fixed number of service facilities so as to
minimize the distance between users and the closest facility
capable of delivering the service. In the uncapacitated facility
location (UFL) problem, the number of facilities is not fixed,
but jointly derived along with the locations as part of a solution
that minimizes the combined service hosting and access costs.
Limitations of existing approaches: Even though it provides
a solid basis for analyzing the fundamental issues involved in
the deployment of network services, facility location theory
is not without its limitations. First and foremost, proposed
solutions for UKM and UFL are centralized, so they require
the gathering and the transmission of the entire topological and
demand information to a central point, which is not possible
(not to mention practical) for large networks. Second, such
solutions are not adaptive in the sense that they do not allow
for easy reconfiguration in response to changes in the topology
and the intensity of the demand for service. To address these
limitations we propose distributed versions of UKM and UFL,
which we use as means of constructing an automatic service
deployment scheme.
A scalable approach to automatic service deployment:
We develop a scheme in which an initial set of service
facilities are allowed to migrate adaptively to the best network
locations, and optionally to increase/decrease in number so
as to best service the current demand. Our scheme is based
on developing distributed versions of the UKM problem (for
the case in which the total number of facilities must remain
fixed) and the UFL problem (when additional facilities can
be acquired at a price or some of them be closed down).
Both problems are combined under a common framework with
the following characteristics: An existing facility gathers the
topology of its immediate surrounding area, which is defined
by an r-ball of neighbors – nodes that are within a radius of r
hops from the facility. The facility also monitors the demand
that it receives from the nodes that have it as closest facility.
It keeps an exact representation of demand from within its r-
ball, and an approximate representation for all the nodes on
the ring of its r-ball (nodes outside the r-ball that receive
service from it). In the latter case, the demand of nodes on
the “skin” of the r-ball is increased proportionally to account
for the aggregate demand that flows in from outside the r-ball
through that node. When multiple r-balls intersect, they join
to form more complex r-shapes. The observed topology and



demand information is then used to re-optimize the current
location (and optionally the number of) facilities by solving
the UKM (or the UFL) problem in the vicinity of the r-shape.
The trade-off between scalability and performance: Reduc-
ing the radius r decreases the amount of topological informa-
tion that needs to be gathered and processed centrally at any
point (i.e., at facilities that re-optimize their positions). This is
a plus for scalability. On the other hand, reducing r harms the
overall performance as compared to centralized solutions that
consider the entire topological information. This is a minus
for performance. We examine this trade-off experimentally
using synthetic (Erdös-Rényi [3] and Barabási-Albert [4]) and
real (AS-level [5]) topologies. We show that even for very
small radii, e.g., r = 1 (i.e., facility migration is allowed only
to first-hop neighbors), or r = 2 (i.e., facility migration is
allowed only up to second-hop neighbors), the performance of
the distributed approach tracks closely that of the centralized
one. Thus, increasing r much more is not necessary for perfor-
mance, and might also be infeasible since even for relatively
small r, the number of nodes contained in an r-shape increases
very fast (owing to the small, typically O(log n), diameter of
most networks, including the aforementioned ones).
A case study — large-scale timely distribution of cus-
tomized software: Consider a large scale software update
system, similar to that used for Microsoft Windows Update [6].
Such a system not only delivers terabytes of data to millions of
users, but also it has to incorporate complex decision processes
for customizing the delivered updates to the peculiarities of
different clients [1] with respect to localization, previously-
installed updates, compatibilities, and optional components,
among others. This complex process goes beyond the dissem-
ination of a single large file, where a peer-to-peer approach is
an obvious solution [7]. Moreover, it is unlikely that software
providers will be willing to trust intermediaries with such pro-
cesses. Rather, we believe that such applications are likely to
rely on dedicated or virtual hosts, e.g., servers offered for lease
through third-party overlay networks – a la Akamai or Planet
Lab. To that end, we believe that the use of our distributed
facility location approach presents significant advantages in
terms of optimizing the cost and efficiency of deploying such
applications.1 In the remainder of this section, we provide a
mapping from the aforementioned software distribution service
to our abstract UKM and UFL problems.
Service providers, hosts, and clients: We envision the
availability of a set of network hosts upon which specific
functionalities may be installed and instantiated on demand.
We use the term “Generic Service Host” (GSH) to refer to
the software and hardware infrastructure necessary to host
a service. For instance, a GSH could be a well-provisioned
Linux server, or a virtual machine (VM) slice similar to that
used in Planet Lab [8] or that envisioned in GENI [9].

A GSH may be in Working (W) or Stand-By (SB) mode.

1 It is important to note that the large-scale timely distribution of customized
content is hardly unique to the dissemination of software updates, as it could
be equally instrumental for “Virtual Product Placement” in live content as
well as in video-on-demand services, to mention two examples.

In W mode, the GSH constitutes a service facility that is able
to respond to client requests for service, whereas in SB mode,
the GSH does not offer the actual service, but is ready to
switch to W if it is so directed.2 Thus the set of facilities
used to deliver a service is precisely the set of GSHs in W
mode. By switching back and forth between W mode and SB
mode, the number as well as the location of facilities used to
deliver the service could be controlled in a distributed fashion.
In particular, a GSH in W mode (i.e., a facility) monitors the
topology and the corresponding demand in its vicinity and is
thus capable of re-optimizing the location of the facility.

Third-party Autonomous Systems (AS) may host the GSHs
of service providers, possibly for a fee.3 In particular, the
hosting AS may charge the service provider for the assets
it dedicates to the GSHs, including the software/hardware
infrastructure supporting the GSHs as well as the bandwidth
used to carry the traffic to/from GSHs in W mode.

The implementation of the above-sketched scenarios re-
quires each GSH to be able to construct its surrounding AS-
level topology up to a radius r. This can be achieved through
standard topology discovery protocols [10]. Also, it requires
a client to be able to locate the facility closest to it, and
it requires a GSH to be able to inform potential clients of
the service regarding its W or SB status. Both of these could
be achieved through standard resource discovery mechanisms
like DNS re-direction [11] (appropriate for application-level
realizations of our distributed facility location approach) or
proximity-based anycast routing [12] (appropriate for network
layer realizations).
Outline: The remainder of this paper is structured as follows.
Section II provides a brief background on facility location.
Section III presents our distributed facility location approach
to automatic service deployment. Section IV examines analyt-
ically issues of convergence and accuracy due to approximate
representation of the demand of nodes outside r-shapes. Sec-
tion V evaluates the performance of our schemes on synthetic
topologies. Section VI presents results on real-world (AS-
level) topologies. Section VII presents previous related work.
Section VIII concludes the paper with a summary of findings
and on-going work.

II. BACKGROUND ON FACILITY LOCATION

Let G = (V,E) represent a network defined by a node
set V = {v1, v2, . . . , vn} and an undirected edge set E. Let
d(vi, vj) denote the length of a shortest path between vi and
vj , and s(vj) the (user) service demand originating from node
vj . Let F ⊆ V denote a set of facility nodes – i.e., nodes on
which the service is instantiated. If the number of available
facilities k = |F | is given, then the specification of their exact
locations amounts to solving the following uncapacitated k-
median problem:

2 Switching to W might involve the transfer of executable and configuration
files for the service from other GSHs or from the service provider.

3 Notice that each AS (or a smaller organizational unit therein) is also a
client of the service, with demand proportional to the aggregate number of
requests originating from its end-users (e.g., number of downloads of a service
pack).



Definition 1: (UKM) Given a node set V with pair-wise
distance function d and service demands s(vj), ∀vj ∈ V ,
select up to k nodes to act as medians (facilities) so as to
minimize the service cost C(V, s, k):

C(V, s, k) =
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (1)

where m(vj) ∈ F is the median that is closer to vj .
On the other hand, if instead of k, one is given the costs

f(vj) for setting up a facility at node vj , then the specifi-
cation of the facility set F amounts to solving the following
uncapacitated facility location problem:

Definition 2: (UFL) Given a node set V with pair-wise
distance function d and service demands s(vj) and facility
costs f(vj), ∀vj ∈ V , select a set of nodes to act as facilities
so as to minimize the joint cost C(V, s, f) of acquiring the
facilities and servicing the demand:

C(V, s, f) =
∑

∀vj∈F

f(vj) +
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (2)

where m(vj) ∈ F is the facility that is closer to vj .
For general graphs, both UKM and UFL are NP-hard

problems [13]. A variety of approximation algorithms have
been developed under metric distance using a plethora of
techniques, including rounding of linear programs [14], local
search [15], [16], and primal-dual methods [17].

III. A LIMITED HORIZON APPROACH TO DISTRIBUTED

FACILITY LOCATION

In this section we develop distributed versions of UKM
and UFL by utilizing a natural limited horizon approach in
which facilities have exact knowledge of the topology of their
r-ball (surrounding topology up to r-hop neighbors), exact
knowledge of the demand of each node in their r-ball and
approximate knowledge of the aggregate demand from nodes
on the ring surrounding their r-ball. Our distributed approach
will be based on an iterative method in which the location and
the number of facilities (in the case of UFL only) may change
between iterations.

A. Definitions

We make use of the following definitions, most of which are
superscripted by m, the ordinal number of the current iteration.
Let F (m) ⊆ V denote the set of facility nodes at the mth
iteration. Let V

(m)
i denote the r-ball of facility node vi, i.e.,

the set of nodes within radius r from vi. Let U
(m)
i denote the

ring of facility node vi, i.e., the set of nodes not contained
in V

(m)
i , but are being served by facility vi, or equivalently,

the nodes that have vi as their closest facility. The domain
W

(m)
i = V

(m)
i

⋃
U

(m)
i of a facility node consists of its r-ball

and the surrounding ring.
From the previous definitions it is easy to see that V =

V (m)
⋃

U (m), where V (m) =
⋃

vi∈F (m) V
(m)
i , U (m) =⋃

vi∈F (m) U
(m)
i .

B. The Distributed Algorithm

Our distributed algorithm starts with an arbitrary initial
batch of facilities, which are then refined iteratively through
relocation and duplication until a (locally) optimal solution is
reached. It includes the following steps:

Initialization: Pick randomly an initial set F (0) ⊆ V of
k0 = |F (0)| nodes to act as facilities. Let F = F (0) denote
a temporary variable containing the “unprocessed” facilities
from the current batch. Also, let F− = F (0) denote a variable
containing this current batch of facilities.
Iteration m: Pick a facility vi ∈ F and process it by executing
the following steps:

1) Construct the topology of its surrounding r-ball by
using an appropriate neighborhood discovery protocol
(see [18] for such an example).

2) Test whether its r-ball can be merged with the r-balls of
other nearby facilities. We say that two or more facilities
can be merged (to actually mean that their r-balls can
be merged), when their r-balls intersect, i.e., when there
exists at least one node that is within distance r from all
the facilities . Let J ⊆ F (m) denote a set composed of vi

and the facilities that can be merged with it.4 J induces
an r-shape GJ = (VJ , EJ ), defined as the sub-graph of
G composed of the facilities of J , their neighbors up to
distance r, and the edges between them. We can place
constraints on the maximal size of r-shapes to guarantee
that it is always much smaller than O(n).

3) Re-optimize the r-shape GJ . If the original problem
is UKM, solve the |J |-median within the r-shape —
this can produce new locations for the |J | facilities. If
the original problem is UFL, solve the UFL within the
r-shape — this can produce new locations as well as
change the number of facilities (make it smaller or larger
than |J |). In both cases the re-optimization is conducted
by using a centralized algorithm.5 The details regarding
the optimization of r-shapes are given in Section III-C.

4) Remove processed facilities, both the original vi and
the ones merged with it, from the set of unprocessed
facilities of the latest batch, i.e., set F = F\ (J

⋂F−).
Also update F (m) with the new locations of the facilities
after the re-optimization.

5) Test for convergence. If F �= ∅ then some facilities
from the latest batch have not yet been processed, so
perform another iteration. Otherwise, if the configuration
of facilities changed with respect to the initial one for
the latest batch, i.e., F (m) �= F−, then form a new
batch by setting F = F (m) and F− = F (m), and
perform another iteration. Else (if F (m) = F−), then
no beneficial relocation or elimination is possible, so

4 The merging operation is recursive. When an initial r-ball merges with
a second one, then additional facilities that can merge with the second one
merge as well, and so on.

5 The numerical results presented in Sections V and VI are obtained by
using Integer Linear Programming (ILP) formulations [2] and local-search
heuristics [16] for solving UKM and UFL within r-shapes. Since both perform
very closely in all our experiments, we don’t discriminate between the two.



terminate by returning the (locally) optimal solution
F (m).

C. Optimizing r-shapes

As discussed in Section II, the input of a UKM problem
is defined completely by a tuple 〈V, s, k〉, containing the
topology, the demand, and the number of allowed medians.
A UFL problem is defined by a tuple 〈V, s, f〉, similar to
the previous one, but with facility creation costs instead of
a fixed constraint on the number of allowed facilities. For the
optimization of an r-shape, we set:

• V = VJ , and
• k = |J |, for the case of UKM, or f = {f(vj) : ∀vj ∈

VJ}, for the case of UFL.

Regarding service demand, a straightforward approach
would be to set s = {s(vj) : ∀vj ∈ VJ}, i.e., retain in
the re-optimization of the r-shape the original demand of the
nodes of the r-shape. Such an approach would, nonetheless,
be inaccurate since the facilities within an r-shape service the
demand of the nodes of the r-shape, as well as those in the
corresponding ring of the r-shape. Since there are typically
a few facilities, each one has to service a potentially large
number of nodes (e.g., of order O(n)), and thus the rings
are typically much larger than the corresponding r-shapes.6

Re-optimizing the arrangement of facilities within an r-shape
without considering the demand that flows-in from the ring
would, therefore, amount to disregarding too much information
(as compared to the information considered by a centralized
solution). Including the nodes of the ring into the optimization
is, of course, not an option, as the ring can be arbitrarily
large (O(n)) and, therefore, considering its topology would
contradict our prime objective — to perform facility location
in a scalable, distributed manner.

Our solution for this issue is to consider the demand of
the ring implicitly by mapping it into the local demand of
the nodes that constitute the skin of the r-shape. The skin
consists of nodes on the border (or edge) of the r-shape,
i.e., nodes of the r-shape that have direct links to nodes of
the ring. This intermediate approach bridges the gap between
absolute disregard for the ring, and full consideration of its
exact topology. The details of the mapping are as follows. Let
vi denote a facility inside an r-shape GJ . Let vj ∈ U denote
a node in the corresponding ring, having the property that vi

is vj’s closest facility. Let vk denote a node on the skin of
GJ , having the property that vk is included in a shortest path
from vj to vi. To take into consideration the demand from vj

while optimizing the r-shape GJ , we map that demand onto
the demand of vk, i.e., we set: s(vk) = s(vk) + s(vj).

IV. A MORE DETAILED EXAMINATION OF DISTRIBUTED

FACILITY LOCATION

The previous section has provided an overview of the basic
characteristics of the proposed distributed facility location

6 Notice that r is intentionally kept small to limit the size of the individual
re-optimizations.

approach. The section goes beyond that to look closer at some
important albeit more complex properties of the proposed
solution.

A. Convergence of the Iterative Method

We start with the issue of convergence. First we show
that the iterative algorithm of Section III-B converges in a
finite number of iterations. Then we show how to control the
convergence speed so as to adapt it to the requirements of
practical systems.

Proposition 1: The iterative local search approach for dis-
tributed facility location converges in a finite number of
iterations.

Proof: Since the solution space is finite, it suffices to
show that there cannot be loops, i.e., repeated visits to the
same configuration of facilities. A sufficient condition for this
is that the cost (either Eq. (1) or (2) depending on whether we
are considering distributed UKM or UFL) be monotonically
decreasing between successive iterations, i.e., c(m) ≥ c(m+1).
Below, we show that this is the case for the UKM applied
to r-shapes with a single facility. The cases of UKM applied
to r-shapes with multiple facilities, and of UFL follow from
straightforward generalizations of the same proof.

Suppose that during iteration m+1 facility vθ is processed
and that between iteration m and m+1, vθ is located at node
x, whereas after iteration m + 1, vθ is located at node y. If
x ≡ y, then c(m) = c(m+1). For the case that x �= y, we need
to prove that c(m) > c(m+1).

For the case in which W
(m)
θ ≡ W

(m+1)
θ , it is easy to show

that c(m) > c(m+1). Indeed, since the facility moves from
x to y it must have been that this reduces the cost of the
domain of vθ, i.e., c(W (m)

θ ) > c(W (m+1)
θ ), which implies

c(m) > c(m+1), since no other domain is affected.
The case in which W

(m)
θ �= W

(m+1)
θ is somewhat more

involved. It implies that there exist sets of nodes A, B: A ∪
B �= ∅, A = {z ∈ V : z /∈ W

(m)
θ , z ∈ W

(m+1)
θ } and B =

{z ∈ V : z ∈ W
(m)
θ , z /∈ W

(m+1)
θ }. A is actually the set of

nodes that were not served by facility vθ before the m + 1
iteration and are served after the m+1 iteration. Similarly, B
is the set of nodes that were served by facility vθ before the
m + 1 iteration and are not served after the m + 1 iteration.
Let C = {z ∈ V : z ∈ W

(m)
θ , z ∈ W

(m+1)
θ } be the set

of nodes that remained in the domain of vθ after its move
from x to y (Figure 1 depicts the aforementioned sets). Since
W

(m)
θ = B ∪ C (B,C disjoint) and the re-optimization of

W
(m)
θ moved the facility vθ from x to y, it must be that:

c(B, x) + c(C, x) > c(B, y) + c(C, y) (3)

where c(B, x) denotes the cost of servicing the nodes of B
from x (similar definitions for c(C, x), c(C, y)).

Let Φ denote the set of facilities that used to service the
nodes of A before they entered the domain of vθ at m + 1.
Similarly, let Ψ denote the set of facilities that get to service
the nodes of B after they leave the domain of vθ at m + 1.
From the previous definitions it follows that:
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Fig. 1. Depiction of the move of a facility
from X to Y and of the sets A, B, and C.

Fig. 2. Average coverage of a node for different size of ER
graphs.

Fig. 3. Average coverage of a node for different size of BA
graphs.

c(A, y) < c(A,Φ) (4)

c(B, y) > c(B,Ψ) (5)

Using Eq. (5) in Eq. (3) we obtain:

c(B, x) + c(C, x) > c(B,Ψ) + c(C, y) (6)

Applying Eqs (6) and (4) to the difference c(m) − c(m+1),
we can now show the following:

c(m) − c(m+1) =(
c(B, x) + c(C, x) + c(A, Φ)

)
−

(
c(A, y) + c(C, y) + c(B, Ψ)

)
=

(
c(B, x) + c(C, x) − c(B, Ψ) − c(C, y)

)
+

(
c(A, Φ) − c(A, y)

)
> 0

which proves the claim also for the W
(m)
θ �= W

(m+1)
θ case,

thus completing the proof.
We can control the convergence speed by requiring each turn

to reduce the cost by a factor of α, in order for the turn to
be accepted and continue the optimizing process; i.e., accept
the outcome from the re-optimization of an r-shape at the
mth iteration, only if c(m) ≥ (1 + α)c(m+1). In this case, the
following proposition describes the convergence speed.

Proposition 2: The iterative local search approach for dis-
tributed facility location converges in O(log1+α n) steps.

Proof: Let c(0), c(M), c∗ denote the initial cost, a locally
minimum cost obtained at the last (M th) iteration, and the
minimum cost of a (globally) optimal solution, respectively.
Here we consider M to be the number of “effective” iterations,
i.e., ones that reduce the cost by the required factor. The total
number of iterations can be a multiple of M up to a constant
given by the number of facilities. Since we are interested in
asymptotic complexity we can disregard this and focus on M .

For m < M we have required that c(m) ≥ (1 + α)c(m+1),
or equivalently, c(0) ≥ (1+α)mc(m). Thus when the iteration
converges we have:

c(0) ≥ (1 + α)Mc(M) ⇒ M ≤ log1+α

c(0)

c(M)
≤ log1+α

c(0)

c∗
(7)

Given the definition of the cost and the fact that node service
demands (s(v)’s) are constants with respect to the size of the
input (n), it is easy to see that c(0) can be upper bounded by
O(n2) and c∗ be lower bounded by Ω(n). This leads to an
O(n) upper bound for c(0)

c∗ . Substituting in Eq. (7) gives the
claimed upper bound for the number of iterations.
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Fig. 4. Example of a possible facility movement from node vi to node vj

with respect to a particular node u ∈ Ui.

B. The Mapping Error and its Effect on Local Re-
Optimizations

In this section we discuss an important difference between
solving a centralized version of UKM or UFL (Defs 1, 2)
applied to the entire network and our case where these
problems are solved within an r-shape based on the demand
that results from a fixed mapping of the ring demand onto the
skin. In the centralized case, the amount of demand generated
by a node is not affected by the particular configuration of the
facilities within the graph, since all nodes in the network are
included and considered with their original service demand.
In our case, however, the amount of demand generated by a
skin node can be affected by the particular configuration of
facilities within the r-shape. In Figure 4 we illustrate why
this is the case. Node u on the ring has a shortest path to
facility node vi that intersects the skin of vi’s r-ball at point
B, thereby increasing the demand of a local node at B by s(u).
As the locations of the facilities may change during the various
steps of the local optimizing process (e.g. the facility moves
from C to D, Figure 4), the skin node along the shortest path
between u and the new location of the facility may change
(node/point E in Figure 4). Consequently, a demand mapping
error is introduced by keeping the mapping fixed (as initially
determined) throughout the location optimization process. Let
∆i(r, j, u) denote the amount of mapping error attributed to
ring node u with respect to a move of the facility from vi

to vj under the aforementioned fixed mapping and radius r.
Then the total mapping error introduced in domain Wi under
radius r is given by:

∆i(r) =
∑

vj∈Vi
vj �=vi

∑
u∈Uivj �=vi

∆i(r, j, u). (8)



The mapping error in Eq. (8) could be eliminated by re-
computing the skin mapping at each stage of the optimizing
process (i.e., for each new intermediate facility configuration).
Such an approach not only would add to the computational
cost but – most important – would be practically extremely
difficult to implement as it would require the collection of
demand statistics under each new facility placement, delaying
the optimization process and inducing substantial overhead.
Instead of trying to eliminate the mapping error one could
try to assess its magnitude (and potential impact) on the
effectiveness of the distributed UKM/UFL. This is explored
next.

The example depicted in Figure 4 helps derive an expression
for the mapping error ∆i(r, j, u), assuming a two-dimensional
plane where nodes are scattered in a uniform and continuous
manner over the depicted domain. ∆i(r, j, u) corresponds to
the length difference of the two different routes between node
u (point A) and node vj (point D). Therefore,

∆i(r, j, u) = AB + BD − AD. (9)

Note that for those cases in which the angle φ̂ between AC and
CD, is 0 or π, AB +BD = AD, and therefore, ∆i(r, j, u) =
0. For any other value of φ̂, AB, BD and AD correspond
to the edges of the same triangle and therefore, AB + BD −
AD > 0 or ∆i(r, j, u) > 0.

Based on Eq. (9), it is possible to derive an upper bound
regarding the total mapping error ∆i(r) for this particular
environment. As it is proved (proofs are included in a longer
technical report [19]),

∆i(r) ≤ 2π2r3(R2 − r2), (10)

where R is the radius of the particular domain Wi (for
simplicity we assume that the domain is also a circle).

According to Eq. (10), the upper bound for ∆i(r) is close
to 0, when r → 0 or r → R. We are interested in those cases
where the r-ball is small. This corresponds to small values of r
for the particular (two-dimensional continuous) environment.
Therefore, a small radius r in addition to being preferable for
scalability reasons has the added advantage of facilitating the
use of a simple and practical mapping with small error and
expected performance penalty.

V. SYNTHETIC RESULTS ON ER AND BA GRAPHS

In this section we evaluate our distributed facility location
approach on synthetic Erdös-Rényi (ER) [3] and Barabási-
Albert (BA) [4] graphs generated using the BRITE genera-
tor [20]. For ER graphs, BRITE uses the Waxman model [21]
in which the probability that two nodes have a direct link
is P (u, v) = α e−d/(βL), where d is the Euclidean distance
between u and v, and L is the maximum distance between
any two nodes. We maintain the default values of BRITE
α = 0.15, β = 0.2 combined with an incremental model
in which each node connects to m = 2 other nodes. For
BA graphs we also use incremental growth with m = 2.
This parameterization creates graphs in which the number of

(undirected) links is almost double the number of vertices (as
also observed in real AS traces that we use later in the paper).

A. Node Coverage with Radius r

Figures 2 and 3 depict the fraction of the total node
population that can be reached in r hops starting from a certain
node in ER and BA graphs, respectively. We plot the mean
and the 95% confidence interval of each node under different
network sizes n = 400, 600, 800, 1000, representing typical
populations of core ASes on the Internet as argued later on.
The figures show that a node can reach a substantial fraction of
the total node population by using a relatively small r. In ER
graphs, r = 2 covers 2% − 10% of the nodes, whereas r = 3
increases the coverage to 10% − 32%, depending on network
size. The coverage is even higher in BA graphs, where r = 2
covers 4%−15%, whereas r = 3 covers 20%−50%, depending
again on network size. These observations are explained by
the fact that larger networks exhibit longer shortest paths
and diameters and also because BA graphs, owing to their
highly skewed (power-law) degree distribution, possess shorter
shortest paths and diameters than corresponding ER graphs of
the same link density.

B. Performance of distributed UKM

In this section we examine the performance of our dis-
tributed UKM of radius r, hereafter referred to as dUKM(r),
when compared to the centralized UKM utilizing full knowl-
edge. We fix the network size to n = 400 (matching
measurement data on core Internet ASes that we use later
on) and assume that all nodes generate the same amount of
service demand s(v) = 1,∀v ∈ V . To ensure scalability, we
don’t want our distributed solution to encounter r-shapes that
involve more that 10% of the total nodes, and for this we
limit the radius to r = 1 and r = 2, as suggested by the node
coverage results of the previous section. We let the fraction
of nodes that are able to act as facilities (i.e., service hosts)
take values k/n = 0.1%, 0.5%, 1%, 2%, and 5%. We perform
each experiment 10 times to reduce the uncertainty due to the
initial random placement of the k facilities.

The plots on the left-hand-side of Figure 5 depict the cost of
our dUKM(r) approach normalized to that of the centralized
UKM, with the plot on top for ER graphs and the plot on
the bottom for BA graphs. For both ER and BA graphs, the
performance of our distributed solution tracks closely that of
the centralized one, with the difference diminishing fast as
r and k are increased. The normalized performance for BA
graphs converges faster (i.e., at smaller k for a given r) to
ratios that approach 1. This owes to the existence of highly-
connected nodes (the so call “hubs”) in BA graphs — building
facilities in few of the hubs is sufficient for approximating
closely the performance of the centralized UKM. The two
plots on the right-hand-side of Figure 5 depict the number of
iterations needed for dUKM(r) to converge. A smaller value
of r requires more iterations as it leads to the creation of a
large number of small sub-problems (re-optimizations of many
small r-shapes). BA graphs converge in fewer iterations, since
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Fig. 5. The relative performance between dUKM(r) and UKM, and the number of
iterations for the convergence of the former, for r = 1 and r = 2, and different facility
densities k/n = 0.1%, 0.5%, 1%, 2%, and 5% under ER and BA graphs.

for the same value of r BA graphs induce larger r-shapes7

and, thus, fewer re-optimizations.

C. Performance of distributed UFL

In order to evaluate the performance of dUFL(r), we need
to decide how to set the facility acquisition costs f(vj),
which constitute part of the input of a UFL problem (see
Definition 2). This is a non-trivial task, essentially a pricing
problem for network services. Although pricing is clearly out
of scope for this paper, we need to use some form of f(vj)’s
to demonstrate our point that, as with UKM, the performance
of the distributed version of UFL tracks closely that of the
centralized one. To that end, we use two types of facility costs:
uniform, where all facilities cost the same independently of
location (i.e., f(vj) = f , ∀vj ∈ V ) and, non-uniform, where
the cost of a facility at a given node depends on the location
of that node. The uniform cost model is more relevant when
the dominant cost is that of setting up the service on the host,
whereas the non-uniform cost model is more relevant when
the dominant cost is that of operating the facility (implying
that this operating cost is proportional to the desirability of
the host, which depends on topological location).

For the non-uniform case we will use the following rule:
we will make the cost of acquiring a facility proportional to
its degree, i.e., proportional to the number of direct links it
has to other nodes. The intuition behind this is that a highly
connected node will most likely attract more demand from
clients, as more shortest-paths will go through it and, thus,
building a facility there will create a bigger hot-spot, and
therefore the node should charge more for hosting a service.8

7 Again it is the hubs that create large r-shapes. Even under a small r, a
hub will be close to the facility that re-optimizes its location, and this will
bring many of the hub’s immediate neighbors into the r-shape.

8 As sketched in the introduction, a node may correspond to an AS that
charges for allowing network services to be installed on its local GSH.
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Fig. 6. Cost comparison between dUFL(r) and UFL, for r = 1 and r = 2, and
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different network sizes under ER and BA graphs and uniform facility cost.

In [22],[23] the authors showed that the “coverage” of a node
increases super-linearly with its degree (or alternatively, the
number of shortest paths that go through it). We, therefore,
use as facility cost f(vj) = d(vj)1+αG , where d(vj) is the
degree of node vj ∈ V and αG is the skewness of the degree
distribution of the graph G. In order to estimate the value
of αG, we use the Hill estimator: α̂

(Hill)
k,m = 1/γ̂k,m, where:

γ̂k,m = 1
k

∑k
i=1 log X(i)

Xk+1
, X(i) denotes the i-th largest value

in the sample X1, ...,Xn. We prefer the Hill estimator since
it is less biased than linear regression.

In Figure 6 we plot the cost of dUFL(1), dUFL(2), and cen-
tralized UFL, in ER and BA graphs under the aforementioned
degree-based facility cost. For dUFL, we present three lines
for each radius r, corresponding to different initial number
of facilities used in the iterative algorithm of Section III-B.
We use k0 = 0.5 · F , F , and 2 · F , where F denotes the
number of facilities opened by the corresponding centralized
UFL. As evident from the results, the cost of dUFL is close
to that of UFL (around 5-15% for both types of graphs). As
with dUKM, the performance improves with r and is slightly
better for BA graphs (see the explanation in Section V-B).
Also we observe a tendency for lower costs when starting the
distributed algorithm with a higher number of initial facilities.
Under the non-uniform (degree-based) cost model, both dUFL
and UFL open facilities in 2-8% of the total nodes, depending
on the example.

We also evaluate the performance of dUFL under uniform
facility cost f ; the cost is set at a value that leads to building
the same number of facilities as the corresponding degree-
based example. Both the distributed and centralized UFL build
the same number of facilities, and the performance of dUFL
is very close to the centralized one, as is illustrated in Fig. 7.

Again, we emphasize that our goal here is not to evaluate



performance under different pricing scheme, but rather to show
that the performance of distributed UFL tracks well that of the
centralized, optimal approach.

VI. RESULTS FOR REAL AS-LEVEL TOPOLOGIES

To further investigate the performance of our distributed
approach, as well as better support our sketched application
scenario described in the introduction, we include in this
section performance results on real AS-level maps under non-
uniform service demand from different clients.

A. Description of the AS-level Dataset

We use the relation-based AS map of the Internet from
December 2001 (data available from [24]) obtained using
the measurement methodology described in [5]. The dataset
includes two kinds of relationships between ASes.

• Costumer-Provider: The costumer is typically a smaller
AS that pays a larger AS for providing it with access
to the rest of the Internet. The provider may, in turn, be
a costumer of an even larger AS. A costumer-provider
relationship is modeled using a directed link from the
provider to the costumer.

• Peer-Peer: Peer ASes are typically of comparable sizes
and have mutual agreements for carrying each other’s
traffic. Peer-peer relationships are modeled using undi-
rected links.

Overall the dataset includes 12,779 unique ASes, 1,076
peers and 11,703 costumers, connected through 26,387 di-
rected and 1,336 undirected links. Since this AS graph is
not connected, we chose to present results based on its
largest connected component9 , which we found to include a
substantial part of the total AS topology at the peer level: 497
peer ASes connected with 1,012 undirected links; we verified
that this component contains all the 20 largest peer ASes
reported in [5]. For comparison purposes, we plot in Figure 8
the node coverage of AS next to the ones corresponding to the
ER and BA models with n = 497 and around the same number
of links (1, 000). The fraction of covered nodes increases more
smoothly with r in the AS graph as compared to both ER and
BA. This is because the AS graph includes longer shortest
paths and has larger diameter than the corresponding synthetic
ER and BA graphs of similar size and link density.

We exploit the relationships between ASes in order to derive
a more realistic (non-uniform) service demand for the peer
ASes that we consider. Our approach is to count for each peer
AS the number of costumer ASes that have it as provider,
either directly or through other intermediary ASes. We then
set the service demand of a peer AS to be proportional
to this number. In Figure 9 we plot the demand profile of
peer ASes (in decreasing order using Log-Log scale). As
evident from this plot, the profile is power-law like (with
slight deviation towards the tail), meaning that few core ASes
carry the majority of the demand that flows from client ASes.

9 There are smaller connected components (2-8 ASes) that are formed by
small regional ISPs with peering relationships.
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In the sequel we present performance results in which nodes
correspond to peer ASs that generate demand that follows the
aforementioned power-law like profile. We seek to identify the
peer ASes for building service facilities.
B. Distributed UKM on the AS-level Dataset

The plots on the left-hand-side of Figure 10 show the cost
of dUKM(1), dUKM(2), and the centralized UKM, under
the AS-level graph. Clearly, even for small values of r,
the performance of our distributed approaches track closely
that of the centralized approach. Regarding the number of
iterations needed for convergence, the same observations apply
as with the synthetic topologies, i.e., they increase with smaller
radii. The substantial benefit from knowledge of only local
neighborhood topologies (“neighbors of neighbor”) has been
observed for a number of applications, including [18] which
has also investigated and quantified implementation overhead
in an Internet setting.
C. Distributed UFL on the AS-level Dataset

Table I presents the performance of dUFL on the AS-
level dataset. Again, it is verified that dUFL is very close
in performance to UFL, even for small values of r (within 4%
for r = 2, under both examined facility cost models).

VII. RELATED WORK

There is a huge literature on facility location theory. Initial
results are surveyed in the book by Mirchandani and Francis
[2]. A large number of subsequent works focused on devel-
oping centralized approximation algorithms [14], [15], [16],
[17]. Cameron et al. The authors of [25] have proposed an
alternative approach for approximating facility location prob-
lems based on a continuous “high-density” model. Recently,



cost ratio dUFL(1)/UFL cost ratio dUFL(2)/UFL
mean median mean median

degree-based 1.22 1.20 1.04 1.03
uniform 1.01 1.01 1.01 1.01

TABLE I

COST RATIO BETWEEN DUFL(r) AND UFL IN THE AS-LEVEL TOPOLOGY.

generalizations of the classical centralized facility location
problem have appeared in [26], [27]. The first mention of
distributed facility location seems to have been from Jain
and Vazirani [17] while commenting on their primal-dual
approximation method, but they do not pursue the matter
further. To the best of our knowledge, the only work in which
distributed facility location has been the focal point seems
to be the recent work of Moscibroda and Wattenhofer [28].
This work, however, is mostly focused on deriving worst-case
performance bounds for distributed facility location. It is based
on primal-dual techniques that are amenable to such analysis,
but which are too complicated for practical implementa-
tion purposes, as compared to our work. Furthermore, [28]
does not include any experimental results or implementation
guidelines of practical purposes. Oikonomou and Stavrakakis
[29] have proposed a fully distributed approach for service
migration — their results, however, are limited to a single
facility (representing a unique service point) and assume tree
topologies. For examples of application oriented approaches to
distributed service deployment the reader is advised to look at
Yamamoto and Leduc [30] (deployment of multicast reflectors)
and Rabinovich and Aggarwal [31] (deployment of mirrored
web-content). Both of these works are strongly tied to their
specific applications and do not have the underlying generality
offered by the distributed facility location approach adopted in
our work.

VIII. CONCLUSIONS

We have described a distributed approach for the problem of
placing service facilities in large-scale networks. We overcome
the scalability limitations of classic centralized approaches
by re-optimizing the locations and the number of facilities
through local optimizations which are refined in several iter-
ations. Re-optimizations are based on exact topological and
demand information from nodes in the immediate vicinity
of a facility, assisted by concise approximate representation
of demand information from neighboring nodes in the wider
domain of the facility. Using extensive synthetic and trace-
driven simulations we demonstrate that our distributed ap-
proach is able to scale by utilization limited local information
without making serious performance sacrifices as compared to
centralized optimal solutions.
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