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Abstract

Recenwork hasshownthat the physicalconnectivityof the
Internetexhibits small-worldbehavior Characterizingsu
behavioris importantnot only for genewting realistic Inter-
nettopolagies,but alsofor the properevaluationof network
algorithmsand protocols. Along this line, this papertries
to answerhow small-world behaviorarisesin the Internet
topolagiesand howit impactsthe performanceof multicast
techniques.Fir st, we attribute small-world behaviorto two
possiblecausesthevariability of vertex degreeandthepref-
erenceof verticesto havelocal connections We foundthat
bothfactors contribute with differentrelative degreesto the
small-worldbehaviorof the AS-level and routerlevel Inter-
nettopolagies. For the AS-level topolagy, we haveobserved
that extremelyhigh variability of vertex degreeis suficient
to causesmall-worldbehavior but for therouterleveltopol-
ogy, prefelencefor local connectivityplaysa moreimportant
role. Secondyeproposesimplemodelso geneatemorere-
alistic small-worldinternettopolagies. Our modelsconsider
both causeof small-worldbehavior Third, we demonstate
thesignificanceof our work by studyingthescalingbehavior
of IP multicasttreesize We showthatif topology genertors
captuie only the variability of vertex degree they are likely
to undeestimatethe eficacyof multicasttechniques.

1. Intr oduction

Becauseof its phenomenabrowth in size, scope,and
complity, aswell asits increasinglycentralrole in soci-
ety, the Internethasbecomean importantobject of study
and evaluation. Moreover, as possibly the most comple
and largestartifact of humanengineeringthat was not de-
liberately designed,the Internetmust be approachedrery
muchlike a naturalor physical phenomenonywhoseemer
gent propertiescan not be understoodby simple composi-
tion of well-understoodbehaiors. It is for thesereasonghat
thelastfew yearshave withesseda suigein researclihatat-
temptsto empirically identify invariantsaboutthe topologi-
cal propertiesof theInternet.
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Characterizingnternettopological properties while in-
terestingsimply for the sale of discovery, is crucial for
the evaluation of new protocolsand designchoices. In-
deed,mary significantinnovationsin the networking com-
munity in recentyearshave resultedfrom a more accurate
understandingf thefundamentapropertief thatcomple
system. Not only is the characterizatiorof Internetemer
gentpropertiesmportant,but alsoexplaining how andwhy
thesepropertiesemegeis extremelyvaluablefor mary rea-
sons.Suchanunderstandingvould allow usto build models
thatcould be usedto generatesyntheticartifacts(e.g., large
graphsthatresemblehe‘“real” Internetwell. Suchsynthetic
artifactsarenecessaryor the simulationandproperevalua-
tion of variousnetwork algorithmsandprotocols.

This paper focuseson one aspectof Internet topol-
ogy characterizationwhich attractedmuch attentionin re-
centyears—namelyhe prevalenceof the small-world phe-
nomenorin thelnternetroutinggraphs.Usingacarefulanal-
ysis of real datasetswe investigate what causethe small-
world phenomenon.We illustrate how andto what extent
the small-world phenomenotis causeddy the variability of
vertex degree;how andto whatextentsuchphenomenoiis
causedby the preferenceof verticesto have local connec-
tions. We shaw thatbothcausegontritutewith differentrel-
ative dggreego the small-world behavior of theautonomous
system(AS) level androuterlevel topologies. This finding
provides a basisfor promisingapproacheso the develop-
mentof moreaccuratdnternettopologygeneratordeyond
degree-onlymodelssuchasthe Baralasi-Albertmodel[3, 2]
andthe power-law randomgraphmodel[1]. We describea
new modelto generatdnternettopologiesthat exhibit both
skewedvertex degreedistributionsandthe preferencdor lo-
cal connectvity, and shav the small-world behaior in the
syntheticgraphs.

To demonstratehe significanceof our characterization,
we studythescalingbehaior of IP multicast.We shav how
multicasttree size increaseswith the group size, by simu-
lating multicastin different network topologies,including
randomgraphswith highly variabledegree,our small-world
graphs,andreal Internetgraphs. The resultsshav that us-



ing degree-basedopology models, it is likely to underes-
timate the efficacy of multicasttechniques;but using our
small-world model, the scalingbehaior is moreaccurately
ervisioned.

The paperis organizedasfollows. Section2 reviews re-
centwork on topology characterization.In Section3, we
describethe Internetrouting graphsunderstudy andillus-
tratetwo possiblecause®f their small-world phenomenon.
We describeandevaluateour new modelto generatesmall-
world topologiesin Sectiond. In Section5, we usesimula-
tion to studythe scalingbehaior of multicast. Our findings
andconclusionsaresummarizedn Section6.

2. Related Work

Recentwork on Internettopology characterizatiorhas
beenrelatedto one featuredistinct from the early Erdds-
Réryi randomgraphmodel[9]: highly variablevertex de-
gree. In suchnetworks, verticeshave a non-uniformproba-
bility of beingconnectedo others,with someverticeshav-
ing extremelylarge numberof neighbors. The degreedis-
tributions were often obsened to follow approximatelya
power-law [10].

Pawver-law networks are particularly emphasizedy the
work of BaralasiandAlbert [3, 2] who exploreda promis-
ing classof modelsthatyield strict powver-law vertex degree
distributions. In their model (calledthe B-A model),three
genericmechanismsare defined: (1) Incrementalgrowth,
which follows from the obsenation that networks develop
by addingnew verticesor new edges.(2) Preferentiakcon-
nectvity, which relieson anobsenationthathighly popular
verticesare more likely to be connectedagain in the pro-
cessof incrementabrowth, i.e. asocalled“rich-get-richer”
phenomenon(3) Re-wiring,which remosessomelinks ran-
domly andre-wiresthemaccordingto the preferentialcon-
nectvity mechanism. The combineduse of thesemecha-
nismsdrivesthe evolution of the network to a steadystate,
in which the vertex degreedistribution follows a power-law
(socalleda scale-fregroperty).

Therearedebatesn the ability of the B-A modelto ex-
plain the evolution of the Internet. First, the mechanisms
of the B-A modelarefoundto beinconsistenwith obsera-
tionsfrom thereallnternetgrowth. For example preferential
connectvity wasshown to bestrongelin the AS-level graph
growth andre-wiringwasshowvn to beaninsignificantfactor
[6]. Secondthestrict power-law vertex degreedistributions
of theB-A modelcannotbe confirmed[6]. Indeed Internet
objectsizesare bettercapturedby other distributions such
asWeibull distribution [4]. This would imply thatthe high
variability of vertex degreesin the AS-level graphsmay be
the resultof mechanismg¢19] otherthanthosein the B-A
model. A morerecentstudy[15] revealedthateventhe ob-
sened powerlaw degreedistributions can be the result of
samplingbiasin traceroute-basetheasurement.

One interestingwork [5] made some connectionsbe-
tweenpower-law networksandsmall-world graphg17, 23].
Small-world graphsexhibit connectvity propertiesthatare
betweenrandomand regular graphs(e.g., regular lattices).
Like regular graphsthey arehighly clusteredyyet like ran-
domgraphsthey have typically shortdistancedetweerar
bitrary pairsof vertices. It hasbeenshavn that mary net-
works have similar small-world property In [5], the au-
thors obsened that most Internettopology generatorsap-
ture powver-law vertex degreedistributionswell, but usually
donotdoaswell in capturingtheclusteringphenomenoex-
hibitedin theInternettopologies.They proposed variantof
the B-A modelby usinga differentpreferentialconnectvity
mechanism.Neverthelessthis variation of the B-A model
is still degree-basedIt obtainsstrongerclusteringby gen-
eratinga more skewed vertex degreedistribution. No other
causef clusteringand small-world behaior wereidenti-
fied. Moreover, theirnew modeltargetsthe AS-level Internet
topology but nottherouterlevel topology

In additionto thetopologygenerator$16, 5] inspiredby
theB-A modelthereareothergeneratorshathave beenpro-
posedandusedto modelthe Internet. The Waxmanmodel
[24] extendsthe classicalErdés-Reryi modelby randomly
distributing verticesonaplaneandcreatingedgesy consid-
eringthedistancebetweerthevertices.Thewidely usedGT-
ITM Internet-specifitopologygeneratof27] takesa hierar
chicalapproach¢apableof creatingargegraphsy compos-
ing smallerrandomgraphs.Inet[12] assigngdegreesto the
vertices,following a power-law distribution, andthenuses
alinearpreferentialmodelto realizethe assignedrertex de-
grees.The power-law randomgraphmodelin [1] generates
degreedistributions that strictly follow a powverlaw. A re-
centstudy[20] comparediegree-basetbpologygenerators
suchaslInet andstructuraltopologygeneratorsuchasGT-
ITM.

3. Characterizing Small-World Inter net

This section describesthe AS-level and routerlevel
graphs used in our characterization,demonstrategheir
small-world behavior, andreason$ow suchbehaior arises.

3.1.Evidenceof Small-world Behavior

Inter net Graphs

Table 1 summarizesghe AS-level graphsand routerlevel

graphsusedin this paper The first two are AS-level In-

ternetgraphs. One was obtainedfrom the routing tables
at route-viavs.orgon-ix.net. Since1997,the routing tables
have beencollectedoncea day by the National Laboratory
for Applied Network ResearciNLANR) [18]. The graph
we are usingis datedMay 26, 2001. Hereafter we call it

the “AS-2001” graph. It wasfound that the Oregon route-
views is incomplete[6]. We obtainedthe secondAS-level



graphfrom [21], which incorporatesnot only the Oregon

route-viavs, but alsothe Looking glassdataandthe Rout-

ing registry data. This graphis also datedMay 26, 2001.
Hereafter we call it the “AS-2001+" graph. Although AS-

2001+hasonly afew morevertices,jt hasmuchmoreedges
(it hasabout40% moreedges.Thereforejt hashigheraver

agevertex degree).

We usefour routerlevel graphs. The first was obtained
from traceroutesollectedby the InternetMapping project
at LucentBell LaboratoriesaroundNovember1999. Here-
after, this graphis calledthe “Lucent” graph. The second
routerlevel graphwasobtainedby mergingthelLucentgraph
and the SCAN graph obtainedaround October/Neember
1999usingthe Mercatorsoftware[11]. Hereafterthis graph
is calledthe “Scan+Lucent’graph. In preprocessingpoth
graphs,we discardeda few edgeswith undefinedvertices.
The percentagef theseedgeswas negligible. Thesetwo
graphsareavailableat[22].

The other two recentrouterlevel graphswere obtained
from [8]. They were measuredisingthe Skitter tool. We
obtaineda snapshon Octoberl15, 2002, recordedby 13
of the 19 Skitter monitorsworldwide. We meigedthe cor
respondingl 3 subgraphsand obtainedthe “Skitter” graph.
In addition, we also usea subgraphrecordedby the mon-
itor locatedat Palo Alto, CA. This subgraphis called the
“Skitter-CA’ graph.The useof this subgraphs intentto in-
dicatethattheobsenedsmall-world invariantsarenotdueto
theincompletenessf thegraphs.

Is the Inter net A Power-law Network?

Figure 1 shavs the complementancumulatize distribution
function (CCDF) 1 — F(d) of vertex degreesfor the six
graphsunderstudy Here F(d) is definedasthe probabil-
ity thata vertex hasdegreenot higherthand. The CCDF
guantifiesthe probability thata vertex hasa degreed larger
thana certainvalue. A commonpropertyof thesegraphsis
theirlongtails. Thatis, vertex degreeis highly variable. The
level of variability appeardo be differentthough.

Previous work [10] hasshaowvn that vertex degreedistri-
butionsfollow a power-law. This is bestillustratedby the
AS-2001graph.With apower-law distribution,1 — F'(d) =
cd~ %, wherec anda areconstantsandthelog-log scaleplot
of CCDFis a straightline, asshavn in Figure1(a). Usinga
linear regressionwe estimatedhat for the AS-2001graph,
the exponenta is closeto 1.22. For the AS-2001+graphin
Figure1(b), an obsenationis thatthe distribution follows a
power-law lesswell [6].

For the routerlevel graphswe have alsoestimatedheir
power-law exponents.However, asevidentin Figurel1(c-f),
it appearshatthe power-law distribution for therouterlevel
graphsdoesnot fit our empirical datasets.This is particu-
larly thecasefor the Lucentgraphandfor the Skittergraphs,
for which the tails of the distributionsdrop fasterthanary
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Figure 1. Vertex degree distrib utions of the AS-level
and router -level Internet graphs.

powerlaw. In [4], Weibkull distribution was found to pro-

vide a goodfit to mary Internetobjectsizedistributions. Its

tail takeson theform e=(#/m”  wheren is the scaleparam-
eterand 3 is the shapeparameter Using rank regression
on Y-axis,we estimatedhatthe Weibull fits theseempirical
distributionsbetter thoughnot perfectly

Isn’t the Inter net A Small-world Graph?

In an influential paper[23], Watts and Strogatz defineda
rangeof graphstermedsmall-world graphs Small-world
graphsarehighly clustered ik e regular graphssuchaslat-
tices; yet they have typically shortdistancesetweenarbi-
trary pairs of vertices,like randomgraphs. The structural
propertief thesegraphsarequantifiedby two metrics:the
characteristipathlength L andthe clusteringcoeficient C.
Asin [23], we define

Definition 1 Characteristicpathlength L is the numberof
edgesin the shortestpath betweentwo vertices,averlged
over all pairs of vertices.

Definition 2 ClusteringcoeficientC is definedas follows.



Table 1. Internet graphs used in this study.

| Graphs | AS-2001 [ AS-2001+ | Lucent [ ScantLucent | Skitter [ Skitter-CA |
Number of vertices 11174 11461 112669 282672 258329 145067
Mean degree 4.19 5.71 3.21 3.15 3.39 2.44
Maximum degree 2389 2432 423 1973 412 359
Fit distribution Power law | Power law Weibull Power law Weibull Weibull
(a=1.22) | (a = 1.22) | (B~ 0.49) (a=1.7) (B=~0.48) | (B8=~0.48)

Considera vertex v which hask, neighbos. Thee are at
mostk, (k, — 1)/2 edggsamongthesek, neighbos. LetC,
denotethe fraction of theseedgesthat actually exist. C is
theaverage of C,, overall verticeswith degreeat leasttwo

Following the original definition in [23], a small-world
graphhastwo properties:(1) its L is not muchlarger than
Liandom thecharacteristipathlengthof arandomgraphwith
thesamenumberof verticesandedgesand(2) its C is much
larger than Crangom the clusteringcoeficient of a random
graph? It is not difficult to seethat for a connectedran-
domgraphwith N verticesandwith anaveragedegreeof k,
Lrandom~ In N/ 1In k andCrandom~ k/N.

To show thatthe small-world phenomenotoldsfor both
the AS-level androuterlevel Internetgraphs,we computed
their characteristigpath lengthsand clusteringcoeficients.
Resultsare shavn in Table 2. For comparison,we have
alsogenerateatorrespondingandomgraphswith approxi-
matelythesamenumberof verticesandedgesandcomputed
Lyandom and Crandom by averagingover a numberof random
graphinstancesTherandomgraphscanbedisconnectedin
suchcasesthe largestconnecteccomponentareused. Ta-
ble 2 shaws thatthe valuesof L for the Internetgraphsare
not muchlargerthan Liangom INdeed,in mostinstancesL
is smallerthan Liangom Table2 alsoshowsthatC is larger
than Crangom by 3-t0-5 ordersof magnitude(Note that this
significantdifferencemay not be the artifact dueto the in-
completenessf thelnternetgraphsunderstudy). Thesetwo
obsenationsprovide clearevidenceof the small-world phe-
nomenornin the Internettopologies.

In [5], AS-level graphswerefoundto exhibit small-world
behaior. Our findingscomplementheir work by shaving
thattherouterlevel graphsarealsosmall-world.

3.2.CauseOne: High Variability of Vertex Degree

One questionis whetherthe variability of vertex degree
canintroducesmall-world behaior, given that all Internet

1SinceC, is undefinedwhenk, = 1, this averagingexcludesvertices
with only oneneighbor If agraphhasmary verticeswith degreeone (es-
peciallywhenvertex degreeis highly skewed),thenall of themareignored.
We believe it is alimitation of the original metrics.

2|n theoriginal definition, it is not clearwhatis notmud larger L value
andwhatis mud larger C value. We considerL not muchlarger if it is
only a fraction larger thanthat of a randomgraph. We considerC much
largerif it is ordersof magnituddargerthanthatof arandomgraph.

graphsunderstudyhave highly variabledegree.

To study the effect of high variability of vertex degree
distributionson small-world behavior, we generatedandom
graphswhosevertex degree distribution follows a powver
law. For sucha distribution, the CCDF is definedas1 —
F(d) = cd=*, wherec is a constant. We usea random
matchingof the degreesto generategraphs. In addition,
if the resultinggraphis disconnectedits largestconnected
componenis used. We realizedthat therecanbe different
randommatchingalgorithmssuchasthe onein [1]. Nev-
erthelessgeven if we usedifferentrandommatchingalgo-
rithms,theresultsarestill very similar.

We generatedgraphs with about 10000 vertices and
100000vertices,respectiely. The averagevertex degreeis
fixedat 4.2. Thevalueof o variesover a wide range. The
constanfactorc is determinedsuchthat the averagevertex
degreeis roughly equalto 4.2. We ensuredhat neitherthe
numberof verticesnor the averagevertex degreeof thegen-
eratedgraphsdepartsfrom their target valuesby morethan
2%. We computedhe characteristipathlengthandcluster
ing coeficient of thesegraphsandplottedthemin Figure2.
Eachpointrepresentenegraphinstance.

Figure 2 indicatesthat smaller o valuesare consistent
with shortercharacteristipathlengthsandmuchlargerclus-
tering coeficients. Notethata smallera meanshighervari-
ability of vertex degreedistribution. The presencenf both
short characteristigpath length and high clusteringcoefi-
cientis the signatureof small-world graphs.Thus,we con-
jecturethata highly skewed power-law vertex degreedistri-
butionis a possiblecauseof small-world behaior.

It hasbeenoften obsenred that vertex degree distribu-
tionsdo notfit power-law distributionswell [4, 6, 19]. Nev-
erthelesswe found that as long as the vertex degree ex-
hibits high variability, otherdistributions canalsogive rise
to small-world behaior. To shaw this, we have generated
randomgraphswhosevertex degreefollows Weibull distri-
bution. The CCDF of Weibull distribution is e=@/"” . The
valueof 8 variesfrom 0.2to 2.0, andthe valueof 7 is de-
terminedsuchthatthe averagevertex degreeis still closeto
4.2. For eachgeneratedraph,we computedts L valueand
C value. The resultsare plottedin Figure3. Notice that
the resultswe obtainedhereusing Weibull distribution are
similar to thosewe obtainedusing powerlaw distribution.
Moreover, asmallervalueof g for Weibull distribution (i.e.,



Table 2. Characteristic path length and clustering coefficient of the Internet graphs.

| Graphs | AS-2001 | AS-2001+ | Lucent | Scan+Lucent | Skitter [ Skitter-CA |
L 3.637 3.535 10.02 8.803 11.36 16.26
C 0.432 0.4943 0.1001 0.0996 0.0233 0.0109
Liandom 6.797 5.547 10.49 11.38 10.12 15.73
Crandom 0.0003 0.0003 0.000022 0.000007 0.000014 | 0.000012
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Figure 2. Small-world behavior as the result of
power-law vertex degree distrib ution.
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Figure 3. Small-world behavior as the result of
Weibull vertex degree distrib ution.

a heavier tail andhighervariability of vertex degree)results
in smallerL andin muchlargerC'. Thus,we conjecturehat,
high variability of vertex degreedistributions, whetherit is
power-law or otherdistributions,cancausesmall-world be-
havior.

3.3.CauseTwo: Preferencefor Local Connectivity

Sofar we have shovn thatthe high variability of degree
resultsin small-world behaior. But, arethereothercauses?
To answerthis question,we first conductedthe following
experiment. We generatedyraphswhosevertex degreedis-
tribution follows exactly the samedistribution of therealIn-
ternetgraphs. However, the edgeswere createdrandomly
using a randommatching. In this way, we presered the
high variability of vertex degree,but destrgyed othertopo-
logical propertieghat may exist in real Internetgraphs.We
call thesesyntheticgraphsrandomizednternetgraphs

(a) Characteristic path length (b) Clustering coefficient
Figure 4. Small-w orld behavior as the result of pref-
erence for local connectivity .

For eachreal Internetgraph,we generatech numberof
randomizedinstances,and for eachwe computedtheir L
and C values,averagedover all randomizednstances. A
randomizednstancds oftendisconnectedHowever, in our
experimentjts largestconnectedomponentontainednore
than 90% of the verticesin the correspondingeal graphs.
Theresultsarereportedin Table3. Comparingtheseresults
with thoseof thereal graphsin Table 2 (the first two rows),
we canmake the following obsenations. First, for the AS-
level graphs,the L valuesare very closeto eachotherand
the C valuesdiffer only by a small fraction (althoughthe
absolutedifferencesarelarge). Secondfor the routerlevel
graphs,the L valuesare considerablydifferent, and the C
valuesdiffer by severalordersof magnitude.

Our conclusionsfrom this experimentare the follows.
First, clearly there are other causesthat contritute to the
small-world behavior of thelnternettopologies.Thoseother
causedeadto larger clusteringcoeficient and longer path
length. Secondjt appearghatthoseothercausesaremore
pronouncedvhen the variability of vertex degreedistribu-
tions is not extremely high. In other words, when the
variability of vertex degreedistributionsis extremely high,
whichis the casefor the AS-level graphsthe effect of those
othercausess overshadwed. Whenthe variability of ver-
tex degreedistributionsis moderateor low, whichis thecase
for therouterlevel graphstheeffect of thoseothercausess
evident.

So, what aretheseothercausesf small-world behaior

in the Internetgraphs? In attemptingto answerthis ques-
tion, we do not intendto provide a completeand exclusive



Table 3. Characteristic path length and clustering coefficient of randomiz ed Internet graphs.

Graphs | Randomized |Randomized |Randomized | Randomized |Randomized | Randomized
AS-2001 AS-2001+ Lucent Scan+Lucent Skitter Skitter-CA
L 3.406 3.346 6.944 5.971 6.704 8.748
C 0.2688 0.2507 0.00028 0.00076 0.00016 0.00007
explanationof small-world phenomenorhut to identify one !
plausibleexplanation—namelythe preferencdor local con-
nectvity in the Internet. Indeed,this possibleexplanation
wasinspiredby the work of Wattsand Strogatz [23], who N
foundthatif only a portion of the edgesof a regularlattice w
are reconnectedandomly but most edgesare intact, then ¢
A\ w

theresultinggraphwould exhibit small-world behaior. By

doing so, the clusteringcoeficient remainslarge dueto lo-

cal connectvity, but the characteristiqppath become<loser
to thatof randomgraphsdueto remoteconnectvity.

To illustrate this possible cause of small-world phe-
nomenonwe generated setof 10000and100000vertices,
which we randomlyplacedon atwo-dimensionaplane.We
setthe averagevertex degreeto 4.2. The vertex distribution
is the sameasthat of a randomgraphwith the samenum-
ber of verticesand edges. Specifically the distribution has
anexponentiallydecayingtail, i.e. low variability. Connec-
tions betweerverticesweremadeasfollows. For eachver
tex v with degreek,, on averagev is connectedo its pk,
nearesheighbors.The otheredgesof v arerandom. Here,
0 < p < 1istheprobabilityof local connectity, whichwe
call local probability. We variedp to generatemary graph
instancesand computedtheir L valuesand C values. The
resultsare plottedin Figure4, whereeachpoint represents
onegraphinstance.

The resultsin Figure 4 reveal that preferencefor local
connectvity leadsto small-world graphs.First, the charac-
teristicpathlengthincreaseslownly whenp is smallor mod-
erate.Secondthe clusteringcoeficientincreasesirastically
whenp is smallor moderateln overall, thereis awide inter
mediateregime for p thatyieldsthe characteristisignature
of small-world graphs.

3.4.Discussions

How doeshigh variability of vertex degreedistributions
resultin small-world behaior? With suchhigh variability, it
is likely thattwo interconnectedrertices,sayu andwv, will
have the sameneighbor sayw. This occursmorefrequently
when w is a vertex with an extremely high degree, even
thoughthe edgesare maderandom. An exampleis shavn
by Figure5(a). It meansthatu, v, andw form atriangle.
Sucha patterncontributesdirectly to the computatiorof C,,
C,, andC,,, andresultsin larger averageclusteringcoef-
ficient C, accordingto its definition. Intuitively, C' grows
with the variability of vertex degree. Also, noticethat with

(@) (b)

Figure 5. An illustration of strong clustering caused
by (a) high variability of vertex degree, as vertices
tend to have common neighbor s (those with ex-
tremely high degrees) and hence tend to have large
clustering coefficient, (b) preference for local con-
nectivity , as nearby vertices tend to form triangles

and hence tend to have large clustering coefficient.

highly variablevertex degree,the averagedistancebetween
two vertices(L) is short. This is becausehe shortestpath
is usuallythroughthoseextremelypopularvertices.Thatis,

highly popularverticessene asgoodnavigatorsin thegraph.

How does preferencefor local connecwity result in
small-world behaior? The answerto this questionis
straightforvard. With a non-ngligible probability of a lo-
cal connectionjf a vertex u is connectedo v andw, then
it is likely thatv andw arealsocloseto eachother Seethe
examplein Figure5(b). As aresult,thereis anon-neligible
probability that a triangle will form amongthesevertices,
resultingin a higher clusteringcoeficient. Meanwhile,as
long astherearestill mary long-rangeedgesshort-cuts)n
the graph, it is still easyto find a short path betweentwo
randomly chosenvertices. Thoseverticeswith long-range
edgessene asgoodnavigators.

Both high variability of vertex degreedistributions and
the preferencefor local connectity appearto be plausi-
ble cause®f small-world behaior. In particular the highly
variablenatureof vertex degreedistributionsis similarto the
high-variablenatureof mary otherInternetartifacts. Such
distributionsmaybetheresultof somespecificprocessege-
latedto the evolution of theseartifacts[3], or they may exist
dueto otherreasonq19]. Preferencdor local connectv-
ity may be explainedfor boththe routerlevel and AS-level
topologiesasfollows. At therouterlevel, links arecreated
by consideringhe distancesincetherearetighter physical



constraintgtherearecertainlyotherrelevantfactorssuchas
administratve considerationsyhich maycausehierarcly of
the topology). At the AS-level, althoughthe physical dis-
tancein a spaces lessimportant,therecanbe anotherkind
of locality, for example Internet Service Providers (ISPs)
may form cliquesdueto their businesselationship.

To summarizeour findingsin this section:

e Higher variability of vertex degreedistributions leads
to shortercharacteristigpathlengthandlarger cluster
ing coeficient. Extremelyhigh variability givesrise
to small-world behaior, which s true for the AS-level
topology

e When the variability of vertex degreedistributions is
not high enough,it alonedoesnot causesmall-world
behaior, whichis truefor therouterlevel topology

e Preferencdor local connectvity is a possiblecauseof
small-world behaior. This causeappearsmore pro-
nouncedor therouterlevel topology

Our findingsimply thefailure of the Baratasi-Albertmodel
asan explanationof Internetgrowth andevolution [3]. Re-
centlyin [26], the samegrouprecognizedhe limitations of

their original modelandcombineddistancedependenci a
new hybrid model. Several otherstudieg[6, 19, 4, 25] have
also casteddoubtson the adequag of the Baralasi-Albert
model. However, none hasexaminedthe causesf small-
world phenomenomas evidence. Specifically the Baratasi-
Albert modeltargetspower-law degreedistributions. With

only powerlaw degree distributions, the resulting graphs
tend to have shortercharacteristigpath lengthsand lower
clusteringcoeficients. The comparisondetweenTable 2

and Table 3 provide the evidence. When the power-law

exponenta departsmuch from unity, the Baratasi-Albert
modelfails to generatesmall-world graphsat all. This re-
sult also calls for bettermodelsto generatemore realistic
Internettopologies.

4. Generating Small-world Inter net

Basedon our characterizationywe have proposecdbetter
modelsto generatesmall-world Internettopologies. This
sectiondescribesuchamodel. It notonly capturessariable
vertex degree,but alsocaptureghelocal preferenceauseof
small-world behaior.

Previous studies[14, 26] have shavn the probability of
having an edgebetweentwo verticescan be explicitly ex-
pressedasa function of their distance.Let us considerthe
following model: the probability of having anedgebetween
two verticesu and v is proportionalto [ wherel, , is
the distancebetweenu andv andr is a non-ngative con-
stant. It wasoriginally usedby Kleinbeg [13] to generalize
the Watts-Strogtz model. The key is the choiceof r. If r
is larger, 1,7, decaysfasterandthe edgetendsto be local;

Given a sequenceof vertex degreesand the exponent of
distance-dependenaee generatea graphwith NV verticesas
follows:

(1) RandomlyplaceN verticeson a plane. A degreed,, is
assignedo eachvertex v, 1 < v < N.

(2) Createedgesamongthe vertices. For eachvertex v, in
descendingl, order repeatcreateedges(if not enough
yet) asfollows:

— Choosewu with probability proportionalto i
wherel,, . is theEuclideardistancebetween and
v, suchthat(i) u # v and(ii) thereisnoedge(u, v)
yet. Createedge(u, v).

dy

)

Figure 6. A model for generating small-w orld
graphs with variable degree.

4

(a) Characteristic path length

(b) Clustering coefficient

Figure 7. A range of small-w orld graphs generated
by our small-w orld model.

but » cannot betoo large sinceotherwisethe lack of long-
rangeedgeswould leadto an excessvely large L value. If
r is smaller [, 7 decaysslowly andlong-rangeedgesbe-
comefrequentbutr cannotbetoo smallsinceotherwisethe
graphswould be closeto random(i.e., thevalueof C would
be excessvely small). Using this model,Figure6 describes
animplementation.

This model producesgraphsexhibiting a wide rangeof
small-world behaior. For example,we generatedgraphs
with 10000verticesandwith averagedegree4.2. Vertex de-
greefollows a power-law with exponenta. We varied pa-
rametersy from 1.05to nearly8.0andr betweerQ and4.5.
For eachpair of o andr, we generatedengraphscomputed
their averageL valueandC value,andplottedthemin Fig-
ure 7. We obsenredthatwhenc« is smallor r is moderate,
boththe characteristippathlengthandthe clusteringcoefi-
cientsatisfytherequirement$or small-world graphs.

We have alsousedthis modelto generatesyntheticlnter
netgraphshatcloselyresembldehereal Internetgraphs.We
describehereour effort to usethe describednodelto syn-
thesizethe Lucentrouterlevel graph.



We first obtainedthe sequencef vertex degreefrom the
realgraph,andfedit into the graphgeneratarThe otherpa-
rameten wassetto 3.15. Theoutputlargestconnectectom-
ponenthas111328verticesandthemeandegreeis 3.24.We
thencomputedts characteristipathlength9.814andclus-
teringcoeficient0.193.Comparinghemto thoseof thereal
graph,we foundthatthe pathlengthsareclosebut the clus-
tering coeficientsarestill different. A possibleexplanation
is asfollows. The modelassumeshe probability of having
anedgebetweertwo verticesu andw is proportionato,, 7.
But the distance-dependende the real graphmay not fol-
low a powerlaw well [14]. In otherwords, the power-law
relationshipmay over-estimatdocal preferencavhenl,, ,, is
small. As a result,the modeltendsto producehigherclus-
tering coeficient. In the next section,this graphis usedin
our simulationstudyof multicastscaling.

5. Implications on Multicast Scaling

In this section we usesimulationto studythe scalingbe-
havior of IP multicast,i.e., how the multicasttree size in-
creasesvith thegroupsize.In our simulation,we usedthree
topologiesin comparison. The first is the original Lucent
routerlevel graphin Table 1. The secondis generatedis-
ing the powerlaw randomgraphmodelin [1]. We found
the generatedargestconnecteccomponent(after eliminat-
ing duplicatededgesandself-loops)has110986verticesand
meandegree3.18. Notice thatthis graphpreseresthe orig-
inal vertex degreedistributionin the Lucentgraphonly. The
third topology aswe describedefore is generatedisingour
small-world modelin Figure6. It has111328verticesand
the meandegreeis 3.24. Thesethreegraphshave approx-
imately the samenumberof verticesand edges. However,
their small-world behaviors are different. Our small-world
graphresembleshereal Lucentgraphbetter

To studythe scalingbehaior of IP multicastwith short-
estpathtree,we proceededsfollows. We randomlychose
a vertex asthe sener andn otherverticesasclientsin the
graph. Thena shortestpathtreeis constructed.The size of
thistreewascomputecandcomparedo theaveragedistance
from theseclientsto the sener. Theratio is the normalized
multicasttreesizeandit reflectshow the treesizeincreases
with n. For eachvalue of n we repeatedabore simulation
mary times and computedthe averagemulticasttree size.
By varying n we plotted the scalingbehaior of IP multi-
casttree. Figure 8 compareghe resultsusingthe Lucent
graphandusingthe degree-onlygraph. Figure 9 compares
theresultsusingthe Lucentgraphandusingour small-world
graph.

We obsenred that usingthe degree-onlygraph,IP multi-
casthasworsescalingbehaior thanit usingthereal Lucent
graph. On the contrary using our small-world graph, the
scalingbehaior fits that using the real Lucentgraphvery
well. It thussuggestsheimportanceof capturingthe small-
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world behaior in the Internettopologies.Without doingso,
flawed topology generationrmodelsmay underestimateéhe
efficagy of IP multicastin reducingoverall network cost.

We shouldalsopointoutthataccuratenodelingof theln-
ternettopologyhelpsunderstandheso-calledChuang-Sirk
law [7] of IP multicastscaling.To betterillustratethis point,
we have alsoshowvn the log-scaleplots of our simulationre-
sultsin the figures. The Chuang-Sirh claimsthat multicast
treesizeincreasesisn?-8, astraightline in thelog-log scale
plots. From our simulation,we canmale two obsenations.
First,it appearsnulticasttreesizeincreases$asterthann®-8,
i.e., the exponentis larger: we estimatedhe treesizescales
asn%8%, Secondwe canseethatwith degree-onlygraphs,
the scalingbehavior is far from the Chuang-Sirh law, but
with small-world graph,the scalingbehaior is closerto the
law. It could suggestthat, small-world behaior (coupled
with the variable degree natureof the Internettopologies)
maydraw thetruescalingbehaior line toward,yetnotclose
to, the Chuang-Sirh law.

This simulationstudy strongly suggestghat the scaling
behaior of multicastdependson the underlying network
topology Previous work on IP multicastscalingdoesnot
capturehevariabledegreenatureof thereallnternet.Hence,
theanalysisdoesnot apply here.We believe therearemore
intriguing propertiesof the Internetthatalterthe scalingbe-
havior, suchasclusteringandhierarcly.



6. Conclusions

This paperhasfocusedon the small-world aspectof the
Internettopology We illustratedthe possiblecause®f such
behaior anddemonstratedts importanceto evaluatingthe
scalingbehavior of multicasttechniquesOur mainfindings
andconclusionsare:

Two possiblecause®f small-world behaior in the In-
ternetare (i) high variability of vertex degreeand (ii)
preferencdor local connectvity. Extremelyhigh vari-
ability givesriseto thesmall-world behaior in the AS-
level topology; but when the variability of vertex de-
greedistributionsis moderateclusteringin small-world
graphsis mainly causedy local connectvity, whichis
truefor therouterlevel topology

If Internettopologygeneratorsargetvertex degreedis-

tributions only, they generatdessrealistictopologies.

We proposedpromisingmodelsthat capturesdothver-
tex degreedistributions and preferencefor local con-
nectvity. By doingso, it is easyto generatenorereal-
istic small-world Internettopologies.

IP Multicast tree size depend=on the small-world be-
havior of the Internettopology If Internettopology
generatordargetvariablevertex degreeonly, thenit is
likely to underestimatéhe efficacy of IP multicast.

References

(1]

(2]

(3]
(4]
(5]

(6]

(7]

(8]
(9]

W. Aiello, F. R.K. Chung,andL. Lu. A randomgraphmodel
for massie graphs.In ACM Symposiunon Theoryof Com-
puting (STOC), pagesl71-180.2000.

R. Albert andA. Baratasi. Topologyof evolving networks:
Local events and universality Physical Review Letters,

85:5234-52372000.

A. BaralisiandR. Albert. Emegenceof scalingin random
networks. Science286:509-5121999.

A. Broido andkc claffy. Internettopology: Connectity of

IP graphs.In Proceeding®f SPIEITCOM, 2001.

T. Bu andD. Towsley. On distinguishingbetweeninternet
power law topologygeneratorsin Proceedingof IEEE IN-

FOCOM, 2002.

Q. Chen,H. Chang,R. Govindan,S. Jamin,S. Shenler, and
W. Willinger. Theorigin of powerlawsin Internettopologies
revisited. In Proceeding®f IEEE INFOCOM, 2002.

J.ChuangandM. Sirbu. Pricingmulticastcommunications:

A costbasedapproach. In Proceedingf Internet Society
INET, 1998.

Cooperatie Associationfor Internet Data Analysis. The
CAIDA Website.http://www.caida.og.

P. Erdés and A. Réryi. The evolution of randomgraphs.
Publicationsof the Mathematicallnstitute of the Hungarian
Academyof Sciences5:17-61,1960.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]

[24]

[25]

[26]

[27]

M. FaloutsosP. FaloutsosandC. Faloutsos.On power-law
relationshipof thelnternettopology In Proceeding®f ACM
SIGCOMM 1999.

R. GovindanandH. TangmunarunkitHeuristicsfor Internet
mapdiscovery. In Proceeding®f IEEE INFOCOM, 2000.
C.Jin,Q. Chen,andS. Jamin.Inet: Internettopologygener
ator TechnicalReportCSE-TR-433-00EECSDepartment,
University of Michigan,2000.

J. Kleinberg. The small-world phenomenonAn algorithm
perspectie. In ACM Symposiunon Theoryof Computing
(STOC), pagesl63—170May 2000.

A. Lakhina, J. Byers, M. Crovella, andl. Matta. On the
geographiclocation of Internetresources. In Proceedings
of ACM SIGCOMMInternetMeasuement\brkshop(IMW),
2002.

A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling
biasesn IP topologymeasurementdn Proceeding®f IEEE
INFOCOM, 2003.

A. Medina,l. Matta, andJ. Byers. On the origin of power
laws in Internettopologies. ACM SIGCOMM Computer
CommunicatiorReview, April 2000.

S. Milgram. The smallworld problem. Psydology Today,
2:60-67,1967.

NationalLab for Applied Network ResearchGlobal ISP in-
terconnectiity by AS number http://moat.nlannet/AS/.

H. Tangmunarunkit,J. Doyle, R. Govindan, S. Jamin,
S.Shenler, andW. Willinger. DoesAS sizedeterminadegree
in AS topology? ACM SIGCOMMComputerCommunica-
tion Review, October2001.

H. TangmunarunkitR. Govindan,S. Jamin,S. Shenler, and
W. Willinger. Network topology generators:Degreebased
vs. structural.ln Proceeding®f ACM SIGCOMM 2002.
Topology Projectat University of Michigan. AS graphdata
sets.http://topologyeecs.umich.edu/data.html.

USC Information Sciences Institute. Internet maps.
http://lwww.isi.edu/dv7/scan/mercator/maps.html.

D. WattsandS. Strogatz. Collective dynamicsof small-world
networks. Nature, 363:202—2041998.

B. M. Waxman. Routing of multipoint connections.|[EEE
Journal on SelectedAreasin Communications6(9):1617—
1622,1988.

W. Willinger, R. Govindan, S. Jamin, V. Paxson, and
S.Shenler. Scalingphenomenén theInternet:Critically ex-
aminingcriticality. In Proceeding®f the National Academy
of Sciences2001.

S. Yook, H. JeongandA. Baralasi. Modelingthe Internets
large-scaleopology Proceedingof the National Academy
of Sciencegsubmitted)2002.

E. W. Zegura,K. L. Calvert,andM. J. Donahoo.A quanti-
tative comparisorof graph-basednodelsfor Internettopol-
ogy. IEEE/ACM Transaction®n Networking 5(6):770-783,
1997.



