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Abstract

Recentwork hasshownthat thephysicalconnectivityof the
Internetexhibitssmall-worldbehavior. Characterizingsuch
behavioris importantnotonly for generatingrealisticInter-
nettopologies,but alsofor theproperevaluationof network
algorithmsand protocols. Along this line, this paper tries
to answerhow small-worldbehaviorarisesin the Internet
topologiesandhowit impactstheperformanceof multicast
techniques.First, weattributesmall-worldbehaviorto two
possiblecauses:thevariability of vertexdegreeandthepref-
erenceof verticesto havelocal connections.We foundthat
both factors contributewith different relativedegreesto the
small-worldbehaviorof theAS-level androuter-level Inter-
nettopologies.For theAS-level topology, wehaveobserved
that extremelyhigh variability of vertex degreeis sufficient
to causesmall-worldbehavior, but for therouter-level topol-
ogy, preferencefor local connectivityplaysa moreimportant
role. Second,weproposesimplemodelsto generatemorere-
alistic small-worldInternettopologies.Our modelsconsider
bothcausesof small-worldbehavior. Third, wedemonstrate
thesignificanceof our workbystudyingthescalingbehavior
of IP multicasttreesize. Weshowthat if topologygenerators
capture only thevariability of vertex degree, they are likely
to underestimatetheefficacyof multicasttechniques.

1. Intr oduction

Becauseof its phenomenalgrowth in size, scope,and
complexity, aswell as its increasinglycentralrole in soci-
ety, the Internethasbecomean importantobject of study
and evaluation. Moreover, as possibly the most complex
and largestartifact of humanengineeringthat was not de-
liberately designed,the Internetmust be approachedvery
muchlike a naturalor physical phenomenon,whoseemer-
gentpropertiescan not be understoodby simple composi-
tion of well-understoodbehaviors. It is for thesereasonsthat
thelastfew yearshavewitnesseda surgein researchthatat-
temptsto empirically identify invariantsaboutthetopologi-
cal propertiesof theInternet.

CharacterizingInternettopologicalproperties,while in-
terestingsimply for the sake of discovery, is crucial for
the evaluation of new protocolsand designchoices. In-
deed,many significantinnovationsin the networking com-
munity in recentyearshave resultedfrom a moreaccurate
understandingof thefundamentalpropertiesof thatcomplex
system. Not only is the characterizationof Internetemer-
gentpropertiesimportant,but alsoexplaininghowandwhy
thesepropertiesemergeis extremelyvaluablefor many rea-
sons.Suchanunderstandingwouldallow usto build models
thatcouldbeusedto generatesyntheticartifacts(e.g., large
graphs)thatresemblethe“real” Internetwell. Suchsynthetic
artifactsarenecessaryfor thesimulationandproperevalua-
tion of variousnetwork algorithmsandprotocols.

This paper focuseson one aspectof Internet topol-
ogy characterization,which attractedmuchattentionin re-
centyears—namelythe prevalenceof the small-world phe-
nomenonin theInternetroutinggraphs.Usingacarefulanal-
ysis of real datasets,we investigate what causethe small-
world phenomenon.We illustrate how and to what extent
thesmall-world phenomenonis causedby thevariability of
vertex degree;how andto whatextentsuchphenomenonis
causedby the preferenceof verticesto have local connec-
tions.Weshow thatbothcausescontributewith differentrel-
ativedegreesto thesmall-world behavior of theautonomous
system(AS) level androuter-level topologies.This finding
provides a basisfor promisingapproachesto the develop-
mentof moreaccurateInternettopologygeneratorsbeyond
degree-onlymodelssuchastheBarab́asi-Albertmodel[3, 2]
andthepower-law randomgraphmodel[1]. We describea
new modelto generateInternettopologiesthatexhibit both
skewedvertex degreedistributionsandthepreferencefor lo-
cal connectivity, andshow the small-world behavior in the
syntheticgraphs.

To demonstratethe significanceof our characterization,
westudythescalingbehavior of IP multicast.Weshow how
multicasttreesize increaseswith the groupsize,by simu-
lating multicast in different network topologies,including
randomgraphswith highly variabledegree,oursmall-world
graphs,andreal Internetgraphs.The resultsshow that us-



ing degree-basedtopology models,it is likely to underes-
timate the efficacy of multicast techniques;but using our
small-world model,thescalingbehavior is moreaccurately
envisioned.

Thepaperis organizedasfollows. Section2 reviews re-
cent work on topology characterization.In Section3, we
describethe Internetrouting graphsunderstudy, and illus-
tratetwo possiblecausesof their small-world phenomenon.
We describeandevaluateour new modelto generatesmall-
world topologiesin Section4. In Section5, we usesimula-
tion to studythescalingbehavior of multicast.Our findings
andconclusionsaresummarizedin Section6.

2. RelatedWork

Recentwork on Internet topology characterizationhas
beenrelatedto one featuredistinct from the early Erdős-
Rényi randomgraphmodel [9]: highly variablevertex de-
gree. In suchnetworks,verticeshave a non-uniformproba-
bility of beingconnectedto others,with someverticeshav-
ing extremely large numberof neighbors.The degreedis-
tributions were often observed to follow approximatelya
power-law [10].

Power-law networks areparticularlyemphasizedby the
work of Barab́asiandAlbert [3, 2] who exploreda promis-
ing classof modelsthatyield strict power-law vertex degree
distributions. In their model(calledthe B-A model), three
genericmechanismsare defined: (1) Incrementalgrowth,
which follows from the observation that networks develop
by addingnew verticesor new edges.(2) Preferentialcon-
nectivity, which relieson anobservationthathighly popular
verticesare more likely to be connectedagain in the pro-
cessof incrementalgrowth, i.e. a socalled“rich-get-richer”
phenomenon.(3) Re-wiring,whichremovessomelinks ran-
domly andre-wiresthemaccordingto the preferentialcon-
nectivity mechanism. The combineduseof thesemecha-
nismsdrivesthe evolution of the network to a steadystate,
in which thevertex degreedistribution follows a power-law
(socalleda scale-freeproperty).

Therearedebateson theability of theB-A modelto ex-
plain the evolution of the Internet. First, the mechanisms
of theB-A modelarefoundto beinconsistentwith observa-
tionsfromtherealInternetgrowth. For example,preferential
connectivity wasshown to bestrongerin theAS-level graph
growth andre-wiringwasshown to beaninsignificantfactor
[6]. Second,thestrict power-law vertex degreedistributions
of theB-A modelcannot beconfirmed[6]. Indeed,Internet
object sizesarebettercapturedby otherdistributionssuch
asWeibull distribution [4]. This would imply that the high
variability of vertex degreesin the AS-level graphsmay be
the resultof mechanisms[19] other than thosein the B-A
model. A morerecentstudy[15] revealedthateventheob-
served power-law degreedistributions can be the result of
samplingbiasin traceroute-basedmeasurement.

One interestingwork [5] made some connectionsbe-
tweenpower-law networksandsmall-world graphs[17, 23].
Small-world graphsexhibit connectivity propertiesthat are
betweenrandomandregular graphs(e.g., regular lattices).
Like regulargraphs,they arehighly clustered;yet like ran-
domgraphs,they have typically shortdistancesbetweenar-
bitrary pairsof vertices. It hasbeenshown that many net-
works have similar small-world property. In [5], the au-
thorsobserved that most Internettopologygeneratorscap-
turepower-law vertex degreedistributionswell, but usually
donotdoaswell in capturingtheclusteringphenomenonex-
hibitedin theInternettopologies.They proposedavariantof
theB-A modelby usinga differentpreferentialconnectivity
mechanism.Nevertheless,this variationof the B-A model
is still degree-based.It obtainsstrongerclusteringby gen-
eratinga moreskewedvertex degreedistribution. No other
causesof clusteringandsmall-world behavior were identi-
fied. Moreover, theirnew modeltargetstheAS-level Internet
topology, but not therouter-level topology.

In additionto thetopologygenerators[16, 5] inspiredby
theB-A model,thereareothergeneratorsthathavebeenpro-
posedandusedto modelthe Internet. The Waxmanmodel
[24] extendsthe classicalErdős-Ŕenyi modelby randomly
distributingverticesonaplaneandcreatingedgesby consid-
eringthedistancebetweenthevertices.Thewidely usedGT-
ITM Internet-specifictopologygenerator[27] takesahierar-
chicalapproach,capableof creatinglargegraphsbycompos-
ing smallerrandomgraphs.Inet [12] assignsdegreesto the
vertices,following a power-law distribution, andthenuses
a linearpreferentialmodelto realizetheassignedvertex de-
grees.Thepower-law randomgraphmodelin [1] generates
degreedistributionsthat strictly follow a power-law. A re-
centstudy[20] compareddegree-basedtopologygenerators
suchasInet andstructuraltopologygeneratorssuchasGT-
ITM.

3. Characterizing Small-World Inter net

This section describesthe AS-level and router-level
graphs used in our characterization,demonstratestheir
small-world behavior, andreasonshow suchbehavior arises.

3.1.Evidenceof Small-world Behavior

Inter net Graphs
Table 1 summarizesthe AS-level graphsand router-level
graphsusedin this paper. The first two are AS-level In-
ternet graphs. One was obtainedfrom the routing tables
at route-views.oregon-ix.net.Since1997,therouting tables
have beencollectedoncea day by the NationalLaboratory
for Applied Network Research(NLANR) [18]. The graph
we areusing is datedMay 26, 2001. Hereafter, we call it
the “AS-2001” graph. It wasfound that the Oregon route-
views is incomplete[6]. We obtainedthe secondAS-level



graphfrom [21], which incorporatesnot only the Oregon
route-views, but alsothe Looking glassdataandthe Rout-
ing registry data. This graphis also datedMay 26, 2001.
Hereafter, we call it the “AS-2001+”graph. Although AS-
2001+hasonly a few morevertices,it hasmuchmoreedges
(it hasabout40%moreedges.Therefore,it hashigheraver-
agevertex degree).

We usefour router-level graphs. The first wasobtained
from traceroutescollectedby the InternetMappingproject
at LucentBell LaboratoriesaroundNovember1999. Here-
after, this graphis called the “Lucent” graph. The second
router-level graphwasobtainedby mergingtheLucentgraph
and the SCAN graph obtainedaroundOctober/November
1999usingtheMercatorsoftware[11]. Hereafter, thisgraph
is called the “Scan+Lucent”graph. In preprocessingboth
graphs,we discardeda few edgeswith undefinedvertices.
The percentageof theseedgeswas negligible. Thesetwo
graphsareavailableat [22].

The other two recentrouter-level graphswere obtained
from [8]. They weremeasuredusing the Skitter tool. We
obtaineda snapshoton October15, 2002, recordedby 13
of the 19 Skitter monitorsworldwide. We mergedthe cor-
responding13 subgraphsandobtainedthe “Skitter” graph.
In addition,we also usea subgraphrecordedby the mon-
itor locatedat Palo Alto, CA. This subgraphis called the
“Skitter-CA” graph.Theuseof this subgraphis intent to in-
dicatethattheobservedsmall-world invariantsarenotdueto
theincompletenessof thegraphs.

Is the Inter net A Power-law Network?

Figure1 shows the complementarycumulative distribution
function (CCDF)
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of vertex degreesfor the six

graphsunderstudy. Here
�����
	

is definedas the probabil-
ity that a vertex hasdegreenot higher than

�
. The CCDF

quantifiestheprobability thata vertex hasa degree
�

larger
thana certainvalue. A commonpropertyof thesegraphsis
their long tails. Thatis, vertex degreeis highly variable.The
level of variability appearsto bedifferentthough.

Previous work [10] hasshown that vertex degreedistri-
butions follow a power-law. This is bestillustratedby the
AS-2001graph.With apower-law distribution,

���������
	�

� ����� , where� and � areconstants,andthelog-logscaleplot
of CCDFis a straightline, asshown in Figure1(a). Usinga
linear regression,we estimatedthat for theAS-2001graph,
theexponent� is closeto 1.22. For theAS-2001+graphin
Figure1(b), anobservation is that thedistribution follows a
power-law lesswell [6].

For the router-level graphs,we have alsoestimatedtheir
power-law exponents.However, asevident in Figure1(c-f),
it appearsthatthepower-law distribution for therouter-level
graphsdoesnot fit our empiricaldatasets.This is particu-
larly thecasefor theLucentgraphandfor theSkittergraphs,
for which the tails of the distributionsdrop fasterthanany
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Figure 1. Vertex degree distrib utions of the AS-level
and router -level Internet graphs.

power-law. In [4], Weibull distribution was found to pro-
vide a goodfit to many Internetobjectsizedistributions. Its
tail takeson theform � ��������� �"! , where # is thescaleparam-
eter and $ is the shapeparameter. Using rank regression
on Y-axis,we estimatedthattheWeibull fits theseempirical
distributionsbetter, thoughnot perfectly.

Isn’t the Inter net A Small-world Graph?
In an influential paper[23], Watts and Strogatz defineda
rangeof graphstermedsmall-world graphs. Small-world
graphsarehighly clustered,like regulargraphssuchaslat-
tices; yet they have typically shortdistancesbetweenarbi-
trary pairs of vertices,like randomgraphs. The structural
propertiesof thesegraphsarequantifiedby two metrics:the
characteristicpathlength % andtheclusteringcoefficient & .
As in [23], wedefine

Definition 1 Characteristicpath length % is the numberof
edges in the shortestpath betweentwo vertices,averaged
over all pairsof vertices.

Definition 2 Clusteringcoefficient & is definedas follows.



Table 1. Internet graphs used in this stud y.
Graphs AS-2001 AS-2001+ Lucent Scan+Lucent Skitter Skitter-CA

Number of vertices 11174 11461 112669 282672 258329 145067
Mean degree 4.19 5.71 3.21 3.15 3.39 2.44

Maximum degree 2389 2432 423 1973 412 359
Fit distribution Power law Power law Weibull Power law Weibull Weibull

( ')( 1.22) ( ')( 1.22) ( *)( 0.49) ( ')( 1.7) ( *)( 0.48) ( *)( 0.48)

Considera vertex + which has ,.- neighbors. There are at
most ,.-
/0,.-2143�576.8 edgesamongthese,9- neighbors. Let :;-
denotethe fraction of theseedgesthat actually exist. : is
theaverageof :;- overall verticeswith degreeat leasttwo.1

Following the original definition in [23], a small-world
graphhastwo properties:(1) its < is not muchlarger than
< random, thecharacteristicpathlengthof arandomgraphwith
thesamenumberof verticesandedges,and(2) its : is much
larger than : random, the clusteringcoefficient of a random
graph.2 It is not difficult to seethat for a connectedran-
domgraphwith = verticesandwith anaveragedegreeof , ,
< random >@?�A =�6 ?BA , and : random > ,
6C= .

To show thatthesmall-world phenomenonholdsfor both
theAS-level androuter-level Internetgraphs,we computed
their characteristicpath lengthsandclusteringcoefficients.
Resultsare shown in Table 2. For comparison,we have
alsogeneratedcorrespondingrandomgraphswith approxi-
matelythesamenumberof verticesandedges,andcomputed
< random and : random by averagingover a numberof random
graphinstances.Therandomgraphscanbedisconnected.In
suchcases,the largestconnectedcomponentsareused.Ta-
ble 2 shows that the valuesof < for the Internetgraphsare
not muchlarger than < random. Indeed,in most instances,<
is smallerthan < random. Table2 alsoshows that : is larger
than : random by 3-to-5 ordersof magnitude(Note that this
significantdifferencemay not be the artifact dueto the in-
completenessof theInternetgraphsunderstudy).Thesetwo
observationsprovide clearevidenceof thesmall-world phe-
nomenonin theInternettopologies.

In [5], AS-level graphswerefoundto exhibit small-world
behavior. Our findingscomplementtheir work by showing
thattherouter-level graphsarealsosmall-world.

3.2.CauseOne: High Variability of Vertex Degree

Onequestionis whetherthe variability of vertex degree
can introducesmall-world behavior, given that all Internet

1Since DFE is undefinedwhen GHEJILK , this averagingexcludesvertices
with only oneneighbor. If a graphhasmany verticeswith degreeone(es-
peciallywhenvertex degreeis highly skewed),thenall of themareignored.
We believe it is a limitation of theoriginalmetrics.

2In theoriginaldefinition,it is notclearwhatis notmuch larger M value
andwhat is much larger D value. We considerM not muchlarger if it is
only a fraction larger thanthat of a randomgraph. We consider D much
largerif it is ordersof magnitudelargerthanthatof a randomgraph.

graphsunderstudyhavehighly variabledegree.
To study the effect of high variability of vertex degree

distributionsonsmall-world behavior, wegeneratedrandom
graphswhosevertex degreedistribution follows a power-
law. For sucha distribution, the CCDF is definedas 3N1O /�P
5RQTSCP�U�V , where S is a constant. We usea random
matchingof the degreesto generategraphs. In addition,
if the resultinggraphis disconnected,its largestconnected
componentis used. We realizedthat therecanbe different
randommatchingalgorithmssuchas the one in [1]. Nev-
ertheless,even if we usedifferent randommatchingalgo-
rithms,theresultsarestill verysimilar.

We generatedgraphs with about 10000 vertices and
100000vertices,respectively. Theaveragevertex degreeis
fixed at 4.2. The valueof W variesover a wide range. The
constantfactor S is determinedsuchthat theaveragevertex
degreeis roughly equalto 4.2. We ensuredthat neitherthe
numberof verticesnor theaveragevertex degreeof thegen-
eratedgraphsdepartsfrom their target valuesby morethan
2%. Wecomputedthecharacteristicpathlengthandcluster-
ing coefficientof thesegraphs,andplottedthemin Figure2.
Eachpoint representsonegraphinstance.

Figure 2 indicatesthat smaller W valuesare consistent
with shortercharacteristicpathlengthsandmuchlargerclus-
teringcoefficients.Notethata smaller W meanshighervari-
ability of vertex degreedistribution. The presenceof both
short characteristicpath length and high clusteringcoeffi-
cient is thesignatureof small-world graphs.Thus,we con-
jecturethata highly skewedpower-law vertex degreedistri-
bution is apossiblecauseof small-world behavior.

It has beenoften observed that vertex degree distribu-
tionsdo not fit power-law distributionswell [4, 6, 19]. Nev-
ertheless,we found that as long as the vertex degreeex-
hibits high variability, otherdistributionscanalsogive rise
to small-world behavior. To show this, we have generated
randomgraphswhosevertex degreefollows Weibull distri-
bution. TheCCDFof Weibull distribution is X.UZYB[�\^]`_"a . The
valueof b variesfrom 0.2 to 2.0, andthe valueof c is de-
terminedsuchthat theaveragevertex degreeis still closeto
4.2. For eachgeneratedgraph,we computedits < valueand
: value. The resultsare plotted in Figure 3. Notice that
the resultswe obtainedhereusingWeibull distribution are
similar to thosewe obtainedusingpower-law distribution.
Moreover, a smallervalueof b for Weibull distribution (i.e.,



Table 2. Characteristic path length and clustering coefficient of the Internet graphs.
Graphs AS-2001 AS-2001+ Lucent Scan+Lucent Skitter Skitter-CAd

3.637 3.535 10.02 8.803 11.36 16.26e
0.432 0.4943 0.1001 0.0996 0.0233 0.0109d

random 6.797 5.547 10.49 11.38 10.12 15.73e
random 0.0003 0.0003 0.000022 0.000007 0.000014 0.000012
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Figure 2. Small-w orld behavior as the result of
power-law ver tex degree distrib ution.
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Figure 3. Small-w orld behavior as the result of
Weibull ver tex degree distrib ution.

a heavier tail andhighervariability of vertex degree)results
in smallerh andin muchlarger i . Thus,weconjecturethat,
high variability of vertex degreedistributions,whetherit is
power-law or otherdistributions,cancausesmall-world be-
havior.

3.3.CauseTwo: Preferencefor Local Connectivity

So far we have shown that the high variability of degree
resultsin small-world behavior. But, arethereothercauses?
To answerthis question,we first conductedthe following
experiment.We generatedgraphswhosevertex degreedis-
tribution followsexactly thesamedistributionof therealIn-
ternetgraphs. However, the edgeswere createdrandomly
using a randommatching. In this way, we preserved the
high variability of vertex degree,but destroyed othertopo-
logical propertiesthatmayexist in real Internetgraphs.We
call thesesyntheticgraphsrandomizedInternetgraphs.
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Figure 4. Small-w orld behavior as the result of pref-
erence for local connectivity .

For eachreal Internetgraph,we generateda numberof
randomizedinstances,and for eachwe computedtheir h
and i values,averagedover all randomizedinstances.A
randomizedinstanceis oftendisconnected.However, in our
experiment,its largestconnectedcomponentcontainedmore
than90% of the verticesin the correspondingreal graphs.
Theresultsarereportedin Table3. Comparingtheseresults
with thoseof therealgraphsin Table2 (thefirst two rows),
we canmake the following observations. First, for the AS-
level graphs,the h valuesarevery closeto eachotherand
the i valuesdiffer only by a small fraction (althoughthe
absolutedifferencesarelarge). Second,for the router-level
graphs,the h valuesareconsiderablydifferent, and the i
valuesdiffer by severalordersof magnitude.

Our conclusionsfrom this experimentare the follows.
First, clearly there are other causesthat contribute to the
small-world behavior of theInternettopologies.Thoseother
causeslead to larger clusteringcoefficient and longerpath
length. Second,it appearsthat thoseothercausesaremore
pronouncedwhen the variability of vertex degreedistribu-
tions is not extremely high. In other words, when the
variability of vertex degreedistributions is extremelyhigh,
which is thecasefor theAS-level graphs,theeffectof those
othercausesis overshadowed. Whenthe variability of ver-
tex degreedistributionsis moderateor low, which is thecase
for therouter-level graphs,theeffectof thoseothercausesis
evident.

So,what aretheseothercausesof small-world behavior
in the Internetgraphs? In attemptingto answerthis ques-
tion, we do not intendto provide a completeandexclusive



Table 3. Characteristic path length and clustering coefficient of randomiz ed Internet graphs.
Graphs Randomized Randomized Randomized Randomized Randomized Randomized

AS-2001 AS-2001+ Lucent Scan+Lucent Skitter Skitter-CAj
3.406 3.346 6.944 5.971 6.704 8.748k
0.2688 0.2507 0.00028 0.00076 0.00016 0.00007

explanationof small-world phenomenon,but to identify one
plausibleexplanation—namely, thepreferencefor localcon-
nectivity in the Internet. Indeed,this possibleexplanation
was inspiredby the work of WattsandStrogatz [23], who
found that if only a portionof theedgesof a regular lattice
are reconnectedrandomly, but most edgesare intact, then
theresultinggraphwould exhibit small-world behavior. By
doing so, the clusteringcoefficient remainslarge dueto lo-
cal connectivity, but the characteristicpathbecomescloser
to thatof randomgraphsdueto remoteconnectivity.

To illustrate this possible causeof small-world phe-
nomenon,we generateda setof 10000and100000vertices,
which we randomlyplacedon a two-dimensionalplane.We
settheaveragevertex degreeto 4.2. Thevertex distribution
is the sameasthat of a randomgraphwith the samenum-
ber of verticesandedges.Specifically, the distribution has
anexponentiallydecayingtail, i.e. low variability. Connec-
tionsbetweenverticesweremadeasfollows. For eachver-
tex l with degree m.n , on averagel is connectedto its oFm9n
nearestneighbors.Theotheredgesof l arerandom.Here,p�q o qsr

is theprobabilityof local connectivity, which we
call local probability. We varied o to generatemany graph
instancesandcomputedtheir t valuesand u values. The
resultsareplottedin Figure4, whereeachpoint represents
onegraphinstance.

The resultsin Figure 4 reveal that preferencefor local
connectivity leadsto small-world graphs.First, the charac-
teristicpathlengthincreasesslowly wheno is smallor mod-
erate.Second,theclusteringcoefficient increasesdrastically
wheno is smallor moderate.In overall,thereis awide inter-
mediateregimefor o that yields thecharacteristicsignature
of small-world graphs.

3.4.Discussions

How doeshigh variability of vertex degreedistributions
resultin small-world behavior? With suchhighvariability, it
is likely that two interconnectedvertices,say v and l , will
have thesameneighbor, say w . This occursmorefrequently
when w is a vertex with an extremely high degree, even
thoughthe edgesaremaderandom. An exampleis shown
by Figure5(a). It meansthat v , l , and w form a triangle.
Suchapatterncontributesdirectly to thecomputationof uyx ,
u;n , and u;z , and resultsin larger averageclusteringcoef-
ficient u , accordingto its definition. Intuitively, u grows
with thevariability of vertex degree. Also, noticethatwith

u

w

v

(a)

w

u

v

(b)

Figure 5. An illustration of str ong clustering caused
by (a) high variability of ver tex degree , as ver tices
tend to have common neighbor s (those with ex-
tremel y high degrees) and hence tend to have large
clustering coefficient, (b) pref erence for local con-
nectivity , as nearb y ver tices tend to form triangles
and hence tend to have large clustering coefficient.

highly variablevertex degree,theaveragedistancebetween
two vertices( t ) is short. This is becausethe shortestpath
is usuallythroughthoseextremelypopularvertices.That is,
highly popularverticesserveasgoodnavigatorsin thegraph.

How does preferencefor local connectivity result in
small-world behavior? The answer to this question is
straightforward. With a non-negligible probability of a lo-
cal connection,if a vertex v is connectedto l and w , then
it is likely that l and w arealsocloseto eachother. Seethe
examplein Figure5(b). As aresult,thereis anon-negligible
probability that a triangle will form amongthesevertices,
resultingin a higherclusteringcoefficient. Meanwhile,as
long astherearestill many long-rangeedges(short-cuts)in
the graph,it is still easyto find a short path betweentwo
randomlychosenvertices. Thoseverticeswith long-range
edgesserveasgoodnavigators.

Both high variability of vertex degreedistributions and
the preferencefor local connectivity appearto be plausi-
ble causesof small-world behavior. In particular, thehighly
variablenatureof vertex degreedistributionsis similar to the
high-variablenatureof many other Internetartifacts. Such
distributionsmaybetheresultof somespecificprocessesre-
latedto theevolutionof theseartifacts[3], or they mayexist
due to other reasons[19]. Preferencefor local connectiv-
ity maybe explainedfor both the router-level andAS-level
topologiesasfollows. At the router-level, links arecreated
by consideringthedistancessincetherearetighterphysical



constraints(therearecertainlyotherrelevantfactorssuchas
administrativeconsiderations,whichmaycausehierarchy of
the topology). At the AS-level, althoughthe physical dis-
tancein a spaceis lessimportant,therecanbeanotherkind
of locality, for example Internet ServiceProviders (ISPs)
mayform cliquesdueto theirbusinessrelationship.

To summarizeourfindingsin this section:{ Higher variability of vertex degreedistributions leads
to shortercharacteristicpathlengthandlarger cluster-
ing coefficient. Extremelyhigh variability gives rise
to small-world behavior, which is truefor theAS-level
topology.{ When the variability of vertex degreedistributions is
not high enough,it alonedoesnot causesmall-world
behavior, which is truefor therouter-level topology.{ Preferencefor local connectivity is a possiblecauseof
small-world behavior. This causeappearsmore pro-
nouncedfor therouter-level topology.

Our findingsimply thefailureof theBarab́asi-Albertmodel
asanexplanationof Internetgrowth andevolution [3]. Re-
cently in [26], thesamegrouprecognizedthe limitationsof
their original modelandcombineddistancedependencein a
new hybrid model. Severalotherstudies[6, 19, 4, 25] have
alsocasteddoubtson the adequacy of the Barab́asi-Albert
model. However, nonehasexaminedthe causesof small-
world phenomenonasevidence.Specifically, the Barab́asi-
Albert model targetspower-law degreedistributions. With
only power-law degree distributions, the resulting graphs
tend to have shortercharacteristicpath lengthsand lower
clusteringcoefficients. The comparisonsbetweenTable 2
and Table 3 provide the evidence. When the power-law
exponent | departsmuch from unity, the Barab́asi-Albert
model fails to generatesmall-world graphsat all. This re-
sult also calls for bettermodelsto generatemore realistic
Internettopologies.

4. GeneratingSmall-world Inter net

Basedon our characterization,we have proposedbetter
modelsto generatesmall-world Internet topologies. This
sectiondescribessuchamodel.It not only capturesvariable
vertex degree,but alsocapturesthelocalpreferencecauseof
small-world behavior.

Previous studies[14, 26] have shown the probability of
having an edgebetweentwo verticescan be explicitly ex-
pressedasa function of their distance.Let us considerthe
following model: theprobabilityof having anedgebetween
two vertices } and ~ is proportionalto �������� � , where � ��� � is
the distancebetween} and ~ and � is a non-negative con-
stant.It wasoriginally usedby Kleinberg [13] to generalize
the Watts-Strogatz model. The key is the choiceof � . If �
is larger, �������� � decaysfasterandthe edgetendsto be local;

Given a sequenceof vertex degrees and the exponent of
distance-dependence� , generatea graphwith � verticesas
follows:
(1) Randomlyplace � verticeson a plane. A degree �9� is

assignedto eachvertex � , ��������� .
(2) Createedgesamongthe vertices. For eachvertex � , in

descending�9� order, repeatcreateedges(if not enough
yet) asfollows:

– Choose � with probability proportional to �7�����`� � ,

where���9� � is theEuclideandistancebetween� and
� , suchthat(i) �¡ ¢ � and(ii) thereisnoedge£"��¤��¦¥
yet. Createedge £"��¤��¦¥ .

Figure 6. A model for generating small-w orld
graphs with variab le degree .
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Figure 7. A rang e of small-w orld graphs generated
by our small-w orld model.

but � cannot be too large sinceotherwisethe lack of long-
rangeedgeswould leadto an excessively large § value. If
� is smaller, � ������ � decaysslowly and long-rangeedgesbe-
comefrequent;but � cannotbetoosmallsinceotherwisethe
graphswould becloseto random(i.e., thevalueof ¨ would
beexcessively small). Usingthis model,Figure6 describes
animplementation.

This modelproducesgraphsexhibiting a wide rangeof
small-world behavior. For example,we generatedgraphs
with 10000verticesandwith averagedegree4.2. Vertex de-
greefollows a power-law with exponent | . We variedpa-
rameters| from 1.05to nearly8.0and � between0 and4.5.
For eachpairof | and � , wegeneratedtengraphs,computed
their average§ valueand ¨ value,andplottedthemin Fig-
ure 7. We observed that when | is small or � is moderate,
both thecharacteristicpathlengthandtheclusteringcoeffi-
cientsatisfytherequirementsfor small-world graphs.

We havealsousedthis modelto generatesyntheticInter-
netgraphsthatcloselyresembletherealInternetgraphs.We
describehereour effort to usethe describedmodel to syn-
thesizetheLucentrouter-level graph.



We first obtainedthesequenceof vertex degreefrom the
realgraph,andfed it into thegraphgenerator. Theotherpa-
rameter© wassetto 3.15.Theoutputlargestconnectedcom-
ponenthas111328verticesandthemeandegreeis 3.24.We
thencomputedits characteristicpathlength9.814andclus-
teringcoefficient0.193.Comparingthemto thoseof thereal
graph,we foundthat thepathlengthsareclosebut theclus-
teringcoefficientsarestill different. A possibleexplanation
is asfollows. Themodelassumestheprobabilityof having
anedgebetweentwo verticesª and « is proportionalto ¬�­�®¯�° ± .
But the distance-dependencein the real graphmay not fol-
low a power-law well [14]. In otherwords, the power-law
relationshipmayover-estimatelocalpreferencewhen ¬ ¯�° ± is
small. As a result,the modeltendsto producehigherclus-
tering coefficient. In the next section,this graphis usedin
oursimulationstudyof multicastscaling.

5. Implications on Multicast Scaling

In this section,weusesimulationto studythescalingbe-
havior of IP multicast, i.e., how the multicasttreesize in-
creaseswith thegroupsize.In oursimulation,weusedthree
topologiesin comparison. The first is the original Lucent
router-level graphin Table1. The secondis generatedus-
ing the power-law randomgraphmodel in [1]. We found
the generatedlargestconnectedcomponent(after eliminat-
ing duplicatededgesandself-loops)has110986verticesand
meandegree3.18.Noticethatthis graphpreservestheorig-
inal vertex degreedistribution in theLucentgraphonly. The
third topology, aswedescribedbefore,is generatedusingour
small-world model in Figure6. It has111328verticesand
the meandegreeis 3.24. Thesethreegraphshave approx-
imately the samenumberof verticesandedges.However,
their small-world behaviors aredifferent. Our small-world
graphresemblestherealLucentgraphbetter.

To studythescalingbehavior of IP multicastwith short-
estpathtree,we proceededasfollows. We randomlychose
a vertex asthe server and ² otherverticesasclients in the
graph.Thena shortestpathtreeis constructed.Thesizeof
thistreewascomputedandcomparedto theaveragedistance
from theseclientsto theserver. Theratio is thenormalized
multicasttreesizeandit reflectshow thetreesizeincreases
with ² . For eachvalueof ² we repeatedabove simulation
many times and computedthe averagemulticast tree size.
By varying ² we plotted the scalingbehavior of IP multi-
casttree. Figure 8 comparesthe resultsusing the Lucent
graphandusingthedegree-onlygraph.Figure 9 compares
theresultsusingtheLucentgraphandusingoursmall-world
graph.

We observed thatusingthedegree-onlygraph,IP multi-
casthasworsescalingbehavior thanit usingtherealLucent
graph. On the contrary, using our small-world graph, the
scalingbehavior fits that using the real Lucent graphvery
well. It thussuggeststheimportanceof capturingthesmall-
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Figure 8. IP multicast scaling: degree-onl y topol-
ogy vs Internet topology .
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world behavior in theInternettopologies.Without doingso,
flawed topology generationmodelsmay underestimatethe
efficacy of IP multicastin reducingoverall network cost.

Weshouldalsopointoutthataccuratemodelingof theIn-
ternettopologyhelpsunderstandtheso-calledChuang-Sirbu
law [7] of IP multicastscaling.To betterillustratethispoint,
we have alsoshown thelog-scaleplotsof our simulationre-
sultsin thefigures.TheChuang-Sirbu claimsthatmulticast
treesizeincreasesas ²´³¶µ · , astraightline in thelog-logscale
plots. Fromour simulation,we canmake two observations.
First, it appearsmulticasttreesizeincreasesfasterthan ²´³¶µ · ,
i.e., theexponentis larger: we estimatedthetreesizescales
as ²´³Hµ ·¹¸ . Second,we canseethatwith degree-onlygraphs,
the scalingbehavior is far from the Chuang-Sirbu law, but
with small-world graph,thescalingbehavior is closerto the
law. It could suggestthat, small-world behavior (coupled
with the variabledegreenatureof the Internet topologies)
maydraw thetruescalingbehavior line toward,yetnotclose
to, theChuang-Sirbu law.

This simulationstudystronglysuggeststhat the scaling
behavior of multicast dependson the underlying network
topology. Previous work on IP multicastscalingdoesnot
capturethevariabledegreenatureof therealInternet.Hence,
theanalysisdoesnot applyhere.We believe therearemore
intriguing propertiesof theInternetthatalterthescalingbe-
havior, suchasclusteringandhierarchy.



6. Conclusions

This paperhasfocusedon the small-world aspectof the
Internettopology. We illustratedthepossiblecausesof such
behavior anddemonstratedits importanceto evaluatingthe
scalingbehavior of multicasttechniques.Our mainfindings
andconclusionsare:º Two possiblecausesof small-world behavior in theIn-

ternetare (i) high variability of vertex degreeand(ii)
preferencefor local connectivity. Extremelyhigh vari-
ability givesriseto thesmall-world behavior in theAS-
level topology; but when the variability of vertex de-
greedistributionsis moderate,clusteringin small-world
graphsis mainly causedby local connectivity, which is
truefor therouter-level topology.º If Internettopologygeneratorstargetvertex degreedis-
tributionsonly, they generatelessrealistic topologies.
We proposedpromisingmodelsthatcapturesbothver-
tex degreedistributions and preferencefor local con-
nectivity. By doingso,it is easyto generatemorereal-
istic small-world Internettopologies.º IP Multicast treesizedependson the small-world be-
havior of the Internet topology. If Internet topology
generatorstargetvariablevertex degreeonly, thenit is
likely to underestimatetheefficacy of IP multicast.
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