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Abstract

We study a new approach to routing multi�class traf�
�c �ows with guaranteed bandwidth requirements� The
approach is based on our recently proposed concept of
load pro�ling ���� We thoroughly characterize routing
performance using load pro�ling and contrast it to rout�
ing using load balancing and load packing� We do so
both analytically and via extensive simulations on Vir�
tual Path �VP� based networks� Our �ndings con�rm
that load balancing is not desirable as it results in VP
bandwidth fragmentation	 which adversely a
ects the
likelihood of accepting new �ow requests� This frag�
mentation is more pronounced when the granularity
of the requests is large� Our simulation results also
show that our load�pro�ling routing scheme performs
better or as well as the traditional load�balancing rout�
ing in terms of revenue under both skewed and uni�
form workloads� Furthermore	 load�pro�ling routing
improves routing fairness by proactively increasing the
chances of admitting high�bandwidth �ows�

� Introduction

Routing algorithms�allowing the selection of one
out of many candidate source�to�destination paths for
bandwidth reservation purposes�play a critical role in
meeting the stringent Quality of Service �QoS� require�
ments of real�time applications over high�speed inte�
grated services networks� such as Asynchronous Trans�
fer Mode �ATM� networks and next generation Inter�
net�

To support real�time QoS we adopt the Virtual Cir�
cuit �VC� model for resource reservation� Under this
model� routing a connection �or VC� involves the se�
lection of a path �or route� within the network from
the source to the destination in such a way that the re�
sources �e�g�� bandwidth� necessary to support the VC
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QoS requirements are set aside �or reserved� for use by
the entity requesting the establishment of the VC� This
entity might be an application or a router�switch� In
the latter case� a router may request a VC to another
router to carry the packets of a particular class of appli�
cations over a backbone network that connects internet
service providers and supports VC routing through IP
switching �		
 or similar schemes such as tag switching
�	�
� ARIS ��
� etc� Over the last few years� several
routing protocols based on the VC model have been
proposed �e�g�� �
� 	

��

We consider a network that supports S � 
 classes of
VCs� A VC of class s requires the reservation of a cer�
tain amount of bandwidth bs that is enough to ensure
a given QoS� This bandwidth can be thought of either
as the peak transmission rate of the VC or its �e�ec�
tive bandwidth� ��
 which varies between the peak and
average transmission rates� Without loss of generality�
we assume that the bandwidths requested by di�erent
classes are distinct and that the classes are indexed
in increasing order of their requested bandwidths� i�e��
b� � b� � � � � � bS�

To support a class�s VC� the VC has to be setup
on some path from the source to the destination� the
QoS demand �bs� is allocated on one of the candidate
paths for the lifetime of the VC� The objective of the
routing algorithm is to choose routes that result in high
successful VC setup rate �or equivalently� high carried
VC load� while maximizing the utilization of network
resources �or equivalently� revenue��

Related Work
Traditionally� routing schemes have been based on the
least�loaded concept �e�g�� �	� �
�� According to this
concept� a request is serviced by setting up the VC on
the least utilized path selected from the set of candi�
date paths� between the source and destination� pro�
vided it can support the VC�s bandwidth requirement�
Thus� this scheme attempts to evenly distribute the
load among the candidate routes� We call such scheme

�To consume the least amount of resources� the set of candi�
date paths is typically chosen from the set of shortest paths




Least Loaded Routing �LLR��
As an alternative to the load�balancing philosophy

of LLR techniques� VC packing techniques were pro�
posed in ��
� The argument for VC packing is based
on the observation that in order to maximize the uti�
lization of available resources� a routing policy in a
heterogeneous �multi�rate� environment should imple�
ment packing of narrowband VCs �having relatively
small bandwidth requirement� on some paths in or�
der to leave room on other paths for wideband VCs
�having relatively large bandwidth requirement�� Pack�
ing strategies achieve two desired properties� �	� They
minimize the fragmentation of available bandwidth� re�
sulting in an �
� improved fairness by increasing the
chances of admittance for wideband VCs�

A routing scheme based on this packing concept was
proposed in ��
� The scheme attempts to pack class�s
VCs in order to reduce blocking only for the next higher
class of VCs� In ��
� we extended the scheme in order
to reduce blocking for all higher classes� Both schemes
are� however� based on pessimistic�deterministic anal�
ysis� They only account for the di�erent bandwidth
requirements of di�erent classes� but not on their traf�
�c intensities �demands�� These tra�c intensities may
be known a priori �based on tra�c forecasts� or dynam�
ically estimated as is often done in telephone networks
��
�

In ��
� we have established the inadequacy of load�
balancing techniques and the impracticality of load�
packing techniques� We have done so by analytically
characterizing LLR and a load packing heuristic re�
ferred to as Most Loaded Routing �MLR�� MLR se�
lects from the set of candidate routes the most utilized
one provided it can support the VC� MLR is a simple
scheme which attempts to achieve the same e�ect as
packing�based schemes� We have shown that MLR is
asymptotically optimal� We have also introduced in
��
 an attractive alternative to MLR that is based on
load pro�ling� Our load�pro�ling VC routing scheme
is based on the probabilistic selection of routes� where
probabilities are chosen to match the distribution of
tra�c demand of di�erent classes �i�e� the load pro�
�le� with the distribution of available resources on the
candidate routes �i�e� resource availability pro�le�� We
call this scheme Load Pro�ling Routing �LPR�� In ��
�
we conducted a pilot simulation experiment that com�
pared LPR to MLR and LLR using a simpli�ed model
of a single source�destination node pair connected by
multiple paths� where the cost of a path is de�ned by
its current available bandwidth� Our results show that
MLR and LPR are competitive and that they both sig�
ni�cantly outperform LLR�

Contributions
In this paper we thoroughly characterize the perfor�
mance of VC routing using load pro�ling and contrast
it to routing using load balancing and load packing� We
do so both analytically and via extensive simulations�

We extend the analysis in ��
 to emphasize the e�ect of
VC request granularity� We then present a much more
detailed simulation study that pits LPR to LLR in a
more realistic networking environment� In particular�
we consider a fully�connected virtual path based net�
work� where routing algorithms consider one�link and
two�link paths� Here� the cost of a path is de�ned by
not only its current available bandwidth but also its
length� establishing a VC on a two�link path consumes
twice as much bandwidth as a one�link path�

Our �ndings con�rm that for reservation�based
protocols�which allow for the exclusive use of a pre�
set fraction of a resource�s bandwidth for an extended
period of time�load balancing is not desirable as it
results in resource fragmentation� which adversely af�
fects the likelihood of accepting new reservations� This
fragmentation is more pronounced when the granular�
ity of VC requests is large� Typically� this occurs when
a common VC is established to carry the aggregate
tra�c �ow of many high�bandwidth real�time sources�
For virtual path based networks� our simulation results
show that our load�pro�ling VC routing scheme per�
forms better or as well as the traditional load�balancing
VC routing in terms of revenue under both skewed and
uniform workloads� Furthermore� load�pro�ling rout�
ing improves routing fairness by proactively increasing
the chances of admitting high�bandwidth connections�
These results support our preliminary investigation in
��
 and indicate that LPR is a promising routing ap�
proach� We do not show simulation results for MLR
and other packing�based schemes since we also found
LPR to provide better or similar performance�

The remainder of this paper is organized as follows�
Section 
 motivates load pro�ling by comparing it to
load balancing and load packing� In Section � a com�
prehensive comparative evaluation of LPR versus LLR
on a fully�connected virtual path based network is pre�
sented� We conclude in Section � with a summary and
with directions for future work�

� Load Pro�ling� On Neither Balanc�
ing nor Packing VC Requests

2.1 MLR vs LLR: An analytical comparison

Consider a system with M di�erent paths between
a particular source and a particular destination� With�
out loss of generality� we assume that the capacity of
all such paths is identical and is normalized to a unit�
Let f�u� denote the probability density function for the
utilization requirement of requests for VCs between the
same source and destination considered above� That is
f�u� is the probability that the bandwidth requirement
of a VC request will be u� where � � u � U � where U
is the largest possible bandwidth request� By virtue of
the capacity assumption� U � 	�

Let W denote the overall load of the system� ex�
pressed as the sum of the reserved bandwidth over all



paths �i�e� � � W � M�� A load�balanced system
would tend to distribute its load �i�e� reserved band�
width� equally amongst all paths� making the reserved
bandwidth on each path as close as possible to W�M �
A load�pro�led system would tend to distribute its load
in such a way that the probability of satisfying the QoS
requirements of incoming VC requests is maximized�
We explain below a particular way of achieving such a
goal�

Let C denote the set of M paths in the system� For
routing purposes� we assume the availability of a rout�
ing policy that allows the routing protocol to select a
subset of routes from C that are believed to be capable
of satisfying the QoS requirement u of an incoming VC
request� We denote this feasible set by F � C�

Let lF�u� denote the fraction of paths in a feasible
set F � whose unused �i�e� unreserved�available� band�
width is equal to u� Thus� LF�u� �

R u
�
lF �u�du could

be thought of as the �cumulative� probability that the
available bandwidth for a path selected at random
from F will be less than or equal to u� Alternatively�
	�LF�u� is the cumulative probability that the avail�
able bandwidth for a path selected at random from
F will be larger than or equal to u� and thus enough
to satisfy the demand of a VC request of u �or more�
bandwidth�

Thus� the probability that a VC request will be ac�
cepted on a path selected randomly out of F is given
by��

P �

Z U

�

f�u��	� LF�u��du �	�

Let lC�u� denote the fraction of paths in the sys�
tem candidate set C� whose unused bandwidth is equal
to u� Denote by LC�u� the cumulative distribution of
available bandwidth for C� i�e� LC�u� �

R u
�
lC�u�du�

Load Balancing� In a perfectly load�balanced sys�
tem� any feasible set of routes will be identical in terms
of its bandwidth pro�le to the set of all routes in the
system� Thus� in a load�balanced system LF�u� �
LC�u� � L�u�� Moreover� we have�

L�u� �

�
� if � � u � �	�W�M�
	 if �	�W�M� � u � 	

�
�

The probability that a VC request will be accepted is

given by P �
R V
�
f�u� 	 du� where V � min�U� �	 �

W�M��� Thus�

P �

�
F �	�W�M� if 	 � U

��W�M

	 if U
��W�M � 	

���

� The integration is from � to U since U is the largest possible
bandwidth request� i�e� f�u� 
 � for U � u � �


Equation ��� indicates that the performance of LLR
is dependent on the system load� In particular� equa�
tion ��� predicts that LLR�s performance will be op�
timal as long as the utilization of the system �W�M�
is less than 	� U � but that it will degenerate as soon
as �W�M� bypasses that bound� The manner in which
such a degeneration occurs will depend heavily on the
distribution of requests f�u��

Load Packing� A load�pro�ling algorithm would at�
tempt to shape LC�u� in such a way that the choice of
a feasible set F would result in minimizing the value
of LF�u�� thus maximizing the value of P in equation

�	� subject to the boundary constraint
R �
�
u lC�u�du �

�	�W�M�� One solution to this optimization problem
is for lC�u� to be chosen as lC�u� � �W�M���u��� �
�	�W�M���u�	� where v��u�x� is an impulse function
of magnitude v applied at u � x�

The above solution corresponds to a system that
packs its load �or reserved bandwidth� using the mini�
mal possible number of routes� In other words� a frac�
tionW�M of the paths in the system are 	��� utilized�
and thus have no extra bandwidth to spare� whereas a
fraction �	�W�M� of the paths in the system are 	���
idle� and thus able to service VC requests with any QoS
requirements� The choice of any feasible set F from the
set of unused routes in C would result in LF�u� being
a step function given by�

LF�u� �

�
� if � � u � 	
	 if u � 	

���

Plugging these values into equation �	�� we get

P �

Z U

�

f�u� �	� �� du

� 	 ���

Equation ��� shows that choosing lC�u� �
�W�M���u��� � �	�W�M���u�	� is obviously optimal�
Furthermore� this optimality is independent of the sys�
tem load or the request distribution f�u��

The perfect �t implied in equation ��� may require
that VCs already in the system be reassigned to a dif�
ferent path upon the submission and acceptance of a
new VC request� or the termination of an existing VC�
Even if such reassignment is tolerable� achieving a per�
fect �t is known to be NP�hard� For these reasons�
heuristics such as �rst��t or best��t are usually em�
ployed for on�line resource allocation� Asymptotically�
both the �rst��t and best��t heuristics are known to be
optimal for the on�line bin packing problem �	�
� How�
ever� for a small value of M�which is likely to be the
case in network routing problems�best��t �or an MLR
policy� outperforms �rst��t�



2.2 MLR vs LLR: Effect of request granularity

An important distinction between LLR and MLR�
evident from equations ��� and ����is the sensitivity
�insensitivity� of LLR �MLR� to the request distribu�
tion f�u�� LLR�s sensitivity to request distributions
is pronounced most when the granularity of the re�
quests is large�i�e� U approaches 	�and is insigni��
cant when the granularity of the requests is small�i�e�
U approaches ��

To demonstrate the susceptibility of LLR� consider
a uniform request distribution over the �� � 	
 inter�
val� According to equation ���� only one half of all VC
requests will be possible to honor when the system uti�
lization is ���� and only one tenth when the system
utilization is �����

2.3 Load Profiling: A robust alternative to MLR

Equation ��� shows analytically that best��t �or an
MLR policy��as an approximation of a perfect �t�
is an appropriate heuristic for selecting a route from
amongst a set of routes that satisfy the bandwidth re�
quirement of a VC request� However� the performance
of MLR is severely a�ected by the inaccuracy of knowl�
edge about reserved bandwidth on various routes that
is inherent in a networking environment� In particular�
with MLR� it becomes more likely that a VC request
gets blocked because the bandwidth available on the
selected path turns out to be smaller�

In the remainder of this section� we examine the de�
tails of a probabilistic load�pro�ling heuristic �LPR�
that is more appropriate for the imprecision often en�
countered in distributed and networking environments�
Using this LPR protocol� the process of choosing a tar�
get route from the set of feasible routes is carried out
in such a way so as to maximize the probability of ad�
mitting future VC requests� The probability of picking
a route from the set of feasible routes is adjusted in
such a way that the bandwidth availability pro�le of
the system is maintained as close as possible to the
expected pro�le of incoming VC bandwidth requests�

As an alternative to LLR and MLR� LPR�s use of
probabilistic route selection results in using multiple
paths simultaneously during a routing information up�
date as opposed to using a single path �the least�loaded
or most�loaded�� This multi�path routing would fur�
ther improve performance� and allow for using even a
longer routing update interval� thus reducing routing
�processing and communication� overheads�

We explain our implementation of LPR through an
illustrative example� Consider four classes of VCs with
bandwidth requirements b�� b�� b� and b�� Without loss
of generality� assume b� � b� � b� � b�� Assume the

�For a request distribution with half the granularity�i�e� a
uniform distribution over the ��� ��	� interval�all VC requests
will be possible to honor when the system utilization is 	��� and
one �fth when the system utilization is ���


Smallest route set Weight of choosing the path

R� d� � d� � d� � d�
R� d� � d� � d�
R� d� � d�
R� d�

Table 1. Weight assigned to various routes.

arrival rates are ��� ��� �� and ��� Figure 	 shows the
corresponding load pro�le� i�e� the distribution of re�
quested bandwidths�Prob�requested bandwidth� bs
�
s � 	� 
� �� �� It also shows the bandwidth availability
pro�le� i�e� the frequency of routes with available band�
width � bs�
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Figure 1. Example load profile and bandwidth
availability profile.

The goal of LPR is to make the two pro�les match
as closely as possible� Denote by Rs the set of paths
whose available bandwidth � bs� These sets of routes
are related as follows� R� � R� � R� � R�� For a new
incoming VC� we want to assign it a route from one
of these sets� To do so� we compute the probability of
choosing a path from each of the route sets� Let ds be
the di�erences between the load pro�le and the band�
width availability pro�le �see Figure 	�� We now assign
a weight to each path according to the smallest route
set it belongs to as shown in Table 	�� To compute a
probability distribution� we scale the second column in
Table 	 such that all values are non�negative� From the
set of feasible paths we select a path probabilistically
according to the resulting distribution�

In general� for S classes of VC requests� if Rk is the
smallest route set to which a path p belongs� then the
weight given to select p� W �p� k�� is given by�

W �p� k� �

SX
i�k

�di � dmin�

where dmin � mins�fds � s � 	� � � � � Sg�� The com�

�Note that if a path p � Ri then p � Rj for all j � i




plexity of this computation is proportional to the num�
ber of VC classes and candidate paths�

� Simulation of LPR and LLR in Vir�
tual Path Based Networks

In this section� we compare LLR and LPR in a net�
work that uses the Virtual Path �VP� concept ��
� Here
a virtual fully�connected network can be overlayed over
the physical network� where the VPs constitute the
�virtual� links connecting the network nodes� Simple
routing schemes that only consider paths with one link
�called direct routes� and two links �called alternative
routes� are then used� For a fully�connected network
with N nodes� each pair of nodes has one direct route
and N � 
 two�link alternative routes�

3.1 Simulation Model and Setup

We consider a fully�connected logical VP network�
We assume all VP links have the same total bandwidth�
The network is used by a number of VC classes� A
class�s VC requires the reservation of bs units of band�
width� We classify bandwidth demands into two cate�
gories� 	� aggregate �ow demands� where the establish�
ment of a VC requires the reservation of a large fraction
of the total link bandwidth� and 
� small �ow demands�
where a VC bandwidth requirement is a small fraction
of the total link bandwidth� As pointed out earlier�
aggregate �ow demands could constitute the workload
on a multi�class backbone network where a node�router
would request the establishment of a high�bandwidth
VC to carry a type of real�time tra�c coming from an
internet service provider or a large number of sources�
Class�s VC setup requests arrive to the network ac�
cording to a Poisson process of rate �s� Each class�s
VC� once it is successfully setup� has a lifetime of ex�
ponential duration with mean 	��s�

We consider both uniform and skewed workloads�
For a uniform workload� the source and destination
nodes of an arriving VC are chosen randomly� Each
VC class has the same arrival rate and average lifetime�
Thus� on average� each node pair has the same VC
tra�c intensity for each class� In practice� workload is
naturally skewed and each node pair may have di�erent
VC tra�c intensities� To model a skewed workload� we
assume each VC class has di�erent arrival rate and av�
erage lifetime� Furthermore� the network is partitioned
into two equal groups� each containing half of the total
number of nodes N � The source and destination nodes
of a VC are chosen randomly from the same group�
The group is chosen with some speci�ed probability�
pskew � A node in another group may be chosen by the
routing algorithm to act as the intermediate node in
a two�link path� We consider routing algorithms that
choose from the set of one�link and two�link paths� An
arriving VC request rejected by the admission control

algorithm�because resources are either unavailable or
being reserved for future incoming VCs�is considered
blocked and lost�

3.2 Routing Algorithms

Since we are considering routing over paths with dif�
ferent length �in terms of number of links�� we have
to take into consideration the fact that a VC estab�
lished over a two�link alternative route consumes twice
as much bandwidth compared to when the VC is estab�
lished over the one�link direct route� The trunk reser�
vation concept ��
 is often used to address this issue�
Here each link has a Trunk Reservation �TR� value as�
sociated with it� A two�link alternative route is said to
be TR�permissible if� for each of its links� the amount
of idle bandwidth available exceeds the corresponding
trunk reservation level� The idea is to discourage us�
ing two�link routes� and thus reserve some amount of
bandwidth for future direct VCs�

Before we present more formally the LLR and LPR
algorithms with trunk reservation� we �rst introduce
the following de�nitions�

Idle Capacity� The idle capacity of a link is de�ned
as the amount of link bandwidth that is currently not
in use� We de�ne the idle capacity of a route as the
minimum idle capacity of all its links�

QOS�permissibility� A route is said to be QOS�
permissible if it has su�cient idle capacity to carry the
VC�

TR�permissibility� For simplicity� we will assume
that all links have the same TR value� An alterna�
tive route is said to be TR�permissible if only when it
carries at least one direct VC on one of its links� the idle
capacity must be greater than or equal to the reserva�
tion threshold ��
� This de�nition of TR�permissibility
requires that switches keep track of the number of di�
rect VCs on outgoing links� This avoids unnecessary
reservations for direct VCs when not present�

Allowable Alternative Routes� A two�link alter�
native route is said to be allowable if it is both QOS�
permissible and TR�permissible�

����� Least�Loaded Routing �LLR�

The following steps are executed when a new VC ar�
rives�

	� Set up the VC along the direct route if the direct
route is QOS�permissible� Otherwise� go to step 
�


� If no allowable alternative routes are available� then
the VC request is rejected� Otherwise� set up the VC
on the allowable alternative route with the largest idle
capacity� i�e� the least loaded�



����� Load Pro�ling Routing �LPR�

LPR constructs the bandwidth availability pro�le from
the current bandwidth available on the direct and al�
ternative routes between the source and destination� It
constructs the desired load pro�le from the class arrival
probabilities of incoming VC requests� The following
steps are executed when a new VC arrives�

	� Set up the VC along the direct route if the direct
route is QOS�permissible� Otherwise� go to step 
�


� If no allowable alternative routes are available� then
the VC request is rejected� Otherwise� assign selection
probabilities to allowable alternative routes according
to the di�erence between the bandwidth availability
pro�le and the desired load pro�le� Select an allowable
alternative route probabilistically to setup the VC�

3.3 Performance Measures

To evaluate the performance of the algorithms� our
main measure is revenue� which is de�ned as

revenue �

SX
s��

�s �	�Bs� bs

where �s � �s
�s

� and Bs is the blocking probability of

class s� The revenue measure re�ects the fact that
a commercial network provider�s earnings depend not
only on the number of VCs admitted� but also on the
total amount of VC bandwidth in use� Another mea�
sure we considered is carried load which is de�ned as
the average number of VCs carried by the network� For
lack of space� we do not show results for carried load�
see ��
� We found LPR to provide lower carried load
than LLR as it tends to accept fewer low�bandwidth
VCs and more bandwidth�intensive VCs� thus reduc�
ing unfairness�

3.4 Simulation Results for Aggregate Flows

Figures 
 and � show results for a 
��node network�
i�e�� N � 
�� Each VP link has a total of C units of
bandwidth� Here we take C � 
�� We have four classes
of VC with b� � 	��� b� � ���� b� � 	��� and b� � 	����
Trunk reservation is not used in these experiments�
Figure 
 shows results for a skewed workload� The
arrival rates are �� � ����� �� � ����� �� � ��
� and
�� � ��	�� where � is the total VC arrival rate� The
departure rates are �� � ������ �� � ������ �� � ����

and �� � ����	� We take pskew � ���� We observe that
LPR outperforms LLR in terms of revenue�

Figure � shows results for a uniform workload� The
arrival rates are �s � ��
�� for s � 	� 
� �� �� where �
is the total VC arrival rate� The departure rates are
�s � ����
 for s � 	� 
� �� �� We observe that LPR still
has a higher revenue� although the gain from load pro�
�ling is less than that obtained in the skewed workload

case� The reason is that this gain is reduced due to the
negative e�ect LPR may have on direct VCs as it tends
to load two�link alternative paths nonuniformly and
may overload some links resulting in some VCs being
alternately routed instead of being directly routed over
those �overloaded� links� This leads to increased band�
width consumption� This e�ect is more pronounced
with MLR which blindly overload some links� This may
result in more VCs being alternately routed and hence
lower revenue�

Figure � shows the class blocking probabilities for
LPR and LLR under the skewed workload with � � 	�
LPR reduces the unfairness seen by high�bandwidth
�class��� VCs by reducing their blocking by about ��
at the expense of slight increase in blocking for lower
classes�

3.5 Simulation Results for Small Flows

Figures � and � show results for a network with N �

�� C � ��� and without trunk reservation� We have
four classes of VC with b� � 	��� b� � ��	� b� � ��� and
b� � ���� The class arrival and departure rates are set
as in Section ���� We also compare the LLR and LPR
algorithms to a simple DIRECT routing algorithm that
uses only direct �one�link� paths�

We observe that LLR performs better than LPR�
The gain from load pro�ling is o�set by the loss from
overloading some links on alternative routes causing
VCs to be alternately routed instead of being directly
routed on those �overloaded� links� As pointed out
earlier� the gain from load pro�ling in terms of re�
duced resource fragmentation is less pronounced with
smaller demands� In the skewed workload case� both
LLR and LPR are signi�cantly superior to DIRECT
�as expected� as they make use of available bandwidth
on alternative routes�

However� in the uniform workload case� DIRECT
signi�cantly outperforms both LLR and LPR� This is
due to the uniformity of the tra�c� which implies that
all node pairs have� on average� equal VC tra�c inten�
sity� Thus� it is more bene�cial to minimize using alter�
native routes whose links are then used by direct VCs�
thus conserving network bandwidth� To overcome this
drawback of adaptive routing� link reservation thresh�
olds should be used so that an adaptive routing algo�
rithm would converge to direct routing as the load on
alternative routes increases�

Routing with Trunk Reservation

Optimal reservation thresholds have often been de�
termined assuming a �xed �known� input tra�c pat�
tern �e�g� �	�
�� For each algorithm� we plot the results
corresponding to the reservation threshold that maxi�
mizes revenue�

We denote by LLR res �LPR res� the LLR �LPR�
algorithm with trunk reservation� Figure � shows



that under skewed workload� LPR res is competitive to
LLR res� Figure � shows that under uniform workload�
LPR res and LLR res schemes also exhibit similar per�
formance� As expected� DIRECT� is not signi�cantly
worse than both schemes as is the case under skewed
workload� In fact� DIRECT starts to provide similar
revenue at high �� where it is more advantageous to
completely avoid using alternative routes�

Although in the case of small �ows� the gain from
LPR res due to load pro�ling is overshadowed by its
negative e�ect on direct VCs resulting in similar rev�
enue as LLR res� load pro�ling is still bene�cial in re�
ducing unfairness seen by high�bandwidth VCs ��
�

� Conclusion and Future Work

We presented a novel approach to routing guaran�
teed bandwidth �ows in virtual path networks� The
approach �LPR� is based on our recently proposed con�
cept of load pro�ling ��
� Compared to traditional
least�loaded�based routing �LLR�� it provides better
revenue for aggregate VC requests� Also� it reduces
unfairness among VC classes by reducing blocking for
high�bandwidth classes at the expense of increased
blocking for low�bandwidth classes�

Future work remains to further improve LPR rout�
ing� One issue we are pursuing is to consider the
�length� of the VC request� i�e� the lifetime of the VC�
This may be useful in achieving a better �pro�ling��
We are also developing mechanisms for the dynamic
control of reservation thresholds� This is of practical
interest when the input tra�c is time�varying�
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Figure 2. Revenue versus total VC arrival rate.
Aggregate flows, skewed workload.
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Figure 4. Class blocking probability versus
class number. Aggregate flows, skewed
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Figure 5. Revenue versus total VC arrival rate.
Small flows, skewed workload.
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Small flows, uniform workload.
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Small flows, skewed workload. With trunk
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