In Proceedings of ISCA’94: The 1994 International Symposium on Computers and their Applications, Long Beach, CA, March 1994.

Multi-version Speculative Concurrency Control with Delayed Commit

AZER BESTAVROS*
Computer Science Department

Boston University
Boston, MA 02215

Abstract

This paper presents an algorithm which extends the
relatively new notion of speculative concurrency con-
trol by delaying the commaitment of transactions, thus
allowing other conflicting transactions to continue
execution and commit rather than restart. The al-
gorithm propagates uncommitted data to other out-
standing transactions thus allowing more speculative
schedules to be considered.

1 Introduction

A real-time database management system is an amal-
gamation of conventional database management and
real-time scheduling. Like database systems, 1t has
to process transactions and guarantee database con-
sistency using a concurrency control algorithm. Fur-
thermore, it has to operate in real-time, satisfying
time constraints on each transaction [1].

Mena [8] classified concurrency control algo-
rithms into optimistic and pessimistic algorithms. In
[3], we proposed a new approach, Speculative Con-
currency Control (SCC), which combines the Pes-
simistic and Optimistic Concurrency Control (PCC
and OCC) algorithms. SCC adapts to developing
conflicts by creating multiple shadows, each dealing
with a different set of conflicts, rather than waiting
for these conflicts to materialize or subside. This
makes SCC-based algorithms better suited for real-
time applications. In this paper, we propose the
Multi-version SCC algorithm with Delayed Commit-
ment (MSCC-DC), which combines the basic SCC
algorithms with other ideas that have been studied
for real-time DBMS. This is summarized below.

Typically, transaction conflicts result from an
uncommitted transaction’s attempt to write some
data that is later read by a second uncommited
transaction. This read/write conflict creates a po-
tential hazard since there are two values of the
data: the committed value (previously existing in the

*This research is partially supported by GTE Labs.

database), and the new value (written by the first
transaction). Under SCC, both transactions run us-
ing the OCC algorithm. However, when a read/write
conflict 1s detected, an alternate shadow of the second
(reader) transaction is started and executes until the
conflict point (the attempt to read the data) where it
is blocked. In MSCC-DC, instead of blocking, the al-
ternate shadow is allowed to continue by reading the
data value written by the first transaction. Since the
first transaction has not yet committed, we say that
the second transaction has read uncommitted data.
In general, most concurrency control schemes being
studied in the literature do not allow transactions
to read uncommitted data since it could easily cause
commit dependencies and cascading aborts. How-
ever, by limiting the chain of transactions that read
uncommitted (dirty) data, we can bound the number
of aborts caused by a materialized conflict.

If a transaction T commits immediately after it
finishes its computation, 1t will cause all other trans-
actions that conflict with it to abort. If most of the
aborted transactions do not conflict with each other,
a better percentage of deadlines may be met by com-
mitting the other transactions instead. Thus, delay-
ing the commitment of a transaction T may result
in the discovery of a better combination of transac-
tions to commit. Meanwhile, since the data written
by transaction T is made available to other transac-
tions, redundant computation for active transactions
are not delayed by the delayed-commitment of T.

2 Previous Work

In [2], Agrawal concluded that pessimistic locking
protocols, due to their conservation of resources, per-
form better than optimistic techniques for conven-
tional DBMS. Pessimistic two-phase locking algo-
rithms detect potential conflicts as they occur. How-
ever, they may suffer possible unbounded waiting due
to blocking and deadlocks. The resource conserva-
tion nature of pessimistic algorithms becomes a draw-
back in a real-time environment, where meeting time-

constraints has a much higher priority than conserv-
ing resources.

In [6, 5], Haritsa, Carey and Linvy showed
that for a real-time DBMS with firm deadlines
(transactions missing their deadlines are immedi-
ately discarded), optimistic algorithms outperform
pessimistic schemes. The key result is that, if low
resource utilization is acceptable (i.e. a large amount
of wasted resources can be tolerated), then comput-
ing resources wasted due to restart do not adversely
affect performance. This makes OCC restart-based
protocols more attractive in real-time DBMS than

PCC blocking-based algorithms.

Classical OCC [7] consists of three stages of ex-
ecution for a transaction: read, validation, and write.
The key stage is the validation phase where the fate
of the transaction is determined. A transaction is al-
lowed to execute unhindered (during its read stage)
until 1t reaches its commit point, at which time a val-
idation test 1s applied. This test checks if there is any
conflict between the actions of the transaction being
validated and those of any other committed transac-
tions. A transaction is restarted if it fails its valida-
tion test, otherwise it commits by going through its
write stage, in which modifications to the database
are made visible to other transactions.

Conflict resolution in OCC schemes is always
done by aborting the validating transaction. How-
ever, conflicts are not detected until the validation
phase, at which time 1t may be too late to restart.
The Broadcast Commit variant (OCC-BC) [8, 9] par-
tially remedies this problem: when a transaction
commits, 1t notifies those concurrently running trans-
actions which conflict with it. Those transactions are
restarted immediately. Note that there is no need
to check for conflicts with already committed trans-
actions since such transactions would have, in the
event of a conflict, informed the validating transac-
tion to restart. Thus, the validating transaction is
always guaranteed to commit. The broadcast com-
mit method detects conflicts earlier than the classical
OCC algorithm resulting in earlier restarts.

SCC combines the advantage of both optimistic
and pessimistic schemes while avoiding their disad-
vantages [3]. It goes one step further in utilizing in-
formation about conflicts. Instead of waiting for a
potential consistency threat to materialize and then
taking a corrective measure, SCC uses redundant re-

sources to start speculating on corrective measures as
soon as the conflict in question develops. By start-
ing on such corrective measures as early as possible,
the likelithood of meeting any set timing constraint is
greatly enhanced.

To better illustrate the point, consider two
transactions 77, and T3, such that 75 reads item =z
after 77 has updated it. The basic OCC algorithm
(figure 1) restarts transaction 75 when it enters its
validation stage. Obviously, the likelihood of the
restarted transaction 75 meeting its timing constraint
decreases. The OCC-BC algorithm avoids waiting
unnecessarily until 75’s validation stage in order to
restart it. This is illustrated in figure 2, where 75 is
restarted as soon as 7] broadcasts 1ts commit.

T 5] [w] [ve] | voine
T, <] [~ e[}

Time

T.

Deadline

w]]

[~] Jue]

Time

Figure 2: Example under the OCC-BC algorithm.

Using the SCC approach, instead of pessimisti-
cally blocking 75, or optimistically ignoring the con-
flict until the validation stage, a copy (or secondary
shadow) of the reader transaction T, is made. The
original transaction Ty (primary shadow) continues to
run uninterrupted, while the shadow T4 is restarted
(or forked off). Only one of the two shadows is al-
lowed to commit; the other is aborted. Figures 3
and 4 show two possible scenarios that may develop
depending on the time needed for transaction 75 to
reach its validation stage. Obviously, SCC achieves
an earlier restart over OCC-BC.

One more problem with OCC-BC and other
common concurrency control schemes is that by com-
mitting a transaction as soon as it finishes validat-

T,

Deadline

<
LO]
ENNN

Time

Figure 3: SCC schedule with an undeveloped conflict.

T [5] W]
T [) B
Y] CI T P

Time

Figure 4: SCC schedule with a developed conflict.

ing, it may cause a larger number of transactions to
abort and miss their deadlines. For example, in fig-
ure b, committing 77 as soon as it is validated causes
both 7% and 75 to abort, and both of them cannot
be restarted early enough to meet their deadlines. In
[6], Harista showed that by making a lower priority
transaction wait after it is validated, the number of
transaction restarts is reduced, thus increasing the
number of transactions meeting their deadlines.

T, [sw]w v T
Deadline
7
T, [s = 4] E T,
Deadline
[=] ,
%
7
T [s [4] T
.
 Deadiine
v

[=]

Time

Figure 5: Missing deadlines under OCC-BC.

However, if we are not careful, delaying the com-
mitment of a transaction could also increase the num-
ber of transactions missing their deadlines because
the transactions were not restarted as early as they
could have been. For example, in figure 6, the com-
mitment of transaction T3 is delayed, but since T3

was not restarted until 75 has committed, T; still
misses the deadline. If 77 could restart immediately
after Ty finishes, it would have had a better chance
of meeting its deadline. The problem here is that the
data written by a transaction is not made available
to other transactions until the transaction has com-
mitted. In MSCC-DC, we allow 77 to read the item z
written by 75 after the validation of 75, without nec-
essarily waiting for the commit to finish. This gives
T the opportunity to restart as if 75 was committed
immediately after the validation stage as illustrated

in Figure 7.
T, [[+] T,
S Rx Deadline
v I e €]
Deadline
Time
Figure 6: A delayed commit under OCC-BC.
.
T CIwr] s T
T =] [c] owane
v Rl |
Tz’ -I Deadline

Time

Figure 7: Example under the MSCC-DC algorithm.

3 The MSCC-DC Algorithm

To simplify the problem, we will assume that transac-
tion execution goes through 3 stages: read, validate,
and write. During the validation stage of a transac-
tion 7, and if conflicts with other transactions are de-
tected, then instead of aborting the conflicting trans-
actions, we delay the commitment of 7. A transac-
tion is said to be finished when 1t is at the end of the
validation stage, but not yet committed. Data writ-
ten by a finished transaction may be propagated to
secondary shadows of other transactions in the sys-
tem, but not to primary shadows. Without loss of

generality, we assume that a transaction writes ob-
jects it modifies only once near the end of its exe-
cution, that all transactions have equal priority, and
that transactions’ deadlines are known to the system.

Let T2 denote the first process (primary shadow)
created on behalf of transaction 7;. T runs op-
timistically, and only reads data committed to the
database. Let 7Y, j > 0, denote the secondary shad-
ows of transaction 7}. Such a shadow, TF, is started
to account for a read/write conflict between T; and
the primary shadow 7} of some other transaction 7.
If TF needs to read data written by a not-yet-finished
T, then T} blocks waiting for T} to fininsh. When
17 is finished, its uncommitted data may be propa-

gated to T, whose execution is resumed.

The MSCC-DC algorithm requires the mainte-
nance of a number of data structures. WriteSet(T7)
the set of objects written by shadow TZ]
WriteList(T;) contains the values of objects written
by the finished transaction T;. ReadSet(T}) is the set
of objects read by shadow TZ] ReadList(TF) contains
all the objects read by the shadow T} from WriteList.
We denote the current time by ¢ and the deadline of
transaction T; by D;.

The details of MSCC-DC can be found in [4].
Here we introduce the algorithm using an exam-
ple. Consider the set of shadows in figure 8. When
transaction 77 finishes, it 1s blocked. Meanwhile,
the WriteList(T1), containing the variable X and its
value wrote by T?, is made available to both 75 and
T3. 15 restarts a secondary shadow T21 since the
ReadSet(TY) contains X. T starts a secondary copy
T4 later on, when it attempts to read X. Both 73 and
T4 will read the value of X from the WriteList(T}),
and all other variables from the committed data in
the database. This is shown in figure 9.

1s

T T
7 Deadline
T,
T s RX R Wx | Wy
2 Y y Deadline
T [s] [&] [ws] T,
3 % Deadline

Time

Figure 8: MSCC-DC: start

Finished

T g
7 Deadline

T. 0 s Rx Ry wx | Wy T

2 7 Deadline
T weesry s [T
T [s] [w T

7 Deadline

-I—l WriteList(T ,) Rx ‘Wx |

3

Time

Figure 9: MSCC-DC: T1 finishes

By the time T2 finishes, secondary shadows are
started for both 77 (namely T7) and T3 (namely T7).
Similarly, when T% finishes, T2 and T3 are started for
Ty and Ts, respectively (see Figure 10). The deadline
of T5 is eventually reached. Since the secondary shad-
ows of Ty are not finished yet, 79 is committed and all
the secondary shadows for T3 are aborted. This leads
to the abortion of the primary shadow TP and T3 be-
cause they both conflict with 7%. Secondary shadows
T? and T are promoted to become primary shadows,
now that all the data they read is committed. T3
and T3 are aborted since the primary shadows that
caused them to be started were aborted. The state
of the set of shadows is shown in figure 11.

The same steps will be repeated when the new
primary shadow for 77 and for 73 finish. New sec-
ondary shadows will be started, as seen in figure 12.
Eventually, when it gets closer to its deadline, T7
will commit, thus resulting in the abortion of the pri-
mary shadow for 77 and the secondary shadow for 77
is promoted to become the primary shadow.

In [4], we sketch a proof (by induction) that the
algorithm always produces a schedule that is serializ-
able. Also, we prove that MSCC-DC does not suffer
from the problem of cascading aborts since the prop-
agation of uncommitted data occurs from primary to
secondary shadows and not vice-versa.

T, Finished

T, Finished
T, Finished
7[5 I s T
7 Deadline

le WriteList(T ,) ‘ S ‘

3 WriteList(T ,)
T
7 e o] s |2

2 7 Deadline
T WriteList(T) s Rx Ry[

3)
T, WriteList(T ,) ‘
Ts ‘ s ‘ Rx ‘Wx Blocked T

7 Deadline

Tl WriteList(T ,)

3 1
T2 WriteList(T 2) .

3

Time

Figure 10: MSCC-DC: Ty and T3 finish

4 Conclusion

Previous concurrency control algorithms such as
OCC-BC do not link the commitment of transactions
with their deadlines, which is essential for real-time
DBMS. These schemes heavily favor transactions that
finish early instead of those with tighter deadlines.
Some schemes try to solve the problem by assign-
ing priority to transactions according to deadlines.
MSCC-DC provides the link between commitment of
transactions and their deadlines without actually as-
signing priorities to transactions. This occurs at the
expense of using more processing resources.

In MSCC-DC, we allow a secondary shadow to
read uncommitted data from a single primary trans-
action. A better result may be obtained if we per-
mit some secondary transactions to read uncommit-
ted data from several primary transactions provided
those primary transactions do not conflict with each
other. Furthermore, in our algorithm above, we de-
layed the commitment of transactions until they actu-
ally reach their deadlines. It is possible that making
the decision to commit earlier may result in a better
performance.

Many interesting research problems remain to be

T, Finished
T Finished
T, Finished
7 CIw] owe N
%
le WriteList(T ,) ‘ S ‘ promoted to be the primary transaction
3 WriteList(T ,) I A
Ti
Commit
° I IeIww] e "
2 ~ Deadline
T waasey s []]
3
T, WriteList(T 5) |
T [s [0 [| T
: Z
| Deadiine
T weesry [T]
3 :

WriteList(T)

. promoted to be the primary transaction

Time

T,

Figure 11: MSCC-DC: TY commits

T. Finished T, Finished

. |
E [T v+

3 % n
T1 WriteList(T ;) 7 Deadline
Corrm;t
r
iz 12
sSTIRl m] w]w] soe 1]
T, ‘ Y Y | Deadiine
T: s RX Wx
1 T
-r?, WriteList(T ,) S RX |7 Deadline
4

Time

Figure 12: MSCC-DC: after aborting

investigated: Can an optimal commit time be found?
When should a primary shadow commit? How can we
dynamically chose the better group of finished trans-
actions to commit? What changes need to be made
to add priorities? How would this change the perfor-
mances of the algorithm? How would MSCC-DC per-
form in simulations compared to other PCC, OCC,

and SCC algorithms?

Deadline

Acknowledgments:

I would like to thank Biao Wang and Spyros
Braoudakis for their help in developing some of the

ideas and examples presented in this paper.

This

work was partially supported by GTE fund number
3658-3.

References

(1]

R. Abbott and H. Garcia-Molina. Scheduling
real-time transaction: A performance evalua-
tion. ACM Transactions on Database Systems,
17(3):513-560, September 1992.

R. Agrawal, M. Carey, and M. Livny. Con-
curency control performance modeling: Alter-
natives and implications. ACM Transaction on
Database Systems, 12(4), December 1987.

Azer Bestavros. Speculative Concurrency Con-
trol: A position statement. Technical Re-
port TR-92-016, Computer Science Department,
Boston University, Boston, MA, July 1992.

Azer Bestavros and Biao Wang. Multi-version
speculative concurrency control with delayed
commit. Technical Report TR-93-014, Com-
puter Science Department, Boston University,

Boston, MA, October 1993.

Jayant R. Haritsa, Michael J. Carey, and Miron
Livny. Dynamic real-time optimistic concur-
rency control. In Proceedings of the 11th Real-
Time Systems Symposium, December 1990.

Jayant R. Haritsa, Michael J. Carey, and Miron
Livny. On being optimistic about real-time con-
straints. In Proceedings of the 1990 ACM PODS
Symposium, April 1990.

H. Kung and John Robinson. On optimistic
methods for concurrency control. ACM Trans-
actions on Database Systems, 6(2), June 1981.

D. Menasce and T. Nakanishi. Optimistic ver-
sus pessimistic concurrency control mechanisms
in database management systems. Information

Systems, 7(1), 1982.

[9]

John Robinson. Design of Concurrency Controls
for Transaction Processing Systems. PhD the-
sis, Carnegie Mellon University, Pittsburgh, PA,
1982.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

