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Abstract

Temporal locality of reference in Web request streams
emerges from two distinct phenomena: the long-term
popularity of Web documents and the short-term tem-
poral correlations of references. In this paper we
show that the commonly-used distribution of inter-
request times is predominantly determined by the
power law governing the long-term popularity of doc-
uments. This inherent relationship tends to disguise
the existence of short-term temporal correlations. We
propose a new and robust metric that enables accu-
rate characterization of that aspect of temporal local-
ity. Using this metric, we characterize the locality of
reference in a number of representative proxy cache
traces. Our findings show that there are measurable
differences between the degrees (and sources) of tem-
poral locality across these traces.

1. Introduction

Two of the most important properties of Web access
patterns are the skewed popularity of Web documents
and the temporal locality of reference exhibited in
request streams. Studies of Web access streams indi-
cated that long-term popularity follows a Zipf-like dis-
tribution [4, 8], whereby the access frequency of a doc-
ument is proportional to the reverse of its rank. Tem-
poral locality—the property that recently requested
documents are more likely to be requested again—
was also observed in Web request streams [2, 5, 11].
This property can be captured by the inter-request
time distribution [2, 5].

The distinction between popularity and tempo-
ral locality properties in Web access patterns is of-
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ten blurred. This is partially the result of the in-
herent relationship between these two properties (as
we will establish in this paper). However, popular-
ity is not the only determinant of temporal locality
of reference. In particular, temporal correlations of
repeated requests to the same documents is another
important contributor to temporal locality. The de-
lineation between these two sources of temporal local-
ity is important due to their implication on Web con-
tent caching and replication protocols. An important
question is whether these sources can be characterized
accuractely with a simple model.

In this paper we provide an affirmative answer to
this question. First we show that inter-request time
distribution commonly used in characterizing tempo-
ral locality [2, 4, 5, 7, 14] is induced through long-term
popularity distribution, but is insensitive to tempo-
ral correlations of reference. We quantify the asym-
pototical inherent relationship between Zipf-like pop-
ularity distribution and inter-request time distribu-
tion. Second, we propose a new model that captures
both aspects seperately, and together temporal local-
ity. Third, using this method, we characterize the
temporal locality of reference in a number of repre-
sentative proxy cache traces.

2. Related Work

Denning and Schwartz [9] established the fundamen-
tal properties that characterize the phenomenon of
temporal locality. The presence of temporal local-
ity in Web access streams specifically, has also been
widely verified [1, 2, 5, 11, 14]. Such properties are
important for the practices in the design of caching
and replication mechanisms. Therefore, it is impor-
tant to characterize the degree of temporal locality.
Among others, two methods are well adopted, namely



the stack distance model and inter-request time dis-
tribution model.

In [16], Mattson et al introduced the concept of
stack distances as a means for analyzing the behavior
of demand-paged memory systems and for evaluat-
ing the performance of memory management schemes.
Stack distance refers to the number of unique docu-
ments separating consecutive requests for the same
document. In [18], Spirn proposed the use of a
Markov stack distance model to capture program be-
havior. A Markov stack distance model enables the
prediction of future inter-request distances based on
the most recently generated distances. As such, this
model is unable to capture the long-range dependen-
cies among requests and hence is unable to capture
the bursty nature of page faults. In [1], Almeida et
al used the marginal distribution of stack distance
strings to characterize temporal locality. Their analy-
sis of Web request streams, revealed that the marginal
distributions of stack distances follow a log-normal
distribution. While the stack distance model provides
means for characterizing the degree of temporal local-
ity that exists in a request stream, it is not able to
delineate the causes of such locality—namely tempo-
ral locality due to popularity and due to the temporal
correlations of reference [15].

The second method in characterizing temporal
locality is the use of the distribution of inter-request
times [2, 5, 14]. In [4], Breslau et al found that the
distribution of inter-request times is tightly related
to document popularity. They argued that the prob-
ability of referencing an object ¢ units of time after
it has been last requested is roughly proportional to
1/t. However, since their work is based on the Inde-
pendent Reference Model! (IRM) [6] their approach
is incapable of capturing the temporal correlations in
the reference stream.

3. Trace Characteristics

In this paper we use traces from DEC [10] and
NLANR [17]. Some characteristics of these traces are
shown in Table 1, including the total/unique number
of requests and their aggregated sizes. Our prepro-
cessing of the DEC traces excluded non-cache-able
requests, including cgi-bin requests and queries. Our
preprocessing of the NLANR traces was more elab-
orate. The NLANR traces include many IMS (If-
Modified-Since) and REFRESH requests with reply

1IRM assumes that a request stream consists of a sequence
of independent, identically-distributed random variables.

Table 1. Traces used in this paper

| Trace | Period | All reqs/GB | Unique reqs/GB |
DEC '96:20/8-4/9 | 3,543,068 / 45 | 1,354,996 / 22
NLANR.RTP | '99:4/6-17/6 | 9,113,027 / 91 3,249,549 / 45
NLANR.SD | '99:4/6-17/6 | 9,082,461 / 129 | 3,549,609 / 62
NLANR.UC ’99:4/6-17/6 | 8,983,585 / 113 | 2,459,366 / 47

code 304 (Not Modified). In order to include such re-
quests in the workload, we had to find the sizes of the
documents of such requests. We do so through a 2-
pass scanning of the entire trace. In addition to this
preprocessing, we have also excluded non-cacheable
requests, including cgi-bin requests and queries.
Popularity Distribution: Numerous studies [3, 4,
8] have shown that a Zipf-like distribution, ie. a
power law, can model the relationship between the
long-term popularity of a document and its popu-
larity rank. This relationship can be expressed as:
P~ p7@ 0 < a <1, where P is the document’s long-
term popularity (number of references) and p is the
rank of its popularity. Thus the value of a could be
used to characterize the Zipf-like popularity of Web
documents in a request stream. Table 2 shows a least-
square fit of the values of « for our trace set.

Table 2. Values of « found in our trace set.

| Traces | DEC trace | RTP trace \ SD trace ] UC trace |
| o« | 07 | o071 [ o072 | o066 |

Distribution of Inter-Request Times: Cao et al
[5] observed that the probability of a future request
is quantitatively related to the time elapsed since the
last request. Breslau et al [4] indicated such property
is not an artifice. They found that the probability of
referencing a document at ¢ time after it has been last
requested is roughly proportional to 1/¢. To examine
this model, in Figure 1(left) we plot the fraction of
requests as a function of the distance? between two
consecutive requests for the same documents.

For the DEC trace, the log-log scale plots in Fig-
ure 1(left) are nearly straight lines with slope quite
close to —1.0 except for the existence of diurnal spikes
[6, 11]. This confirms the applicability of the inter-
request time distribution. For the NLANR traces, the
plots display similar properties, except that the slopes
of the bodies are in the —0.65 ~ —0.73 range. The

2We measure the distance using the number of intervening
requests as opposed to the absolute time to mask diurnal ef-
fects. Characteristics of request interarrivals measured in ab-
solute time are available from [12].



variations in the slope across the NLANR traces can
explained by noting that the traces reflect different
workloads. These variations aside, the slopes for the
NLANR traces are clearly less pronounced than that
measured for the DEC trace.

4. From Popularity to Temporal Locality

The skewed distributions evident in Figure 1(left)
may well be a reflection of the skewed popularity dis-
tribution characterized in 2. Highly popular docu-
ments tend to be requested frequently, and thus will
exhibit shorter inter-request times; less popular doc-
uments, on the other hand, tend to be requested in-
frequently, and thus will exhibit longer inter-request
times. We establish this relationship quantitatively
next.

We consider the changes in the inter-request time
distribution when the request streams are subjected
to a random permutation. The right-hand-side plots
in Figure 1 are obtained by applying a random permu-
tation to the request streams, thus eliminating tempo-
ral correlations while preserving the document popu-
larity distribution in the request streams. Comparing
the left-hand-side and right-hand-side plots in Figure
1 reveals no significant changes in the distributions
except for being smoothed as a result of trace scram-
bling. Table 3 shows the slopes of these plots using a
least-square fit for 0 < z < 1,000,000. The fact that
there is little change as a result of scrambling sug-
gests that the inter-request time distribution is pre-
dominantly determined by the document popularity
distribution in the trace, and thus cannot effectively
quantify the degree of temporal correlations in the
request streams.

Table 3. Slopes of the curves in Figure 1.
[ Traces | DEC | RTP | SD [ UC |
Original 095 | 0.71 | 0.65 | 0.73
Scrambled | 0.84 | 0.68 | 0.62 | 0.69

The strong relationship between popularity and inter-
request time distributions is evident in the relation-
ship between the slopes identified in Table 2 and Ta-
ble 3. This relationship is formalized by the following
Theorem.3

3For a = 1, Breslau et al [4] have also related popularity and
inter-request time distributions. Our theorem is more general
as it applies to any value of «, suggesting that a trace with less
skewed popularity distribution tends to have weaker temporal
locality and worse cacheability.

Theorem 1 If the distribution of document popular-
ity in a request stream asymptotically follows a power
low with parameter o, where 0.5 < a < 1, then
the distribution of inter-request time in a random
permutation of this request stream can be character-
1zed asymptotically using a power law with parameter

(2-2)

Proof: Let k denote the number of requests for a
page and N (k) be the number of pages requested
k times. Let F(t) denote the number of instances
whereby two requests for the same document are sep-
arated by ¢ units of time, where 0 < ¢t < 1 is the
normalized time spanning the randomly-permuted re-
quest stream. Notice F(t) reflects the probability dis-
tribution of inter-request time. Let P(¢,k) denote
the number of instances whereby two requests for the
same document with total k requests are separated
by t units of time, where k > 1 (i.e. we are only in-
terested in documents requested at least twice). We
make the following two observations:

1. N(k) ~ k_l_é, where « is the parameter of the
power law governing the Zipf-like distribution of
document popularity. This observation follows
by noting that N(K) can be obtained by trans-
posing the X-axis and Y-axis of the popularity
distribution and taking the derivative of the re-
sulted function. Let N (k) = Ck™'"=.

2. P(t,k) ~ ke *. The inter-arrival time of ran-
domly scattered requests for an object follows
an exponential distribution with a mean close to

1/k. Normalizing it, we get P(t,k) = lkf;ftk
Since 1 — e * approaches unity so fast when k
increases, it follows that we can take P(t,k) =~
ke~* without affecting the asymptotic property

we are attempting to establish.

For a document requested k times, the number of
inter-request time appearing in the request stream is
(k—1). From the definition of P(¢, k), we get that the
total occurrences of inter-request time ¢ is given by
(k—1)P(t, k) = k(k—1)e *. Thus, the total number
of occurrences for all documents in the request stream
is N(k)(k — 1)P(t, k) = Ck = (k — 1)e**. Finally, we
compute F'(t) by summing up the value of P(t, k) for
all k’s:

F(t) = Y N(k)(k-1)P(t,k)
k

= Y Ok a(k—1)e" k> 2 (1)
k
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Figure 1. Probability distrib ution of inter-request time of the original request streams (left) and a random
permutation thereof (right).



Replacing the summation in the equation with an in-
tegral, we obtain:

F(t) ~ / Ok = (k — 1)eMdk
2
r

1 1
2120 — (1 -1, 20)

= C t2-1/a

(2)
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Figure 2. F'(t)/C with parameter c.

Figure 2 displays F'(t)/C for different values of a. In
this equation, I'(a,z) = [>°t* e !dt is the incom-
plete Gamma function. Comparing it to I'(2—1/«, 2¢)
when ¢ is small, tI'(1 — 1/, 2t) is insignificant for any
0.5 < a < 1. Moreover, the complete Gamma func-
tion T'(2—1) =T'(2—1,0) is analytical since 2— 1 > 0.
When ¢ is small, T'(2 — 1,2¢) is close to I'(2 — 1), a
constant. Therefore in this case:

F(t) (3)

When ¢ is not very small, the second item of the nu-
merator is non-negligible, so there will be a visible
“dip” in the log-log scale plot. [

~ 2 1/a

It is important to note the difference between the
above asymptotic relationship and the distributions
obtained from realistic request streams. In particular,
when « is close to 0.5, theoretically, the slope of inter-
request time distribution approaches 0. However,
since the length of a realistic request stream is limited,
this asymptotic slope can not be reached. Moreover,
for any « generally, the derived inter-request time dis-
tribution does not strictly follow power law (as shown
in our proof). This is also indicated by the shapes of
the lines in Figure 1(right) which are not perfectly
straight. Even though, we are still able to measure
slopes closer to their asymptotic values (2 — é), e.g.,
by applying the least-square fit over a shorter range
0 < z < 100,000 instead of 0 < z < 1,000,000 in or-
der to avoid the corruption attributed to the limited

trace length. Table 4 shows the closeness of the mea-
sured slopes in this way and the theoretical slopes.

Table 4. Derived & estimated slopes in Figure 1.

| Traces [ DEC trace I RTP trace | SD trace l UC trace |
Derived 0.70 0.59 0.61 0.49
Estimated 0.71 0.62 0.64 0.55

5. Characterizing Temporal Correlation

The strong relationship between popularity and tem-
poral locality, as evidenced by the closeness of the
slopes in Table 3, often disguises an important aspect
of temporal locality, i.e., the temporal correlations of
repeated requests for the same documents. This has
lead to (for example) the inadequate conclusion in
[4] that a Zipf-like popularity distribution, together
with an independent reference model, is enough to
explain/characterize temporal locality. In this sec-
tion we propose a new model to accurately measure
the degree of short-term temporal correlations of ref-
erence.

To characterize only the temporal correlations in
a request streams, we need to eliminate the effect of
popularity. The new model we are proposing here
is the probability distribution of inter-request time for
equally popular documents.

To demonstrate the expressiveness of this model,
we consider the distribution of inter-request time for
documents after they appear k times in the request
stream. We assume there is a warm-up period, so
that long-term popularity is rather accurate. Then
we get the samples from the second half of the re-
quest stream. Figure 3 (left) shows the plots when
k=1, 2, 4, and 8 for the RTP trace. Because we re-
strict our characterization of request interarrivals to
equally-popular documents (those requested & times
so far), the effect of popularity is eliminated but the
effect of temporal correlations is preserved. Figure
3 (right) shows the inter-request time distribution for
documents requested k times when the trace is scram-
bled. The results indicate that the slope has all but
disappeared, which is expected due to the elimination
of both popularity and temporal correlations effects.

The results for the other traces and for other val-
ues of k are similar. When we used other traces, again
we plotted curves of different shapes for the original
request streams and their scrambled versions. For
larger values of k, we need only to state the follow-
ing finding: the corresponding curves of the original
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Figure 3. The inter -request time probability distrib ution for the equally popular documents in the RTP trace
for the original request streams (left) and a random permutation thereof (right).



and scrambled request streams have different shapes
reflecting contrary short-term temporal correlations
properties.

To elaborate on this point, we should point out
that: (1) short-term temporal correlations still exist
in the original request streams even when the long-
term popularity increases, as we plotted the curves
for larger k’s. Generally, for any k, the slope of the
curves is a little more pronounced when the inter-
request time is shorter (i.e, convex), which suggests
that short-term temporal correlations exists a little
stronger in shorter time scales. (2) However, the
same curves for the scrambled request streams exhibit
a contrary property: namely that the slope is quite
closer to 0 (i.e. no slope) when the inter-request time
is shorter (i.e., concave).

Notice that the inter-request time distribution of
equally popular documents (of k requests to each)
roughly follows an exponential distribution when the
trace is scrambled. Let us denote this distribution
as F(t) ~ ke™*. Applying logarithm to both sides,
and let Y = log P and X = logt, then we have an
equation of form Y = Cj —CqeX, where Cy and Cy are
constants independent of X. It explains the shapes
of the log-log scale curves in Figure 3 (right). When
t is small, the curves are close to horizonal. This also
explains the drops at the extreme right of both-sides
plots in Figure 3.

The above findings indicate that our proposed
model, the probability distribution of inter-request
time for equally popular documents, is an expressive
model for capturing the short-term temporal correla-
tions in a request stream. The degree of short-term
temporal correlations can be approximately quan-
tified by a parameter (3, the slope of the log-log
scaled inter-request time distribution for equally pop-
ular documents (though we noticed such curves are
slightly convex). Specifically, for a set of documents
with the same popularity, the probability that the
inter-request time equals ¢ is roughly proportional to
t=h.

Table 5 gives the ranges of 5 for 0 < < 100, 000,
corresponding to less than about 3 hours. To obtain
the values of 8 in Table 5, plots similar to those in
Figure 3 are drawn and the value of g is estimated
with a least-square fit for 0 < =z < 100,000. Table
5 indicates that the value of § is rather stable for
different values of k’s, but that it is quite different
from across traces.

Table 5. Values of S for level-k popularities.

| Traces | DEC trace | RTP trace ‘ SD trace ‘ UC trace |

k=1 0.61 0.51 0.39 0.50
k=2 0.63 0.49 0.41 0.50
k=4 0.63 0.47 0.40 0.46
k=8 0.65 0.46 0.41 0.43

6. Locality Characteristics & Implications

To summarize the findings of the last two sections,
temporal locality is induced through two sources:
long-term popularity of documents and short-term
temporal correlations of reference. Long-term pop-
ularity is captured by «, the parameter of the power
law that governs the relationship between frequency
of access and rank. Short-term temporal correla-
tions are captured by 3, the parameter of the power
law that governs the relationship between frequency
of access and the interarrival of requests to equally-
popular documents. Thus, temporal locality is ade-
quately characterized using the pair («, 3).

The values of the pair (a, ) for the different
traces are summarized in Table 6, where « values are
from Table 2 and (8 values are averaged from the sets
of equally popular documents up to 10 references. We
notice that both parameters vary accross the traces.
Interestingly, both values for the DEC trace are the
largest. The larger a value for DEC indicates that the
requests are more likely to be concentrated on fewer
very popular documents. This might be is a property
of the documents themselves or a reflection of the de-
crease in popularity skew from 1996 to 1999 (also doc-
umented in [3]). The larger 8 value for the DEC trace
shows that repeated requests to the same documents
are more likely to be correlated in time (more so than
what has been observed for the NLANR traces).

Table 6. Reference locality parameter s (a, f3)

| Traces | DEC trace | RTP trace | SD trace | UC trace |
| (o,8) | (0.77,0.64) | (0.71,0.47) | (0.72,0.40) | (0.66,0.46) |

We argue that the significant differences between
the o and [ values across traces is likely due to: (1)
the different workloads experienced at the NLANR
and DEC proxy servers; the NLANR proxy servers
deal with requests from more diverse client popula-
tion, and (2) the improving efficiency of client-side
caching in ’99 versus ’96 [3], which serves as a filter
of the requests [19].



Our characterization of temporal locality in-
dicated that long-term popularity is the predomi-
nant contributor to temporal locality, but that tem-
poral correlations exists. It advocates the use of
a frequency-based, recency-aware cache replacement
policy. In [13], we derived an algorithm—called
GreedyDual*—that captures both long-term popular-
ity and short-term temporal correlations in an adap-
tive fashion. We compared the performance (both
hit ratio and byte hit ratio) of this algorithm with
other algorithms such as LRU, GDS and LFU-DA.
Our findings include: (1) Our proposed algorithm
consistently achieves the best performance. The im-
provement is usually 10-30%. (2) The incorporation
of long-term frequency is important for Web proxy
caching algorithm, in line with our finding that docu-
ment popularity is the main contributor to temporal
locality. (3) Capturing temporal correlations is more
crucial for smaller cache, in line with our finding that
temporal correlations exists in short term. (4) Sensi-
tivity analysis indicated that incorporation of 8 suc-
cessfully captures the relative strength of long-term
popularity and short-term temporal correlations.

7. Conclusion

In this paper we have shown that there are two phe-
nomena that contribute to temporal locality in Web
request streams: the long-term popularity of docu-
ments and short-term temporal correlations of refer-
ence. To capture both, we suggest the use of two
power laws—one characterizing popularity distribu-
tion and the other characterizing the inter-request
time distribution for equally-popular documents. Us-
ing this model we characterized both sources of tem-
poral locality in different traces and established that
the parameters of these power laws are different across
traces, but consistent within each trace.
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