
Proceedings of Infocom’97: The IEEE Conference on Computer Communications, April 1997, Japan.

TCP BOSTON
A Fragmentation-tolerant TCP Protocol for ATM Networks�

Azer Bestavros
best@cs.bu.edu

Gitae Kim
kgtjan@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

Abstract

We propose a new transport protocol, TCP Boston, that
turns ATM's 53-byte cell-oriented switching architecture
into an advantage for TCP/IP. At the core of TCP Boston
is the Adaptive Information Dispersal Algorithm (AIDA),
an efficient encoding technique that allows for dynamic re-
dundancy control. AIDA makes TCP/IP's performance less
sensitive to cell losses, thus ensuring a graceful degrada-
tion of TCP/IP's performance when faced with congested
resources. In this paper, we introduce AIDA and overview
the main features of TCP Boston. We present detailed simu-
lation results that show the superiority of our protocol when
compared to other adaptations of TCP/IP over ATMs.

1. Introduction

The flexibility and popularity of TCP/IP[20, 19] cou-
pled with the premise of high speed communication us-
ing emerging ATM technology have prompted the network
research community to propose and implement a number
of techniques that adapt TCP/IP to ATM network environ-
ments, thus allowing these environments to smoothly inte-
grate (and make use of) currently available TCP-based ap-
plications and services without much (if any) modifications
[11]. However, recent studies [7, 15, 22] have shown that
TCP/IP, when implemented over ATM networks, is suscep-
tible to serious performance limitations.

The poor performance of TCP over ATMs is mainly
due to packet fragmentation, which occurs when an IP
packet flows into an ATM virtual circuit through the AAL5
(ATM Adaptation Layer 5). AAL5 acts as an interface be-
tween the IP and ATM layers. It is responsible for the task
of dividing TCP/IP's large data units (i.e., the TCP/IP pack-
ets) into sets of 48-byte data units called cells. Since the
typical size of a TCP/IP packet is much larger than that

�This work has been partially funded by NSF grant CCR-9308344.

of a cell, fragmentation at the AAL is inevitable. In or-
der for a TCP/IP packet to successfully traverse an ATM
switching network (or subnetwork), all the cells belonging
to that packet must traverse the network intact. The loss
even of a single cell in any of the network's ATM switches
results in the corruption of the entire packet to which that
cell belongs. Notice however that when a cell is dropped at
a switch, the rest of the cells that belong to the same packet
still proceed through the virtual circuit, despite the fact that
they are destined to be discarded by the destination's AAL
at the time of packet-reassembly, thus resulting in low ef-
fective throughput.

There have been a number of attempts to remedy this
problem by introducing additional switch-level functionali-
ties to preserve throughput when TCP/IP is employed over
ATM. Examples include the Selective Cell Discard (SCD)�

[2] and the Early Packet Discard (EPD) [22]. In SCD, once
a cell c is dropped at a switch, all subsequent cells from the
packet to which c belongs are dropped by the switch. In
EPD, a more aggressive policy is used, whereby all cells
from the packet to which c belongs are dropped, including
earlier cells still in the switch buffer. Notice that both SCD
and EPD require modifications to switch-level software to
be aware of IP packet boundaries—a violation of the layer-
ing principle that was deemed unavoidable for performance
purposes in [22].

The simulation results described in [22] show that both
SCD and EPD improve the effective throughput of TCP/IP
over a single ATM switch. For realistic, multi-hop ATM
networks the cumulative wasted bandwidth may be large,
and the impact of the ensuing packet losses on the per-
formance of TCP is likely to be severe.� To understand
these limitations, it is important to realize that while drop-
ping cells belonging to a packet at a congested switch
preserves the bandwidth of that switch, it does not pre-
serve the ABR/UBR bandwidth at all the switches preced-

�Also called Partial Packet Discard (PPD) in [22].
�Analytical comparisons for multi-hop networks appear in [6].

ing that (congested) switch along the virtual circuit for the
TCP connection. Moreover, any cells belonging to a cor-
rupted packet which would have made it out of the con-
gested switch will continue to waste the bandwidth at all the
switches following that (congested) switch. Obviously, the
more hops separating the TCP/IP source from the TCP/IP
destination, the more wasted ABR/UBR bandwidth one
would expect even if SCD or EPD techniques are used.
This wasted bandwidth translates to low effective through-
put, which in turn results in more duplicate data packets
transmitted from the source.

In this paper, we present a new transport protocol,
TCP Boston, that turns fragmentation into an advantage for
TCP/IP, thus enhancing the performance of TCP in gen-
eral and its performance in ATM environments in particular.
The rationale that motivates the design of TCP Boston lies
in our answer to the following simple question: Could a
partial delivery of a packet be useful? Our answer is yes.
In other words, the en route loss of one fragment (or more)
from a packet does not render the rest of the fragments be-
longing to that packet useless. TCP Boston manages to
make use of such partial information, thus preserving net-
work bandwidth. At the core of TCP Boston is the Adaptive
Information Dispersal Algorithm (AIDA), an efficient en-
coding technique that allows for dynamic redundancy con-
trol. AIDA makes TCP/IP's performance less sensitive to
cell losses, thus ensuring a graceful degradation of TCP/IP's
performance when faced with congested resources.

2. AIDA: An Introduction

AIDA is a novel technique for dynamic bandwidth alloca-
tion, which makes use of minimal, controlled redundancy
to guarantee timeliness and fault-tolerance up to any degree
of confidence. AIDA is an elaboration on the Information
Dispersal Algorithm of Michael O. Rabin [21]. To under-
stand how IDA works, consider a segment S of a data ob-
ject to be transmitted. Let S consist of m fragments (here-
inafter called cells). Using IDA's dispersal operation, S
could be processed to obtain N distinct pieces in such a
way that recombining any m of these pieces, m � N , us-
ing IDA's reconstruction operation, is sufficient to retrieve
S. The dispersal and reconstruction operations are simple
linear transformations using irreducible polynomial arith-
metic and can be performed in real-time.� The dispersal op-
eration amounts to a matrix multiplication that transforms
the m cells of the original file into the N cells to be dis-
persed. The N rows of the transformation matrix �xij �N�m

are chosen so that any m of these rows are mutually in-
dependent, which implies that the matrix consisting of any
such m rows is not singular, and thus inversible. This guar-
antees that reconstructing the original file from any m of
its dispersed cells is feasible. Indeed, upon receiving any
r � m of the dispersed cells, it is possible to reconstruct

�For more details, we refer the reader to [21, 4].

the original segment through another matrix multiplication.
The transformation matrix �yij �m�m is the inverse of a ma-
trix �x�ij �m�m, which is obtained by removingN �m rows
from �xij �N�m. The removed rows correspond to the cells
that were not used in the reconstruction process. To reduce
the overhead of the algorithm, the inverse transformation
�yij �m�m could be precomputed for some or even all possi-
ble subsets of m rows.

Several redundancy-injecting protocols have been sug-
gested in the literature, whereby redundancy is injected in
the form of parity, which is only used for error detection
and/or correction purposes [14]. The IDA approach is radi-
cally different in that redundancy is added uniformly; there
is no distinction between data and parity. It is this feature
that makes it possible to scale the amount of redundancy
used in IDA. Indeed, this is the basis for Adaptive IDA
(AIDA) [5]. Using AIDA, a bandwidth allocation operation
is inserted after the dispersal operation but prior to trans-
mission as shown in figure 1. This bandwidth allocation
step allows the system to scale the amount of redundancy
used in the transmission. In particular, the number of cells
to be transmitted, namely n, is allowed to vary fromm (i.e.,
no redundancy) to N (i.e., maximum redundancy).

A1

A2

Am

A’1

A’2

A’N

A’1

A’2

A’n

A’1

A’2

A’r

A1

A2

Am

Dispersal Bandwidth
 Allocation Transmission Reconstruction

(only if r >= m)

Figure 1. AIDA dispersal and reconstruction

In order to appreciate the advantages that AIDA brings
to TCP Boston, we must understand the main difficulty
posed by fragmentation. When a cell is lost en route, it be-
comes impossible for the receiver to reconstruct the packet
to which that cell belonged unless: (1) there is enough ex-
tra (redundant) cells from the packet in question to allow
for the recovery of the missing information (e.g., through
parity), or (2) the cell is retransmitted.

The first solution above suggests the use of spatial re-
dundancy to mask erasures (cell losses). While feasible,
such a technique may be quite wasteful of bandwidth (since
the redundant information will have to be communicated
whether or not erasures occur), and is not likely to help
when cell losses exceed the forward erasure capacity of the
encoding scheme, which is almost certainly the case since
cells are typically dropped in “batches” when switches run
out of buffer space. An example of the use of this approach
is the study in [8], which suggests the use of Forward Error
Correction (FEC) for real-time, unreliable video commu-
nication over ATM. In that study, FEC was shown to allow
the trading of bandwidth for timeliness. FEC's performance

was shown to depend on many parameters including the net-
work load, the level of redundancy injected into FEC traffic,
and the percentage of connections (traffic) using FEC. FEC
was shown to be most effective when corruption is restricted
to few cell erasures per data block (e.g., video frame).

Similar to FEC, AIDA supports the use of spatial re-
dundancy to mask erasures. Furthermore, when incorpo-
rated with TCP, AIDA allows this support to be fully inte-
grated within the flow control mechanism of TCP, thus mak-
ing it possible to perform forward error correction without
necessarily overloading the network resources. For exam-
ple, if network congestion is detected, one could increase
AIDA's level of spatial redundancy (thus protecting against
likely cell drops), while decreasing TCP's congestion win-
dow size (thus protecting against buffer overflow by reduc-
ing the number of bytes “on the wire”). This integration of
redundancy control and flow control in a reliable transport
protocol� could be quite valuable for real-time communica-
tion as reported in [5].

The second solution above suggests the use of tempo-
ral redundancy to recover from erasures. Two possibilities
exist—each representing an extreme in terms of the func-
tionality required at the sender and receiver ends. The first
extreme would be for the receiver to do nothing, and sim-
ply wait for the sender to automatically retransmit all cells
from the packet in question as would be dictated by TCP's
packet acknowledgment protocol. This is exactly what cur-
rent adaptations of TCP over ATMs do (including the SCD
and EPD techniques). As we explained before such an ap-
proach is not effective in terms of its use of available band-
width, especially in multi-hop networks. Of course it has
the advantage of being quite simple to implement since it
requires no additional functionality at the sender and re-
ceiver ends. The other extreme would be for the receiver
to keep track of which cells are missing and then to request
retransmission of only those cells. This technique, which
we will revisit later in this paper, has the advantage of being
effective in terms of its use of available bandwidth, but may
result in considerable overhead, especially when the level
of fragmentation (i.e. number of cells per packet) is high.

The incorporation of AIDA in a TCP protocol allows
us to strike a critical balance between the above two ex-
tremes. To explain how this could be done, consider the
following scenario. The sender disperses an outgoing m-
cell segment (packet) into N cells, but sends a packet of
onlym of these cells to the receiver, whereN �� m. Now,
assume that the receiver gets r of these cells. If r � m, then
the receiver could reconstruct the original segment, and ac-
knowledge that it has completely received it by informing
the sender that it needs no more cells from that segment.
If r � m, then the receiver could acknowledge that it has
partially received the packet by informing the sender that it
needs �m�r� more cells from the original segment. To such
an acknowledgment, the sender would respond by sending

�FEC is not a reliable transport mechanism.

a packet of �m � r� fresh cells (i.e. not sent the first time
around) from the original N dispersed cells. The process
continues until the receiver receives enough cells (namely
m or more) to be able to reconstruct the original segment.

Two important points must be noted. First, using
AIDA, no bandwidth is wasted as a result of packet re-
transmission or partial packet delivery; every cell that
makes it through the network is used. Moreover, this cell-
preservation behavior is achieved without requiring individ-
ual cell acknowledgment. Second, using AIDA, no modifi-
cation to the switch-level protocols is necessary. This stands
in sharp contrast to the SCD and EPD techniques, which
necessitate such a change. The incorporation of AIDA into
TCP/IP over ATMs requires only additional functionality at
the interface between the IP and ATM layers (i.e., the AAL),
which we discuss later in the paper.

Figure 2 shows the transmission window managed by
AIDA in TCP Boston. As explained before, prior to a
packet transmission, AIDA encodes the original m-cell
packet into N cells (N �� m). Based on network conges-
tion conditions, it dynamically adjusts n the transmission
window size, which represents the size of the packet to be
actually transmitted.

N

n

m
c

Figure 2. AIDA Transmission Window

The transmission window manager can be custom-
tuned to meet the spatial redundancy requirements of par-
ticular applications or services. For example, time-critical
applications may require that the level of spatial redundancy
be increased to mask cell erasures (up to a certain level), and
thus to avoid retransmission delays should such erasures oc-
cur. By avoiding such delays, the likelihood that tight tim-
ing constraints will be met is increased (at the expense of
wasted bandwidth).

3. TCP Boston: Overview and Implementation
The purpose TCP Boston is to provide a reliable transfer of
data for end-to-end applications. The protocol, when prop-
erly tuned, can be implemented over both ATM and packet-
switched networks. But, since it is designed in such a way
that it takes advantage of ATM's relatively small 53-byte
cells, it can achieve a high performance gain when it is de-
ployed over ATM networks. The main functions included
in the protocol are: session management, segment manage-
ment, and flow control and transmission.

Session Management: The protocol manages a TCP ses-
sion in three phases: a connection establishment phase, a
data transfer phase, and a termination phase. The pur-

pose of these phases, as well as the functions performed
therein, generally follow those of current TCP implemen-
tations, except that information specific to IDA which are
required by the receiver for reconstruction purposes (such
as the value of m for example), are piggy-backed onto the
protocol packets during the three-way handshaking at the
connection establishment phase.�

Segment Management: Processes for (1) segment en-
coding and (2) segment reconstruction are unique to TCP
Boston.

At the source, segment encoding works as follows:
Given a data block (segment) of size b bytes, the protocol
divides the data block into m cells of size c, wherem � b�c
bytes. Next, the m cells are processed using IDA to yield
N cells for some N �� m. Once this encoding is done,
the first m cells from the segment are transmitted as a sin-
gle packet and the unused N �m cells are kept in a buffer
area for use when (if) more cells from that segment must be
transmitted to compensate for lost cells (see below).

At the sink, segment reconstruction works as follows:
When a packet of cells is received, the protocol first checks
if it has accumulated m (or more) different cells from the
segment that corresponds to that packet. If it did, it recon-
structs the original segment using the proper IDA recon-
struction matrix transformation and signals the flow con-
trol component to send an acknowledgment (hereinafter re-
ferred to as an ACK) indicating that reconstruction was suc-
cessful. If not, it keeps the received cells for later recon-
struction, and signals the flow control component to send
an ACK, piggy-backed with the number of cells that have
been accumulated so far from the segment. Such an ACK
would inform the sender that reconstruction is not possible,
and that the pending number of cells from that segment need
to be transmitted at the time of next packet retransmission.

Flow Control and Transmission: Any feedback-based
TCP flow control algorithm (e.g., Tahoe, Reno, and Vegas)
can be used with TCP Boston with a minor modification
to handle the revised feedback mechanism of TCP Boston.
When an ACK arrives, the sender checks a flag to determine
if that ACK signals the successful reconstruction (at the re-
ceiver) of a segment. If it does, the sender calls the stan-
dard ACK procedure. If it doesn't, the sender extracts from
the ACK the number of cells r received so far (see above)
and then prepares m � r additional cells from the desired
segment in a single new packet that will be transmitted at
the next retransmission time. This process continues until
the receipt of an ACK from the receiver indicating that the
segment has been successfully reconstructed, in which case
any remaining cells from that segment are discarded from
the sender's buffer.

Notice that the partial delivery of a packet does not re-
sult in updating the received-segment number for the re-

�For efficiency, such information could be permanently “coded” into
TCP Boston.

ceiver's TCP window manager. � Also, an ACK signaling
a partial packet delivery does not cause an increase in the
sender's congestion window. Rather, it acts as a hint to the
sender to update the number of cells included in the next
packet retransmission.

In our current implementation, the protocol is com-
posed of three modules: a Session Management Module, a
Segment Management Module, and a Flow Control Module.
Each of these modules executes the corresponding function
described in the previous section. Figure 3 depicts the con-
figuration and interaction of the three modules for both the
sender and the receiver.

The use of TCP Boston in ATM environments requires
a modification to the AAL5 functionality; namely, AAL5
must allow the reassembly of partial IP packets when ATM
cells are missing, instead of simply discarding such pack-
ets. To that effect, we propose two simple solutions. The
first is that AAL5 could simply insert dummy cells in place
of any missing cells.� If the assembled IP packet is to tra-
verse other subnetworks, the insertion of these dummy cells
may be deemed wasteful of bandwidth. The second solu-
tion remedies this by requiring AAL5 to simply pack the
available cells into an IP packet (i.e. no dummy cells are in-
serted), and to update the IP headers to reflect among other
things, the new (shorter) length of the IP packet.

For simulation purposes, we tuned the system so as to
use no spatial redundancy. We chose to do so for three
reasons: (1) We wanted to evaluate the effectiveness of
TCP Boston in dealing with fragmentation. This required
that our measurements be unaffected by the forward error
correction capability provided by AIDA, which is enabled
through spatial redundancy. (2) We wanted to compare the
performance of TCP Boston with that of other TCP imple-
mentations (e.g., TCP Reno [16]) with and without switch-
level enhancements (e.g., EPD [22]). Since these other pro-
tocols do not support forward error correction, this feature
of TCP Boston had to be turned off. (3) To work properly,
the dynamic redundancy control mechanism of TCP Boston
requires a congestion avoidance algorithm that provides ac-
curate forecasting of network congestion. An example of
such an algorithm is the one used in TCP Vegas, which pro-
vides better congestion forecast by detecting the incipient
stages of congestion before losses start to accrue (rather
than using the loss of segments as a signal of congestion)
[9]. TCP Reno, which was the best available option in the
simulation package at the time of our experiment, is reactive
(rather than proactive), and thus would not bring much per-
formance benefits when used to forecast congestion for the
dynamic redundancy control mechanism in our protocol.

�This enables the receiver to send duplicate ACKs to signal a packet
drop to the sender.

�Identifying missing cells in an ATM environment is quite simple since
cells are transmitted over a virtual channel, and thus delivered to AAL5
in-order.

m

N

n

D
ispersal

Segment Management Module

S

S’

Buffer

IP

Complete?

No
Yes

Transm
it

R
etransm

it

R
eceive

ACK

TCP Boston: Sender

Application

Session Man. Module

Flow Control Module

AIDA

tim
eo

ut
D

U
P

Ac
ks

m

AIDA

S

IP

Ready to
Reconstruct?

No

Yes

Transm
it

Receive

TCP Boston: Receiver

Application

Reconstruct

ACK (complete=1)

Transm
it

ACK(complete=0)

Segment Management Module

Session Man. Module

Flow Control Module

Figure 3. TCP Boston: Protocol Outline for Sender (left) and Receiver (right)

4. TCP Boston: Performance Evaluation
In this section we present the results of our experimental
evaluation of TCP Boston. For a more detailed treatment,
we refer the reader to [6].

4.1. Simulation Environment
As shown in Figure 4, the simulated network consists of 16
source nodes and 1 sink node, where all the nodes are con-
nected to a single switch node. The link bandwidth is set
to 1.5 Mbps with propagation delay of 10 msec. The link
bandwidth does not represent any particular technology. It
was chosen to simulate a relatively low bandwidth-delay
product network. This configuration simulates a WAN en-
vironment with a radius of 3,000 km and a bottleneck link
bandwidth of 1.5 Mbps.

Source

Sink

Switch

1

2

3

16

1.5 Mbps

10 msec

1.5 Mbps
10 msec

...

Figure 4. Configuration of simulated network.

The ATM switch is a simple, 16-port output-buffered
single-stage switch [10]. The output buffer is managed us-
ing FIFO scheduling, and cells in input ports are served in a
round-robin fashion to ensure fairness.

In our simulator, the ATM Adaptation Layer (AAL)
implements the basic functions found in AAL5, namely

fragmentation and reconstruction of IP packets [1, 13].
AAL divides IP packets into 48-byte units for transmission
as ATM cells, and appends 0 to 47 bytes of padding to the
end of data. A special flag in the cell header is used to mark
the last cell in a packet. To support TCP Boston the desti-
nation AAL reconstructs a packet out of the received cells
even when the resulting packet is incomplete. Incomplete
packets are discarded by the destination AAL for Reno im-
plementation.

Our simulations use a total of 16 TCP connections,
each is established for one of the configuration's source-
sink pairs. Each source generates an infinite stream of data
bytes. Each simulation runs for 700 simulated seconds to
transfer a total of 120 MB of data.

The parameters used in the simulation include the TCP
packet size, the TCP window size, and the switch buffer
size. Three different packet sizes were selected to reflect
maximum transfer unit (MTU) of popular standards: 576
bytes for IP packets, 1,500 bytes for Ethernet, 4,470 bytes
for FDDI link standards [17], and 9,180 bytes which is the
recommended packet size for IP over ATM [3]. The values
for the maximum TCP window size are 8, 16, 32, and 64
kB. Buffer sizes used for the ATM switch are 64, 256, 512,
1,000, 2,000, and 4,000 cells.

The LBNL Network Simulator (ns) [12] was used for
both packet-switched and ATM network simulations. To
simulate TCP Boston, we modified ns extensively to im-
plement the three main modules described in the previous
section. Since ns is originally designed to support packet-
switched network environments, major modifications were
necessary to allow it to support ATM-like network environ-
ments. In particular, the essential functions of AAL5 were
added to simulate the handling of IP packets (i.e., fragmen-
tation and reassembly of IP packets) [1, 13]. Also, the link

layer of ns has been modified to include basic functions
of ATM switches and virtual circuit management. The ns
package has also been enhanced to allow for the gather-
ing of additional performance statistics, such as effective
throughput (hereinafter interchangeably termed goodput),
cell loss rate, effective packet loss rate, and response time.

4.2. Performance Characteristics of TCP Boston

We measured the performance of TCP Boston versus that
of TCP Reno using four metrics: loss rate, response time,
retransmission rate, and effective throughput. Unless other-
wise noted, each one of the graphs presented in this section
portrays one of these performance metrics (on the y-axis)
as a function of the switch buffer size (on the x-axis). The
function is shown as a family of curves, each corresponding
to one of the four different packet sizes considered.

Figure 5(a) shows the loss rates of Reno and Boston
over an ATM network. The loss rate for Reno refers to the
packet loss rate caused by cell drops at the ATM switch. In
both plots, as the size of the switch buffer decreases, the
loss rate gradually increases until the buffer size reaches 50
kB. From this point on, the loss rate for Reno grows expo-
nentially toward the marginal buffer size, while the the loss
rate for Boston increases at a much slower pace, except for
the largest packet size.

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

ce
ll

lo
ss

 ra
te

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

0

20

40

60

80

100

0 50 100 150 200 250

ce
ll

lo
ss

 ra
te

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

(a) Cell loss rate of Reno (left) and Boston (right)

0

20

40

60

80

100

0 50 100 150 200 250

ef
fe

ct
iv

e
th

ro
ug

hp
ut

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

0

20

40

60

80

100

0 50 100 150 200 250

ef
fe

ct
iv

e
th

ro
ug

hp
ut

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

(b) Effective throughput of Reno (left) and Boston (right)

Figure 5. TCP run for an 64 kB window size

The ratio between Reno's loss rate and Boston's loss
rate increases toward the marginal buffer size. This increase
is more pronounced as the packet size increases. This is be-
cause, as the packet size increases, the number of cells per
packet increases, and the chance of a cell in a packet being
dropped at a switch increases (as a result of fragmentation),
which results in a packet loss under Reno. For small buffer
sizes, this phenomenon becomes more remarkable, result-
ing in near 100% packet loss rate for Reno when the buffer

size is smallest. On the contrary, using Boston, cells that
are not dropped will be accumulated for eventual packet re-
construction at the receiver end, thus reducing the chance
of repeated retransmissions. This leads to a relatively lower
cell loss rate.

According to our simulation results, the ratio between
Reno's loss rate and Boston's loss rate ranges between 1.7
and 2.4, which means that about one half of the cells in a
packet are dropped by switch buffer overflow on average.
The plots for retransmission rates for both Boston and Reno
are almost identical to the plots for cell loss rates shown
in figure 5(a), and thus were omitted from this paper. Fig-
ure 5(b) shows the effective throughput (goodput) for Reno
and Boston under a 64 kB TCP window size. The effective
throughput refers to a throughput where only the bytes that
are useful at application layer are considered.

The goodput of Reno stays low, especially for larger-
size packets, throughout the entire range of buffer sizes,
while that of Boston approaches the optimal level near 100
kB buffer sizes and stays almost optimal for larger buffer
ranges. The low goodput of Boston under small buffer size
is caused by the link idle time (since all the cells that pass
through the link are counted as useful cells). The link idle
time is the result of the interaction between the 16 source-
sink pairs, each of which runs under TCP (Reno in our case)
flow control algorithm. Recent studies on network traffic
have shown that TCP can augment traffic self-similarity,
which causes performance degradation especially when the
buffer space is limited [18]. In Reno's case, the extremely
low goodput at small buffer sizes turned out to be the result
of the wasted bandwidth due to cells that pass through the
bottleneck switch but get discarded at AAL5, as well as the
link idle time that affects Boston.

Table 1 compares the average response time of the two
protocols under 64 kB TCP window size. The response time
in the table represents an average time taken for an applica-
tion at a higher layer to receive a byte.

For buffer sizes between 3.5 kB and 13.5 kB, Reno's
average response time increases hyper-exponentially for the
two larger packet sizes, and the ratio between Reno's re-
sponse time and Boston's response time increases sharply.
As the bottleneck buffer size decreases, the cell drop rate
increases, resulting in a larger number of packets being cor-
rupted and discarded for Reno, which in turn results in the
retransmission of the same packet repeatedly, and hence
sharply increasing Reno's response time. For Boston, the
increased cell drop rate results in a proportional amount of
additional cell transmissions (but not as many as in Reno's
case), which results in a gradual increase in response time.
On the other hand, as the buffer size increases, less cells are
lost, increasing the probability of successful packet trans-
fer in a minimal number of rounds, which in turn results in
good response times for both protocols, with Boston edg-
ing Reno by a margin of 7 �sec/byte on average. Notice

Packet Size Buffer Size (kB)
(Byte) 3.5 13.5 27 54 104 208

Bos Ren Bos Ren Bos Ren Bos Ren Bos Ren Bos Ren
512 111 119 88 91 82 85 80 83 79.5 82 77.2 81

1,518 114 138 90 99 85 91 80 87 79 85 77 83
4,352 212 893 100 118 84 101 79 90 79 88.2 77 86
9,180 591 3,125 129 138 89 116 80 94 79 89.5 77 88

Table 1. Response times of Boston and Reno over ATM for 64 kB window size

that this difference is per byte. Thus, for large-size file
transmissions, the impact on the response time may be non-
negligible, even when the buffer size is moderately large.

So far, the results we have presented for Boston and
Reno were under a TCP window size equal to 64 kB. The
results for the two protocols under window sizes of 32 kB,
16 kB, and 8 kB show a gradual convergence in the perfor-
mance of the two protocols as the window size decreases.
Figure 6 shows the impact of a small 8 kB TCP window
size.

0

20

40

60

80

100

0 50 100 150 200 250

ce
ll

lo
ss

 ra
te

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

0

20

40

60

80

100

0 50 100 150 200 250

ce
ll

lo
ss

 ra
te

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

(a) Cell loss rate of Reno (left) and Boston (right)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

ef
fe

ct
iv

e
th

ro
ug

hp
ut

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

0

20

40

60

80

100

0 50 100 150 200 250

ef
fe

ct
iv

e
th

ro
ug

hp
ut

 (%
)

switch buffer size (kB)

576-byte packet
1500-byte packet
4470-byte packet
9180-byte packet

(b) Effective throughput of Reno (left) and Boston (right)

Figure 6. TCP Run for an 8 kB window size

4.3. Effect of TCP Boston on Flow Control

Boston's ability to accept incomplete packets (as opposed
to counting them as lost ones) is likely to impact the flow
control behavior by making it less sensitive to network con-
gestion, and thus somewhat more aggressive in its use of
network bandwidth. To understand how this could happen,
it suffices to note that using Boston, retransmitted packets
are smaller (containing only the pending number of cells)
and thus more likely to be delivered intact. Therefore, the
likelihood that a sender utilizing TCP Boston will detect
a packet loss (as a result of repeated acknowledgments re-

130000
140000
150000
160000
170000
180000
190000
200000
210000
220000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Reno: bottleneck switch input-port

130000
140000
150000
160000
170000
180000
190000
200000
210000
220000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Boston: bottleneck switch input-port

130000
140000
150000
160000
170000
180000
190000
200000
210000
220000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Reno: bottleneck link

130000
140000
150000
160000
170000
180000
190000
200000
210000
220000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Boston: bottleneck link

130000
140000
150000
160000
170000
180000
190000
200000
210000
220000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

time (seconds)

Reno: TCP receiver end

130000
140000
150000
160000
170000
180000
190000
200000
210000
220000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

time (seconds)

Boston: TCP receiver end

(a) Traffic generated by 1 TCP server

0
50000

100000
150000
200000
250000
300000
350000
400000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Reno: bottleneck switch input-port

0
50000

100000
150000
200000
250000
300000
350000
400000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Boston: bottleneck switch input-port

0
50000

100000
150000
200000
250000
300000
350000
400000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Reno: bottleneck link

0
50000

100000
150000
200000
250000
300000
350000
400000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

Boston: bottleneck link

0
50000

100000
150000
200000
250000
300000
350000
400000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

time (seconds)

Reno: TCP receiver end

0
50000

100000
150000
200000
250000
300000
350000
400000

0 10 20 30 40 50 60 70 80 90 100

 b
yt

es

time (seconds)

Boston: TCP receiver end

(b) Traffic generated by 16 TCP servers

Each plot depicts the first 100-second period of the 700-second
simulation, where the total bytes measured per second are plotted
on the y axis as a function of the elapsed time at the input-port of
the bottleneck switch (top), bottleneck link (middle), and TCP re-
ceiver end (bottom) for Reno (left) and Boston (right): 64 kB win-
dow, 27 kB (512-cell) bottleneck switch buffer, 9180-byte/packet.

Figure 7. Traffic generation

ceived for the same packet) is reduced, which in turn, in-
creases the probability that the sender will not decrease the
congestion window (not to mention the possibility that it
may even increase it).

Despite Boston's aggressive use of bandwidth, our ex-
periments confirmed that it conserves the basic dynamics of
the underlying TCP flow control. Figure 7(a) shows the traf-
fic pattern of Reno (left) and Boston (right) for the first 100

seconds in 700 simulated seconds when single TCP server
is active in the network (the total bytes measured per second
are plotted on the y axis as a function of the elapsed time in
seconds plotted on the x axis). The bottleneck switch buffer
size was set to 27 kB (512 cells), which resulted in a cell
drop rate of 2.3% for Boston and a packet drop rate of 4.9%
for Reno. The top two graphs show the total bytes mea-
sured at the input port of the bottleneck switch (i.e., total
bytes generated by the source), the middle two show the to-
tal bytes passing through the bottleneck link, and the bottom
two represent the total bytes accepted by the receiver-end.
In the top and middle graphs, Boston (right) and Reno (left)
do not show visible differences in the amount of total bytes,
though Boston generated 3.2% more traffic than Reno dur-
ing the entire period of the 700 simulation seconds.

The bottom two plots show the dramatic difference be-
tween the two protocols, where Boston's acceptance and
Reno's discarding of incomplete packets result in a big
gap between the two protocols in the plots. In particular,
Boston showed 7.83% increase in the effective throughput
over Reno in this scenario.� The low effective throughput
of Reno is the result of AAL5 cell discards and the smaller
average TCP window size at the Reno's TCP source �. The
aggregated traffic when the 16 TCP sources are competing
is captured in figure 7(b), where Boston achieved a 78.9%
effective throughput, whereas Reno achieved 59.1%.

The above experiments as well as others (not included
in this paper) show that as the number of TCP sources in-
crease, the performance gap between Boston and Reno is
more pronounced. This is because resources (such as switch
buffers) become limiting factors as more TCP sources com-
pete for them. In our experiments, we have observed that
while packet size, window size, and switch buffer size play
important roles that affect performance, TCP Boston was
consistently able to provide a more gracefully degrading
performance (compared to TCP Reno) when network re-
sources become limited.

5. Summary
In this paper we presented TCP Boston, a novel,
fragmentation-tolerant TCP protocol, especially suited for
ATM network environments. TCP Boston integrates a stan-
dard TCP/IP protocol (such as Reno or Vegas) with a pow-
erful encoding mechanism based on AIDA (an adaptive
version of Rabin's IDA dispersal and reconstruction algo-
rithms [21]). We have presented our implementation of TCP
Boston and have shown its performance superiority through
simulation method, when compared to TCP techniques that
are more vulnerable to fragmentation, namely TCP Reno
and TCP Reno with EPD switch-level enhancements.

�The effective throughput of Reno was 83.1%, whereas that of Boston
was 89.6%.

�The average window size of Boston during the 700 simulation seconds
was 27.7 kB (i.e., 3.02 segments), and Reno maintained an average window
size of 23.9 kB (i.e., 2.57 segments).

References

[1] ANSI. AAL5 – A New High Speed Data Transfer AAL. In
ANSI T1S1.5 91-449. November 1991.

[2] G. Armitage and K. Adams. Packet Reassembly During Cell
Loss. IEEE Network Mag., 7(5):26–34, September 1993.

[3] R. Atkinson. Default IP MTU for use over ATM AAL5. In
RFC 1626. May 1994.

[4] A. Bestavros. SETH: A VLSI chip for the real-time informa-
tion dispersal and retrieval for security and fault-tolerance.
In Proceedings of ICPP'90, The 1990 International Confer-
ence on Parallel Processing, Chicago, Illinois, August 1990.

[5] A. Bestavros. An adaptive information dispersal algorithm
for time-critical reliable communication. In Frisch, Malek,
and Panwar, editors, Network Management and Control,
Volume II. Plenum Publishing Co., NY, NY, 1994.

[6] A. Bestavros and G. Kim. TCP Boston: A Fragmentation-
tolerant TCP Protocol for ATM Networks. Technical Re-
port BUCS-TR-96-014, Boston University, Computer Sci-
ence Department, July 1996.

[7] A. Bianco. Performance of the TCP Protocol over ATM Net-
works. In Proceedingds of the 3rd International Conference
on Computer Communications and Networks, pages 170–
177, San Francisco, CA, September 1994.

[8] E. Biersack. Performance Evaluation of Forward Error Cor-
rection in ATM Networks. CACM, pages 248–257, Aug
1992.

[9] L. Brakmo, S. O'Maley, and L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. Tech-
nical Report TR 94 04, The University of Arizona Computer
Science Department, Tucson, AZ 85721, Febrary 1994.

[10] T. Chen and S. Liu. ATM Switching System. Artech House,
Inc., 685 Canton St., Norwood, MA 02062, 1995.

[11] D. E. Comer. Internetworking with TCP/IP, volume 1. Pren-
tice Hall Inc., Englewood Cliffs, NJ, 1995.

[12] S. Floyd. Simulator Tests. Available from ftp://ftp.
ee.lbl.gov/papers/simtests.ps.Z. ns(v1.0b4)
is available at http://www-nrg.ee.lbl.gov/
nrg., July 1995.

[13] A. Forum. ATM User-Network Interface Specification. Pret-
ice Hall, Inc, Englewood Cliffs, New Jersey 07632, 1993.

[14] G. A. Gibson and D. A. Patterson. Designing disk arrays
for high data reliability. Journal of Parallel and Distributed
Computing, 17(1-2):4–27, January/February 1992.

[15] M. Hassan. Impact of Cell Loss on the Efficiency of TCP/IP
over ATM. In Proceedings of the 3rd International Con-
ference on Computer Communications and Networks, pages
165–169, San Francisco, CA, September 1994.

[16] V. Jacobson. Berkeley TCP Evolution from 4.3-Tahoe to
4.3-Reno. In Proceedings of the British Columbia Internet
Engineering Task Force, July 1990.

[17] S. Mirchandani and R. Khanna, editors. FDDI Technology
and Applications. John Wiley & Sons, Inc., 1993.

[18] K. Park, G. Kim, and M. E. Crovella. The Effects of Traf-
fic Self-Similarity on TCP Performance. Technical report,
Boston University Computer Science Department, 1996.

[19] J. Postel. Internet Protocol. In RFC 791. September 1981.
[20] J. Postel. TCP. In RFC 793. September 1981.
[21] M. O. Rabin. Efficient dispersal of information for security,

load balancing and fault tolerance. Journal of the Associa-
tion for Computing Machinery, 36(2):335–348, April 1989.

[22] A. Romanow and S. Floyd. Dynamics of TCP Traffic over
ATM Networks. IEEE Journal on Selected Areas in Com-
munication, 13(4):633–641, May 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

