
A Family of Speculative Concurrency Control Algorithms for
Real-Time Databases∗

Azer Bestavros Spyridon Braoudakis
(best@cs.bu.edu) (sb@cs.bu.edu)

Computer Science Department
Boston University
Boston, MA 02215

Abstract

Speculative Concurrency Control (SCC) is a new con-
currency control approach, especially suited for real-time
databases [4]. SCC uses redundancy to ensure that seri-
alizable executions are discovered and adopted as early as
possible, thus increasing the likelihood of the timely com-
mitment of transactions with strict timing constraints.
We present SCC-nS, a generic algorithm that charac-
terizes a family of SCC-based algorithms. Under SCC-
nS, shadows executing on behalf of a transaction are ei-
ther optimistic or speculative. Optimistic shadows exe-
cute under an assumed serialization order, which requires
them to wait for no other conflicting transactions. They
execute unhindered until they are either aborted or com-
mitted. Alternately, speculative shadows execute under
an assumed serialization order, which requires them to
wait for some conflicting transactions to commit.

1 Introduction

Traditional concurrency control algorithms can be
broadly classified as either pessimistic or optimistic. Pes-
simistic Concurrency Control (PCC) algorithms [9, 10]
avoid any concurrent execution of transactions as soon
as potential conflicts between these transactions are de-
tected. On the contrary, Optimistic Concurrency Control
(OCC) algorithms [7, 17] allow such transactions to pro-
ceed at the risk of having to restart them in case these
suspected conflicts materialize.

For Real-Time DataBase Management Systems (RT-
DBMS) where transactions execute under strict tim-
ing constraints, maximum concurrency (or throughput)
ceases to be an expressive measure of performance.
Rather, the number of timely-commited transactions be-
comes the decisive performance measure [8]. Most real-
time concurrency control schemes considered in the lit-
erature [1, 2, 28, 13, 26, 24, 25] are based on Two-Phase
Locking (2PL), which is a PCC strategy. Despite its
widespread use in commercial systems, 2PL’s long and
unpredictable blocking times damage its appeal for real-

∗This work has been partially supported by GTE Labs.

time environments, where the primary performance cri-
terion is meeting time constraints and not just preserving
consistency requirements. Over the last few years, sev-
eral alternatives to 2PL for RTDBMS have been explored
[16, 12, 11, 14, 15, 18, 27].

In a recent study [4], Bestavros proposed a cate-
gorically different approach to concurrency control for
RTDBMS. His approach relies on the use of redundant
computation to start on alternative schedules, once con-
flicts that threaten the consistency of the database are
detected. These alternative schedules are adopted only if
the suspected inconsistencies materialize; otherwise, they
are abandoned. Due to its nature, this approach has been
termed Speculative Concurrency Control (SCC). This pa-
per examines a family of SCC algorithms and their im-
plementations.

SCC algorithms use redundancy to combine the ad-
vantages of both PCC and OCC algorithms, while avoid-
ing their disadvantages. On the one hand, SCC resembles
PCC in that potentially harmful conflicts are detected
as early as possible, allowing a head-start for alternative
schedules, and thus increasing the chances of meeting the
set timing constraints – should these alternative sched-
ules be needed (due to restart as in OCC). On the other
hand, SCC resembles OCC in that it allows conflicting
transactions to proceed concurrently, thus avoiding un-
necessary delays (due to blocking as in PCC) that may
jeopardize their timely commitment.

The remainder of this paper is organized as follows.
In section 2, we review some of the problems encoun-
tered with traditional concurrency control in RTDBMS,
and we overview the basic idea behind the SCC-based ap-
proach. In section 3, SCC-nS, a generic SCC algorithm
is described, and its superiority for real-time database
applications is demonstrated. In section 4, three mem-
bers of the SCC-nS family (namely SCC-1S, SCC-2S, and
SCC-MS) are singled out and contrasted. In section 5,
we conclude with a description of our current and future
research work.



2 Concurrency Control for RTDBMS

A disadvantage of classical OCC when used in RTDBMS
is that transaction conflicts are not detected until the
validation phase, at which time it might be too late to
restart. This may have a negative impact on the number
of timing constraint violations. PCC two-phase locking
algorithms do not suffer from this problem because they
detect potential conflicts as they occur.

The Broadcast Commit variant (OCC-BC) [19, 22] of
the classical OCC remedies this problem partially. When
a transaction commits, it notifies all concurrently run-
ning, conflicting transactions about its commitment. All
those conflicting transactions are immediately restarted.
The broadcast commit method detects conflicts earlier
than the basic OCC algorithm resulting in less wasted
resources and earlier restarts.

To illustrate this point, consider the following ex-
ample. Assume that we have two transactions T1 and
T2, which (among others) perform some conflicting ac-
tions. In particular, T2 reads item x after T1 has updated
it. Adopting the basic OCC algorithm means restarting
transaction T2 when it enters its validation phase be-
cause it conflicts with the already committed transaction
T1 on data item x. This scenario is illustrated in figure
1. Obviously, the likelihood of the restarted transaction
T2 meeting its timing constraint decreases considerably.

T1
S Wx V/C

S Rx V/AT2

Time

Deadline
T2

S

Figure 1: Transaction management under basic OCC.

The OCC-BC algorithm avoids waiting unnecessarily
for a transaction’s validation phase in order to restart
it. A transaction is aborted if any of its conflicts with
other transactions in the system becomes a materialized
consistency threat. This is illustrated in figure 2.

S Rx

T1
S Wx V/C

S Rx AT2

Time

V/C

Deadline

T2

Figure 2: Transaction management under OCC-BC.

The SCC-based Approach:
The SCC approach proposed in [4] goes one step fur-
ther in utilizing information about conflicts. Instead of
waiting for a potential consistency threat to materialize
and then taking a corrective measure, an SCC algorithm

uses redundant resources to start on speculative corrective
measures as soon as the conflict in question develops. By
starting on such corrective measures as early as possible,
the likelihood of meeting any set timing constraints will
be greatly enhanced. Figure 3 and figure 4 show two pos-
sible scenarios that may develop depending on the time
needed for transaction T2 to reach its validation phase. In
figure 3, T2 reaches its validation phase before T1. T2 will
be validated and committed without any need to disturb
T1. This schedule will be serializable with transaction T2

preceding transaction T1. Obviously, once T2 commits,
the shadow transaction T ′

2 has to be aborted.

T2
S Rx V/C

Time

Deadline

T1
S Wx

S AT2’
T2

Figure 3: An undeveloped potential conflict.

However, if transaction T1 reaches its validation phase
first, then transaction T2 cannot continue to execute due
to the conflict over x; T2 must abort. With OCC-BC al-
gorithms, T2 would have had to restart when T1 commits.
This might be too late if T2’s deadline is close. The SCC
protocol (see figure 4), instead of restarting T2, simply
aborts T2 and adopt its shadow transaction T ′

2.

T2
S Rx

Time

Deadline

T1
S Wx

S

A

T2’
T2

V/C

Rx V/C

Figure 4: A developed conflict.

3 A Generic SCC-nS Algorithm

In this section, we present a class of SCC algorithms that
operate under a limited redundancy assumption. In par-
ticular, we present a generic SCC algorithm which does
not allow more than n shadows to execute on behalf of
any given uncommitted transaction in the system.

3.1 Preliminaries
A transaction Ti consists of a sequence of actions
ai1, ai2, . . . aim, where each aij , j = 1, 2, . . . m, is either
a read or a write operation on one of the shared objects
of the database. Each transaction in the system is as-
sumed to preserve the consistency of these shared ob-
jects. Therefore, any sequential (or serializable) execu-
tion of any collection of transactions will also preserve
the consistency of the database [20, 3].



Write operations are performed on private data
copies in the local workspace of transactions instead
on the shared database objects directly. They will be
made permanent in the shared database only during
the transactions commit time. Each transaction Ti has
its own local workspace, where updates are being per-
formed. Subsequent read operations by Ti on previously
updated database objects retrieve the value from its lo-
cal workspace. Any other transaction is not aware of this
value, since it other reads directly from the database, or
from its own local workspace.

Given a concurrent execution of transactions, action
air of transaction Ti conflicts with action ajs of transac-
tion Tj , if they access the same object and either air is
a read operation and ajs is a write operation (read-write
conflict), or air is a write operation and ajs is a read
operation (write-read conflict).

Write-write conflicts (when both air and ajs actions
are write operations) are treated using the Thomas’ Write
Rule (TWR). At commit time, when all database updates
are made permanent, all write requests are buffered by
the data manager and serialized according to their trans-
action order. A timestamp is being assigned to every
committing transaction for that purpose. With the TWR
every write request arriving out of timestamp order (late)
is being ignored rather than being rejected [3]. In other
words, all write requests are granted, whether or not the
targeted data object is being updated by another uncom-
mitted transaction.

As we have hinted before, SCC-based algorithms al-
low several shadows (processes or tasks) to execute con-
currently on behalf of the same transaction. Each one of
these processes corresponds to a different speculated se-
rialization order. For a transaction Tr, each one of these
processes is called a shadow of Tr. In this paper, a shadow
can be in one of two modes: optimistic or speculative.
Each transaction Tr has, at any point in its execution,
exactly one optimistic shadow T o

r . In addition, Tr may
have i speculative shadows T i

r , for i = 0, . . . , n − 1. Ac-
cordingly, each transaction can have at most n shadows
executing on its behalf at any point in its lifetime.

One point that we should make here is that only
the reader transactions need to be shadowed. Because of
the forward validation method adopted in our protocol,
validation is done only against active transactions. All
conflicting transactions are notified of their data access
conflicts and are aborted immediately. It follows that to
ensure serializability we must check that the ReadSets of
all active transactions do not intersect with the WriteSet
of the transaction being validated. Thus, only transac-
tions that perform read operations are in danger of being
aborted and need to be shadowed.

For each transaction Tr we keep a variable
SpecNumber(Tr), which counts the number of the specu-
lative shadows currently executing on behalf of Tr. With
each shadow T i

r of a transaction Tr – whether optimistic,

or speculative – we maintain two sets: ReadSet(T i
r) and

WriteSet(T i
r). ReadSet(T i

r) records pairs (X, tx), where
X is an object read by T i

r , and tx represents the order1
in which this operation was performed. We use the nota-
tion: (X, ) ∈ ReadSet(T i

r) to mean that shadow T i
r read

object X. WriteSet(T i
r) contains a list of all objects X

written by shadow T i
r .

For each speculative shadow T i
r in the system, we

maintain a set WaitFor(T i
r), which contains pairs of the

form (Tu,X), where Tu is an uncommitted transaction
and X is an object of the shared database. (Tu,X) ∈
WaitFor(T i

r) implies that T i
r must wait for Tu before

being allowed to Read object X. We use (Tu, ) ∈
WaitFor(T i

r) to denote the existence of at least one tuple
(Tu,X) in WaitFor(T i

r), for some object X.

3.2 Algorithm Overview

Under the SCC-nS algorithm, shadows executing on be-
half of a transaction are either optimistic or speculative.
Optimistic shadows execute unhindered, whereas specu-
lative shadows are maintained so as to be ready to re-
place a defunct optimistic shadow, if such a replacement
is deemed necessary.

Optimistic shadow behavior:
For a transaction Tr, the optimistic shadow T o

r executes
with the optimistic assumption that it will commit be-
fore all the other uncommitted transactions in the system
with which it conflicts. T o

r records any conflicts found
during its execution, and proceeds uninterrupted until
one of these conflicts materializes (due to the commit-
ment of a competing transaction), in which case T o

r is
aborted – or else until its validation phase is reached, in
which case T o

r is committed.

Speculative shadow behavior:
Each speculative shadow T s

r executes with the assump-
tion that it will finish before the materialization of any
detected conflict with any other uncommitted transac-
tion, except for one particular conflict which is specu-
lated to materialize before the commitment of Tr. Thus,
T s

r remains blocked on the shared object X, on which
this conflict has developed, waiting to read the value that
the conflicting transaction, Tu will assign to X when it
commits. If this speculated assumption becomes true,
(e.g., Tu commits before Tr enters its validation phase),
T s

r will be unblocked and promoted to become Tr’s opti-
mistic shadow, replacing the old optimistic shadow which
will have to be aborted, since it made the wrong assump-
tion with respect to the serialization order.

At any point during the execution of our algorithm,
the first k speculative shadows of a transaction Tr ac-

1This can be a special read timestamp, implemented by main-
taining for each shadow T i

r in the system a counter that is atomi-
cally incremented every time a read operation is performed by T i

r .



count for the first k detected conflicts in which Tr par-
ticipated. These may not be the first k conflicts that
transaction Tr will develop during the course of its ex-
ecution. To illustrate this point, consider the condition
depicted in figure 5. Transaction T1 may detect at some
point in its execution a conflict over some object X, which
it had read earlier. In particular, when the read opera-
tion for object X was requested by the optimistic shadow
T o

1 , there was no conflict to be detected. Such a conflict
appeared later when transaction T3 requested to update
that same object X.

oT2

T1
o

S

Rx RyS

Wy

Time

3To
S Wx

Figure 5: T1 detects conflict (T3,X) after T3 writes X.

The shadow replacement algorithm we are using in
this paper is one of several algorithms that could be
adopted. In [5] some alternatives to this policy are dis-
cussed and evaluated. In particular, information about
deadlines and priorities of the conflicting transactions can
be utilized so as to account for the most probable serial-
ization orders.

It is very important to realize that the imposed limit
of at most n−1 speculative shadows per transaction does
not prohibit a transaction Tr from developing more than
n − 1 conflicts at any point during its lifetime. Rather,
this limit is on the number of potential hazards that our
algorithm will be ready to optimally deal with (by using
the speculative shadows). Every extra hazard that devel-
ops after this limit is reached will be accounted for only
suboptimally2 (since no such speculative shadow will be
available). In that sense, we can view the aforementioned
description as encompassing a hierarchy of algorithms.
Going down a level in this hierarchy (by reducing n) can
compromise only performance not correctness.

3.3 Description of SCC-nS
Let T = T1, T2, T3, . . . , Tm be the set of uncommitted
transactions in the system. Furthermore, let T O, and T S
be, respectively the sets of optimistic, and speculative
shadows executing on behalf of the transactions in the
set T . We use the notation T S

r to denote the set of
speculative shadows executing on behalf of transaction
Tr. The SCC-nS algorithm is described as a set of five
rules, which we describe below.

2We can still use the presense of other speculative shadows to
improve those decisions (see the Commit Rule below).

Start Rule:
The Start Rule, is followed whenever a new transaction
Tr is submitted for execution, in which case an opti-
mistic shadow T o

r is created. In the absence of any con-
flicts this shadow will run to completion (the same way
as with the OCC-BC algorithm). The SpecNumber(Tr),
ReadSet(T o

r ), and WriteSet(T o
r ), are, also, initialized.

Read Rule:
The Read Rule is activated whenever a read-after-write
conflict is detected. The processing that follows is
straightforward. In particular, if the maximum number
of speculative shadows of the transaction in question, say
Tr, is not exhausted, a new speculative shadow T s

r is
created (by forking it off T o

r ) to account for the newly
detected conflict. Otherwise, in the absence of any new
speculative shadow for transaction Tr, this potential con-
flict will have to be ignored at this point. The Commit
Rule (see below) deals with the corrective measures that
need to be taken, should this conflict materializes.

Write Rule:
The Write Rule is activated whenever a write-after-
read conflict is detected. Speculative shadows cannot
be forked off as before from the transaction’s optimistic
shadow. This is because the conflict is detected on some
other transaction’s write operation. Therefore, since its
optimistic shadow already read that database object, we
must either create a new copy of this transaction or
choose another point during its execution from which
we can fork it off. For performance reasons, this sec-
ond choice was adopted. The algorithm makes use of the
function BestShadow (discussed later) to find the most
appropriate speculative shadow, if such a shadow indeed
exists. In the absence of such a shadow a restarted copy
of the transaction is created. Figure 6 illustrates this
point. When the new conflict (T2,X) is detected, the
speculative shadow T 3

1 is forked off T 1
1 to accommodate

it. Notice that if a copy of T1 was instead created, all
the operations before Ry (reading the database object
Y ) would have had to be repeated. T 2

1 , even though in
a later stage, is not an appropriate shadow to fork off
because, like the optimistic shadow, it already read X.

S RzRy Rx

Time

S Wx
o

T2

T1
o

2T1

T
1

1 Blocked

3T1 Ry Blocked

Blocked

Figure 6: T 3
1 is forked off the BestShadow (T1,X), T 1

1 .



Some interesting issues that must be dealt with in
this case are discussed below. When the new conflict
implicates transactions that already conflict with each
other, some adjustments may be necessary. In figure 7,
the speculative shadow T j

1 of transaction T1, accounting
for the conflict (T2, Z), must be aborted as soon as the
new conflict, (T2,X), involving the same two transac-
tions is detected. Since T1 read object X before object
Z, (T2,X) is the first conflict between those two trans-
actions. Therefore, the speculative shadow accounting
for the possibility that transaction T2 will commit before
transaction T1 must block before the read operation on
X is performed. Speculative shadow T k

1 is forked off T 1
1

for that purpose. All other speculative shadows of T1

remain unaffected.

S RzRy RxT1
o

Blocked

Time

o
T2 S WxWz

jT1 Blocked A

kT1 BlockedRy

T1
i

Figure 7: T j
1 , which accounts for the (T2, Z) conflict,

is aborted and replaced by T k
1 when an earlier conflict,

(T2,X), with T2 is detected.

The number of speculative shadows maintained by
SCC-nS (namely n − 1) might not be enough to ac-
count for all the conflicts that develop during a trans-
action’s lifetime. The selection of the conflicts to be
accounted for by speculative shadows is an interesting
problem with many possible solutions [5]. In this paper
we have adopted a particular solution that requires the
speculative shadows of SCC-nS to account for the first
k ≤ n − 1 conflicts (whether read-after-write or write-
after-read) encountered by a transaction. Because such
conflicts are not necessarily detected in order, a shadow
replacement might be necessary.

To illustrate this point, consider the scenario de-
picted in figure 8, where the assumption that the first
two conflicts in which transaction T1 participated (by ac-
cessing objects Y , and Z, respectively), is revised when
transaction T2 writes object X. In particular, the newly
detected conflict (T2,X) becomes the first conflict of T1.
If it is the case that T1 is restricted so as not to have more
that two speculative shadows at any point during its ex-
ecution, then a shadow replacement is necessary. T 2

1 , the
latest shadow of T1 has to be aborted, and a new specula-
tive shadow, T 3

1 , accounting for the new (T2,X) conflict
should replace it. The LastShadow function (explained
below) is used to find this latest speculative shadow.

Blocking Rule:
The Blocking Rule is used to control when a speculative
shadow T i

r must be blocked. This rule assures that T i
r

is blocked the first time it wishes to read an object X
in conflict with any transaction that T i

r must wait for
according to its speculated serialization order.

S RzRyRx

Time

S Wx
o

T2

T1
o

T
1

1 Blocked

2T1 Blocked A

3T1 S Blocked

Figure 8: Detecting conflict (T2,X) causes the abortion
of LastShadow(T1) (T 2

1 ), and its replacement by T 3
1 .

Commit Rule:
Whenever it is decided to commit an optimistic shadow
T o

r on behalf of a transaction Tr, the Commit Rule is
activated. First, all other shadows of Tr become obsolete
and are aborted. Next, all transactions conflicting with
Tr are considered. For each such transaction Tu there
are two cases: either there is a speculative shadow, T i

u,
waiting for Tr’s commitment, or not.

S RzRy Rx

T1
o

T
1

1 Blocked

Time

o
T2 S V/CWx

3T1 Blocked A

2T1 Blocked

Rx

P

A

Figure 9: T 2
1 , accounting for the developed conflict

(T2,X), is promoted to replace the optimistic shadow
of T1. T 3

1 is aborted, while T 1
1 remains unaffected.

The first case is illustrated in figure 9, where the
speculative shadow T 2

1 of transaction T1 – having an-
ticipated (assumed) the correct serialization order – is
promoted to become the new optimistic shadow of trans-
action T1, replacing the old optimistic shadow which had
to be aborted. Speculative shadow T 3

1 , which like the old
optimistic shadow exposed itself by reading the old value
of object X had to be aborted as well. On the contrary,
the speculative shadow T 1

1 , which did not read object X,
remains unhindered.



The second case is illustrated in figure 10, where the
commitment of the optimistic shadow T o

2 on behalf of
transaction T2 was not accounted for by any specula-
tive shadow.3 In this case, a shadow is forked off the
LastShadow(T1) to become the new optimistic shadow of
transaction T1. This, even though not optimal, is the
best we can do in the absence of a speculative shadow
accounting for the (T2, Z) conflict. A complete and for-
mal description of the SCC-nS algorithm can be found in
Appendix A.

S Rx Ry
T1
o

Rz

T
1

1 Blocked

2T1 Blocked

Time

o
T2 S V/CWz

Ry Rz

A

Figure 10: When the unaccounted-for conflict (T2, Z)
materializes, a new optimistic shadow for T1 is forked
off the LastShadow(T1), T 2

1 .

As we mentioned above, the algorithm makes use
of two functions: LastShadow, and BestShadow. Last-
Shadow is a function from the set of uncommitted trans-
actions T to the set of speculative shadows T S . It takes
for input a transaction Tr, and returns the latest specu-
lative shadow T last

r of Tr in order of read conflict. Best-
Shadow is a function from the cross-product of uncom-
mitted transactions and database objects, to the set of
speculative shadows T S . It takes as input a transac-
tion Tr and a database object X read by its optimistic
shadow T o

r . It returns the speculative shadow T best
r of Tr,

which did not read object X and accounts for the latest
conflict (Tu, Y ) in which Tr participates. Should such a
speculative shadow does not exist, T best

r corresponds to
the starting point in the execution of Tr. Appendix B
provides a formal definition of these functions.

3.4 Simulation Results

We have conducted a number of experiments to com-
pare the performance of SCC-based and OCC-based al-
gorithms. Our simulations assume a client-server model
in a distributed database subjected to soft deadlines [21].
Figure 11 depicts the total number of missed deadlines
as a function of the total number of transactions submit-
ted to the system. The simulation shows that SCC-2S is
consistently better than OCC-BC by about a factor of 4
in terms of the number of transactions committed before

3Figure 10 makes the implicit assumption that transaction T1
is limited to having at most two speculative shadows at any point
during its execution.

their set deadlines. Figure 12 depicts the tardiness4 of
the system as a function of the total number of transac-
tions submitted to the system. Again, SCC-2S proves to
be superior to OCC-BC as it reduces by almost 6-folds
the tardiness of the system. In particular, with 25 trans-
actions in the system, OCC-BC manages to commit only
3 transactions before their set deadlines, thus missing 22
deadlines with a tardiness of over 100 units of time. For
the same schedule, SCC-2S manages to commit 13 trans-
actions, missing the deadlines of only 12, with a tardiness
of 18 units of time. The above simulations assumed tight
deadlines, which explains the high percentage of missed
deadlines. Similar results confirming SCC-2S superior-
ity were obtained for looser timing constraints, for firm
deadlines, and for various levels of data conflicts. They
are discussed in [6].

0.00

5.00

10.00

15.00

20.00

25.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Missed Deadlines

Number of Transactions (Multiprogramming level)

OCC-B
C

SCC-2S

Figure 11: Missed deadlines for OCC-BC vs. SCC-2S

4 Three members of the SCC-nS family

In this section, we consider three SCC-based algorithms:
SCC-1S, SCC-2S, and SCC-MS. The first represents a
specialization of SCC-nS, which uses the minimum possi-
ble amount of redundancy. The second can be seen as the
simplest form of a hybrid algorithm, allowing each trans-
action to have one optimistic and one pessimistic (spec-
ulative) shadow. The third represents the most flexible

4The tardiness of the system is the average time by which trans-
actions miss their deadlines. A system that meets all imposed dead-
lines has an ideal tardiness of 0.



0.00 5.00 10.00 15.00 20.00 25.00 30.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

Average Lateness

Number of Transactions (Multiprogramming level)

OCC-B
C

SCC-2S

Figure 12: Average tardiness for OCC-BC vs. SCC-2S

of this family of SCC algorithms. SCC-MS and SCC-1S
illustrate the two extremes with regard to the level of the
computation redundancy they introduce and the real-time
performance they achieve.

4.1 One-Shadow SCC

In this case, every uncommitted transaction in the sys-
tem has only an optimistic shadow. Neither a specula-
tive nor a pessimistic shadow is present. The optimistic
shadow for each Ti, then, runs under the assumption that
it will be the first (among all the other transactions with
which Ti conflicts) to commit. Therefore, it executes
without incurring any blocking delays. The SCC-1S al-
gorithm, thus, resembles the OCC-BC algorithm in that
optimistic shadows of transactions continue to execute
either until they are validated and committed, or un-
til they are aborted (by a validating transaction). This
represents the one extreme regarding the amount of re-
dundant computations that SCC algorithms introduce.
At their lowest extent, when no redundant computations
are allowed, they identify with the optimistic paradigm.
The more redundancy they are allowed to use, the better
their real-time performance.

4.2 Two-Shadow SCC (SCC-2S)

The SCC-2S allows a maximum of two shadows per un-
committed transaction to exist in the system at any point

in time: an optimistic shadow and a speculative shadow.
The speculative shadow of a transaction Ti, called here
the pessimistic shadow T p

i (in contrast with the opti-
mistic shadow) is subject to blocking and restart. It is
kept ready to replace the optimistic shadow T o

i , should
such a replacement be necessary. T p

i runs under the pes-
simistic assumption that it will be the last (among all the
other transactions with which Ti conflicts) to commit.

The SCC-2S like the SCC-1S algorithm resembles the
OCC-BC algorithm in that optimistic shadows of trans-
actions continue to execute either until they are validated
and committed or until they are aborted (by a validat-
ing transaction). The difference, however, is that SCC-2S
keeps a pessimistic shadow for each executing transaction
to be used if that transaction must abort. The pessimistic
shadow is basically a replica of the optimistic shadow,
except that it is blocked at the earliest point where a
read-write conflict is detected between the transaction
it represents and any other uncommitted transaction in
the system. Should this conflict materialize into a con-
sistency threat, the pessimistic shadow is promoted to
become the new optimistic shadow, and execution is re-
sumed (instead of being restarted as would be the case
with OCC-BC) from the point where the potential con-
flict was discovered. The detailed algorithm, as well as
illustrative examples of its use can be found in [4].

4.3 Multi-Shadow SCC (SCC-MS)

This is an SCC-based algorithm, which allows the redun-
dancy level for individual transactions to differ and vary
dynamically. Each transaction Tr has, at each point of
its execution, one optimistic shadow T o

r , and i speculative
shadows T i

r , where i is the number of detected potential
conflicts in which Tr participates.

This variant is more powerful than the generic SCC
algorithm presented above. Its superior performance re-
sults from its flexibility to deal with any transaction con-
flicts. Contrary to the generic SCC algorithm, it does
not fix a priori the number of speculative shadows that
each transaction in the system is allowed to have at any
point in its lifetime. Thus, every time that a new conflict
is encountered, a new speculative shadow is created, to
accommodate it. Moreover, each individual transaction
can have a different degree of redundancy, in the number
of shadows it can originate. This flexibility, of course, is
gained at the expense of an increased amount of redun-
dant computations that are allowed in the system. See
Appendix C for the details of the SCC-MS algorithm.

5 Conclusion

SCC-based algorithms offer a new dimension (namely re-
dundancy) that can be used effectively to improve the
responsiveness of RTDBMS. Using SCC, several shadow
transactions execute on behalf of a given uncommitted



transaction so as to protect against the hazards of block-
ages and restarts, which are characteristics of Pessimistic
and Optimistic Concurrency Control algorithms, respec-
tively.

In this paper, we presented a generic algorithm
(SCC-nS) which characterizes a family of algorithms that
differ in the total amount of redundancy they introduce.
We described SCC-nS both informally and formally. We
demonstrated its superiority for RTDBMS through nu-
merous examples. Three members of the SCC-nS fam-
ily (namely SCC-1S, SCC-2S, and SCC-MS) were sin-
gled out and contrasted. SCC-1S does not introduce any
additional redundancy and is shown to be equivalent to
the OCC-BC algorithm of [19, 22]. SCC-2S allows ex-
actly one additional pessimistic shadow in the system
and is shown to outperform OCC-BC with respect to
the timely commitment of transactions. SCC-MS intro-
duces as many shadows as necessary to account for all
possible pair-wise conflicts between uncommitted trans-
actions. This is in contrast to the general algorithm de-
scribed in [4], where conflicts involving more than two
transactions are also considered.

An interesting observation is that the SCC-based
protocols discussed in this paper do not make use of
transaction priorities or deadline information in resolv-
ing data conflicts. This property, while it protects our
algorithms from problems related to priority dynamics
(e.g. priority inversions [23]), it also prevents them from
making better decisions which could help in decreasing
the number of missed deadlines in the system. We are
currently working on developing an SCC-based algorithm
which allows for the use of deadline information to im-
prove its responsiveness.

References

[1] Robert Abbott and Hector Garcia-Molina. Scheduling real-
time transactions: A performance evaluation. In Proceed-
ings of the 14th International Conference on Very Large Data
Bases, pages 1–12, Los Angeles, Ca, 1988.

[2] R. Agrawal, M. Carey, and M. Livny. Concurency control
performance modeling: Alternatives and implications. ACM
Transaction on Database Systems, 12(4), December 1987.

[3] A. Bernstein, A. Philip, V. Hadzilacos, and N. Goodman.
Concurrency Control And Recovery In Database Systems.
Addison-Wesley, 1987.

[4] Azer Bestavros. Speculative Concurrency Control: A Posi-
tion Statement. Technical Report BUCS-TR-92-016, Com-
puter Science Department, Boston University, Boston, MA,
July 1992.

[5] Azer Bestavros and Spyridon Braoudakis. A family of Spec-
ulative Concurrency Control Algorithms. Technical Report
BUCS-TR-92-017, Computer Science Department, Boston
University, Boston, MA, July 1992.

[6] Azer Bestavros, Spyridon Braoudakis, and Euthimios Pana-
gos. Performance Evaluation of Two-shadow Speculative Con-
currency Control. Technical Report BUCS-TR-93-001, Com-
puter Science Department, Boston University, Boston, MA,
January 1993.

[7] C. Boksenbaum, M. Cart, J. Ferrié, and J. Francois. Con-
current certifications by intervals of timestamps in distributed
database systems. IEEE Transactions on Software Engineer-
ing, pages 409–419, April 1987.

[8] A. P. Buchmann, D. C. McCarthy, M. Hsu, and U. Dayal.
Time-critical database scheduling: A framework for integrat-
ing real-time scheduling and concurrency controls. In Proceed-
ings of the 5th International Conference on Data Engineering,
Los Angeles, California, February 1989.

[9] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database sys-
tem. Communications of the ACM, 19(11):624–633, November
1976.

[10] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.
Granularity of locks and degrees of consistensy in a shared
data base. In G. M. Nijssen, editor, Modeling in Data Base
Management Systems, pages 365–395. North-Holland, Ams-
terdam, The Netherlands, 1976.

[11] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. Dy-
namic real-time optimistic concurrency control. In Proceedings
of the 11th Real-Time Systems Symposium, December 1990.

[12] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. On
being optimistic about real-time constraints. In Proceedings
of the 1990 ACM PODS Symposium, April 1990.

[13] J. Huang, J. A. Stankovic, D. Towsley, and K. Ramamritham.
Experimental evaluation of real-time transaction processing.
In Proceedings of the 10th Real-Time Systems Symposium,
December 1989.

[14] Jiandong Huang, John A. Stankovic, Krithi Ramamritham,
and Don Towslwy. Experimental evaluation of real-time op-
timistic concurrency control schemes. In Proceedings of the
17th International Conference on Very Large Data Bases,
Barcelona, Spain, September 1991.

[15] Woosaeng Kim and Jaideep Srivastava. Enhancing real-time
DBMS performance with multiversion data and priority based
disk scheduling. In Proceedings of the 12th Real-Time Systems
Symposium, December 1991.

[16] Henry Korth. Triggered real-time databases with consistency
constraints. In Proceedings of the 16th International Confer-
ence on Very Large Data Bases, Brisbane, Australia, 1990.

[17] H. Kung and John Robinson. On optimistic methods for con-
currency control. ACM Transactions on Database Systems,
6(2), June 1981.

[18] Yi Lin and Sang Son. Concurrency control in real-time
databases by dynamic adjustment of serialization order. In
Proceedings of the 11th Real-Time Systems Symposium, De-
cember 1990.

[19] D. Menasce and T. Nakanishi. Optimistic versus pessimistic
concurrency control mechanisms in database management sys-
tems. Information Systems, 7(1), 1982.

[20] Christos Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653, Octo-
ber 1979.

[21] Krithi Ramamritham. Real-time databases. International
journal of Distributed and Parallel Databases, 1(2), 1993.

[22] John Robinson. Design of Concurrency Controls for Trans-
action Processing Systems. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1982.

[23] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. Tech-
nical Report CMU-CS-87-181, Carnegie Mellon University,
Computer Science Department, December 1987.

[24] Lui Sha, R. Rajkumar, and J. Lehoczky. Concurrency control
for distributed real-time databases. ACM, SIGMOD Record,
17(1):82–98, 1988.

[25] Lui Sha, R. Rajkumar, Sang Son, and Chun-Hyon Chang. A
real-time locking protocol. IEEE Transactions on Computers,
40(7):793–800, 1991.

[26] Mukesh Singhal. Issues and approaches to design real-time
database systems. ACM, SIGMOD Record, 17(1):19–33, 1988.

[27] S. Son, S. Park, and Y. Lin. An integrated real-time locking
protocol. In Proceedings of the IEEE International Conference
on Data Engineering, Tempe, AZ, February 1992.

[28] John Stankovic and Wei Zhao. On real-time transactions.
ACM, SIGMOD Record, 17(1):4–18, 1988.



Appendices

A The Generic SCC-nS Algorithm

A. The Start Rule: When the execution of a new transaction Tr is requested, an optimistic shadow T o
r ∈ T O is

created and executed.

0. SpecNumber(Tr)← 0;
1. ReadSet(T o

r )← {};
2. WriteSet(T o

r )← {};

B. The Read Rule: Whenever an optimistic shadow T o
r wishes to read an object X, then:

0. ReadSet(T o
r )← {(X, )};

for all T o
u in T O, such that X ∈WriteSet(T o

u) do
1. if ((SpecNumber(Tr) < n− 1)∧ (∀T i

r ∈ T S
r , (Tu, ) 	∈WaitFor(T i

r))) then{
1.1 A new speculative shadow T j

r is forked off T o
r ;

1.2 WaitFor(T j
r )← {(Tu, X)};

1.3 SpecNumber(Tr)← SpecNumber(Tr) + 1};
C. The Write Rule: Whenever an optimistic shadow T o

u wishes to write an object X, then:

0. WriteSet(T o
u)← {X};

for all T o
r in T O, such that (X, ) ∈ ReadSet(T o

r ) do
1. if (SpecNumber(Tr) < n− 1) then{
1.1 if (∀T i

r ∈ T S
r , (Tu, ) 	∈WaitFor(T i

r)) then{
1.1.1 A new speculative shadow T j

r is forked off BestShadow(Tr, X);
1.1.2 WaitFor(T j

r )← {(Tu, X)};
1.1.3 SpecNumber(Tr)← SpecNumber(Tr) + 1
1.2 }else if (∃T k

r ∈ T S
r , ∃Y : ((X, ) ∈ ReadSet(T k

r )∧ (Tu, Y ) ∈WaitFor(T k
r ))) then{

1.2.1 T k
r is aborted and replaced by T m

r which is forked off BestShadow(Tr, X);
1.2.2 WaitFor(T m

r )← {(Tu, X)}};
2. }else if (SpecNumber(Tr) = n− 1) then
2.1 if (∃T k

r ∈ T S
r : (X, ) ∈ ReadSet(T k

r )) then
2.1.1 Abort LastShadow(Tr);
2.1.2 A new speculative shadow T m

r is forked off BestShadow(Tr, X);
2.1.3 WaitFor(T m

r )← {(Tu, X)}};

D. The Blocking Rule: A standby shadow T i
r is blocked at the earliest point at which it wishes to Read an object

X that is written by any transaction Tu, such that (Tu, X) ∈WaitFor(T i
r).

E. The Commit Rule: Whenever it is decided to commit an optimistic shadow T o
r on behalf of a transaction Tr,

then:

1. ∀T i
r ∈ T S

r , T i
r is aborted;

2. for all Tu ∈ T , such that (∃T i
u ∈ T S

u : (Tr, X) ∈WaitFor(T i
u)) do{

2.1 T o
u is aborted;

2.2 T i
u is promoted to become the new optimistic shadow of Tu;

2.3 SpecNumber(Tu)← SpecNumber(Tu)− 1;
2.4 for all T j

u ∈ T S
u , such that (X, ) ∈ ReadSet(T j

u) do{
2.4.1 T j

u is aborted;
2.4.2 SpecNumber(Tu)← SpecNumber(Tu)− 1 }};
3. for all Tu ∈ T , such that (∃X : X ∈WriteSet(T o

r ) ∧ (X, ) ∈ ReadSet(T o
u)

(	 ∃T i
u ∈ T S

u : (Tr, X) ∈WaitFor(T i
u))) do{

3.1 T o
u is aborted;

3.2 A new optimistic shadow T o
u is forked off LastShadow(Tu)};



B The LastShadow and BestShadow functions

(a) LastShadow() : T → T S , such that Tr ∈ T �−→ T last
r ∈ T S iff

(∃X : (X, tx) ∈ ReadSet(T o
r )) ∧ ((∃Tu ∈ T : (Tu, X) ∈ WaitFor(T last

r )) ∧ (∀Y : ((Y, ty) ∈ ReadSet(T o
r ) ∧ (∃Tv ∈

T , ∃T i
r ∈ T S

r : (Tv, Y ) ∈WaitFor(T i
r)))) =⇒ ty ≤ tx).

(b) BestShadow() : (T , object)→ T S , such that (Tr, X) ∈ (T , Object) �−→ T best
r ∈ T S iff

(X, tx) ∈ ReadSet(T o
r ) ∧ (X, tx) 	∈ ReadSet(T best

r ) ∧ (∃Tu ∈ T , ∃Y : ((Y, ty) ∈ ReadSet(T o
r ) ∧ (Tu, Y ) ∈

WaitFor(T best
r ))) ∧ (∀Z : ((Z, tz) ∈ ReadSet(T o

r ) ∧ (∃Tv ∈ T , ∃T i
r ∈ T S

r : ((Tv, Z) ∈ WaitFor(T i
r) ∧ (X, tx) 	∈

ReadSet(T i
r)))) =⇒ tz ≤ ty).

C The Multi-Shadow SCC Algorithm

A. The Start Rule: When the execution of a new transaction Tr is requested, an optimistic shadow T o
r ∈ T O is

created and executed.

0. ReadSet(T o
r )← {};

1. WriteSet(T o
r )← {};

B. The Read Rule: Whenever an optimistic shadow T o
r wishes to read an object X, then:

0. ReadSet(T o
r )← {(X, )};

for all T o
u in T O, such that X ∈WriteSet(T o

u) do
1. if (∀T i

r ∈ T S
r , (Tu, ) 	∈WaitFor(T i

r)) then{
1.1 A new speculative shadow T j

r is forked off T o
r ;

1.2 WaitFor(T j
r )← {(Tu, X)};}

C. The Write Rule: Whenever an optimistic shadow T o
u wishes to write an object X, then:

0. WriteSet(T o
u)← {X};

for all T o
r in T O, such that (X, ) ∈ ReadSet(T o

r ) do
1. if (∀T i

r ∈ T S
r , (Tu, ) 	∈WaitFor(T i

r)) then{
1.1 A new speculative shadow T i

r is forked off BestShadow(Tr, X);
1.2 WaitFor(T i

r)← {(Tu, X)};
2. }else if (∃T k

r ∈ T S
r , ∃Y : ((X, ) ∈ ReadSet(T k

r )∧ (Tu, Y ) ∈WaitFor(T k
r ))) then{

2.1 T k
r is aborted and replaced by T m

r which is forked off BestShadow(Tr, X);
2.2 WaitFor(T m

r )← {(Tu, X)}};

D. The Blocking Rule: A standby shadow T i
r is blocked at the earliest point at which it wishes to Read an object

X that is written by any transaction Tu, such that (Tu, X) ∈WaitFor(T i
r).

E. The Commit Rule: Whenever it is decided to commit an optimistic shadow T o
r on behalf of a transaction Tr,

then:

1. ∀T i
r ∈ T S

r , T i
r is aborted;

2. for all Tu ∈ T , such that (∃T i
u ∈ T S

u : (Tr, X) ∈WaitFor(T i
u)) do{

2.1 T o
u is aborted;

2.2 T i
u is promoted to become the new optimistic shadow of Tu;

2.3 for all T j
u ∈ T S

u , such that (X, ) ∈ ReadSet(T j
u) do

2.3.1 T j
u is aborted};


