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Abstract. Infrastructure as a Service pricing models for resources are
meant to reflect the operational costs and profit margins for providers to
deliver virtualized resources to customers subject to an underlying Ser-
vice Level Agreements (SLAs). While the operational costs incurred by
providers are dynamic – they vary over time depending on factors such
as energy cost, cooling strategies, and aggregate demand – the pricing
models extended to customers are typically fixed – they are static over
time and independent of aggregate demand. This disconnect between the
dynamic cost incurred by a provider and the fixed price paid by a cus-
tomer results in an economically inefficient marketplace. In particular, it
does not provide incentives for customers to express workload schedul-
ing flexibilities that may benefit them as well as providers. In this paper,
we utilize a dynamic pricing model to address this inefficiency and give
customers the opportunity and incentive to take advantage of any flexi-
bilities they may have regarding the provisioning of their workloads. We
present CloudPack: a framework for workload colocation, which pro-
vides customers with the ability to formally express workload flexibili-
ties using Directed Acyclic Graphs, optimizes the use of cloud resources
to minimize total costs while allocating clients’ workloads, and utilizes
Shapley valuation to rationally – and thus fairly in a game-theoretic
sense – attribute costs to the customers. Using extensive simulation, we
show the practical utility of our CloudPack colocation framework and
the efficacy of the resulting marketplace in terms of cost savings.
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1 Introduction

Motivation: Cloud computing has emerged as compelling paradigms for the
deployment of distributed applications and services on the Internet. Critical to
this, are Infrastructure as a Service (IaaS) providers which own and maintain
large physical datacenter installations and use virtualization technologies to pro-
vide customers with resources in the form of Virtual Machines. By relying on
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virtualized resources, customers are able to easily deploy, scale up or down their
applications [3].

IaaS providers incur a significant capital investment as part of creating and
providing such services. A data center’s return on investment (profit) relies heav-
ily on decreasing its overall cost through efficient cooling and energy conser-
vation [16, 33], while increasing its overall utilization (Revenue) as customers’
adoption of cloud services increases.

Minimizing the overall cost involves a non-trivial optimization that depends
on many factors, including time and location dependent factors. For example, in
some cities, the cost of energy is variable depending on time of day [1,32], while
the cost of cooling might be higher during peak utilization times. The location of
allocated virtual resources in the data center can also be a crucial factor in cost
reduction. An efficient allocation can lead to powering down of resources [16],
or in decreased cost of cooling [2]. These approaches are but examples of what
providers must consider in order to decrease their overall costs.

Problem Description: Despite the complexities associated with minimizing
the overall cost of cloud providers, the pricing models extended to cloud cus-
tomers are typically fixed – they are static over time and independent of aggre-
gate demand. For example, the pricing model of IaaS providers such as Amazon
and Rackspace for leasing resources is in the form of fixed-price SLAs, which
do not vary with resource availability, seasonal peak demand, and fluctuating
energy costs.1 From the customers’ perspective, fixed pricing has its advantages
due to its simplicity and the fact that it provides a sense of predictability. That
said, fixed pricing has many disadvantages for customers and providers alike
due to the fact that it does not allow both of them to capitalize on customer-side
flexibility.

Under a fixed pricing model, customers do not have any incentive to expose
(or the means to capitalize on) the flexibility of their workloads. By workload
flexibility, we refer to scheduling flexibilities that customers may be able to tol-
erate, such as requesting a virtual machine for backup operations which can run
anytime during a day. This customer-side demand flexibility could be seen as
an asset that may benefit both customers and providers. From the provider’s
perspective, demand flexibility could be seen as an additional lever in the afore-
mentioned optimization of operational costs, whereas from the customer’s per-
spective, demand flexibility could be seen as a feature of their workloads that
should translate to cost savings. Fixed pricing models do not enable demand
flexibility to play a role in the marketplace, effectively resulting in an inefficient
marketplace [24].

Leveraging customer-side demand flexibility requires the development of dy-
namic (as opposed to fixed) pricing mechanisms and associated flexible SLA
models that provide customers with proper incentives and assurances. In partic-

1 Amazon spot instance is a prime example of flexible pricing, but unlike our Cloud-
Pack framework, it does not provide customers any guarantees in terms of when
and for how long a customer’s demand is going to be honored.
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ular, the pricing mechanism must provably reward (and certainly never mistreat)
customers for expressing the scheduling flexibilities in their workloads.

Fig. 1. CloudPack Colocation Framework

Scope and Contribution: In this paper, we present CloudPack: (see Sec-
tion 3) a colocation framework that achieves the above-stated goals by giving
customers both the means and the incentive to express any flexibilities they may
have regarding the provisioning of their workloads. Architecturally, our frame-
work can be described as illustrated in Figure 1: it consists of two major services,
Back-end services and Front-end services. The CloudPack framework can be
incorporated into an offering by cloud providers; it can be implemented as a
value-added proposition or as a secondary market by IaaS resellers; or it can be
directly leveraged in a peer-to-peer fashion by IaaS customers.

Front-end services are exposed to the IaaS customers and consists of two com-
ponents: Workload Specification Component (Section 3.1), and Pricing Compo-
nent (Section 3.4). The workload specification component provides customers
not only the ability to state their requests in terms of virtualized resources
subject to SLAs, but also to express their allocation flexibilities represented as
Directed Acyclic Graphs (DAGs). The pricing component not only attributes
accrued costs rationally – and thus fairly in a game-theoretic sense – across cus-
tomers, but also provides incentives for customers to declare their flexibilities by
guaranteeing that they will not be mistreated as a consequence.

Back-end services are oblivious to the IaaS customers and are utilized by the
provider to control its resources. The Back-end services consist of the following
components: An Allocation Component (Section 3.2) that colocates workloads
(virtual resource requests) from multiple customers on the same set of physical
resources. The main objective of the Allocation component is with the aim of
minimize the total cost of used IaaS resources, while adhering to customers’ SLAs
provided using the Workload Specification Component. Profiling or monitoring
Component whose main purpose is to provide customers with the raw data that
enables them to adjust their reservations as well as gaining insight and visibility
into resource utilization, overall performance. Finally the migration component is
used to eliminate hotspots, enable load balancing, and allow for physical resource
maintenance.

Profiling [8, 13, 37, 39] and Migration [20, 21, 25, 27] Components have been
extensively studied in the literature and are implemented as standard features
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in widely popular virtualization technologies such as Xen and VMware, thus we
consider them to be beyond the scope of this work.

To demonstrate the promise of using CloudPack framework to manage the
colocation of different workloads, using simulation (Section 4), we perform an
extensive experimental evaluation of our framework using synthetically gener-
ated workloads, selected from a set of representative real workload models. The
results highlight the practical utility of our dynamic pricing mechanism, the effi-
cacy of our algorithm in colocating workloads, and the rationally fair distribution
of costs among customers.

2 CLOUDPACK: Background & Setting

In this section, we present an IaaS resource cost model utilized by CloudPack
along with assumptions about the underlying IaaS setting needed to instantiate
our colocation framework.

2.1 IaaS Resource Cost Model

As we alluded before, fixed resource pricing does not reflect the time-variant ex-
penses incurred by providers and fails to capitalize on the scheduling flexibilities
of customers. Expenses incurred by providers are affected by different criteria
such as datacenter utilization, efficient cooling strategies, ambient temperature,
total energy consumption, and energy costs. Indeed, studies indicate that the
amortized cost of energy and physical resources account for 30% and 45% of
the cost of datacenters, respectively [3, 15]. In addition, it is becoming a norm
for datacenters to be charged a variable hourly rate for electricity [32], or for
peak usage [15]. Accordingly, in this paper, we consider two factors to be the
primary determinants of the costs incurred by providers: (1) the variable cost of
electricity as a function of the time of the day, and (2) the level of utilization of
resources, and hence the power consumption, at each point in time.

In order to pursue this notion further, we need an accurate model of resource
energy consumption. Recent work on energy [12, 14, 33] suggest that a physical
machine’s power consumption increases linearly with the system load, with a
base idle power draw – power consumed by an idle physical machine – of 60%.
Under this simple model one can already observe a generic notion of fixed and
variable costs. In addition, Ranganathan et al. [35] suggest a linear relationship
between watts consumed for powering and watts consumed for cooling. Using
this knowledge, it is reasonable to assume that the total expense of operating a
physical resource j during time t is:

Pj + f(t, Uj(t))

where Pj reflects an amortized fixed cost of the resource j. The function f(t, Uj(t))
is the energy cost consumed by resource j at time t under utilization Uj(t). we
define f(t, Uj(t)) as follows:

f(t, Uj(t)) = α(t)(v0 + (1− v0)Uj(t) ∗Rj)
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where α(t) is a coefficient reflecting the energy cost at time t, and v0 is the energy
fraction consumed by the resource when idle,2 and Rj is the fixed capacity of
resource j which is generic enough to reflect a single host, a single rack, or an
entire datacenter.3 Note that f(t, Uj(t)) has also a fixed part reflecting the cost
of operating the resource if the resource is turned on and is in an idle state.

2.2 IaaS Setting

As an underlying infrastructure for CloudPack, we assume an IaaS setting
consisting of any number of possibly heterogeneous resources, (e.g. physical ma-
chines). Each resource is characterized by a number of dimensions (e.g., CPU,
network, memory, and disk space) which constitute dimensions of the resource
capacity vector. The cost of resources follows the IaaS resource cost model pre-
sented in the previous section.

Fig. 2. CloudPack Epoch Example

A fundamental principle in the instantiation of our colocation framework
is the concept of epochs. We consider an epoch to be a sequence of periodic
timeslots during which the workloads of customers can be colocated. The deter-
mination of colocation configurations is calculated at the beginning of an epoch,
and is fixed for the entire duration of that epoch. Figure 2 illustrates an example
epoch consisting of three timeslots, through which customers’ requests (virtual
machines) are allocated on the physical machines.

Customers who are not able to join at the beginning of an epoch will only be
considered for colocation during the next epoch. Similar to grid markets, we envi-
sion different marketplaces operating at different timescales, with epochs ranging
from days to weeks to months. One way to minimize customer wait time is to
instantiate marketplaces with overlapping epochs of the same duration. Another
method would be to have multiple marketplaces of epochs with exponentially
increasing time scales, where a customer can colocate in a logarithmic number
of shorter time-scale epochs before reaching the epoch he desires to join [18].

2 Throughout this paper, we take v0 to be 60% [12,14,33].
3 Although we take energy as an example of time variant cost, our model could apply

any other time variant cost.
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3 CLOUDPACK: The Framework

In this section, we present the three major components of the CloudPack
colocation framework: Workload Specification, Allocation, and Pricing.

3.1 CLOUDPACK: Workload Specification Component

We propose an expressive resource specification language for customer work-
loads, which allows them to declare their quantitative resource requirements as
well as any associated temporal flexibilities.4 Our resource specification language
is XML based, we omit the syntax due to space constraints. A workload is repre-
sented as a DAG. A node in the graph represents a single task (virtual machine),
to be mapped to a resource, and consumes some of the resource dimensions. A
task has two attributes: The total number d of timeslots (periods) during which
the task must remain on the same resource, and a quantitative resource request
matrix V ∈ Rm×d where d represents the required duration and m represents
the different dimensions requested during each period. The directed edges in the
graph represent the temporal dependencies between tasks. An edge between node
k and k′ dictates that task k needs to finish execution before task k′ starts exe-
cution. The weight on an edge w ≥ 0 designates the maximum delay a customer
can tolerate between releasing a resource by task k and acquiring a resource for
the execution of task k′. In addition, a customer i specifies an execution window
(T si , T

e
i ), where T si is the workload earliest start time, and T ei is a deadline for

the completion of the workload. This formally declared temporal flexibility by a
customer will be exploited by our framework to achieve better colocation.

This model is expressive enough for various types of applications. Figure 3
(a) shows a sample specification for a batch workload. Such a workload is rep-
resentative of bulk data transfer or backup applications. The workload consists
of five tasks with different utilization levels and durations. The tasks are not
temporally dependent, thus there are no edges between them, implying that
they may be satisfied in any order within the execution window. Specifying a
web server, which requires the workload to execute on the same resource would
result in representing the workload as one node with a duration equal to 24
and volume V of size m× 24 that varies accordingly. Figure 3 (b) illustrates
a pipelined workload with 24 nodes, where tasks need to execute in sequence
throughout an entire day with different utilizations, and the delay between the
execution of two consecutive tasks is zero.

The above example illustrates a scenario in which the customer has no
scheduling flexibilities. Figure 3 (c) illustrates a typical MapReduce workload,
where a scheduling task needs to execute, followed by a set of independent map
tasks, and finishing with a reduce task. Figure 3 (d) is a constrained version of

4 We note that our workload specification language allows customers to specify addi-
tional dimensions associated with each node (e.g., location, operating system, etc.).
Without loss of generality, in this paper, we only consider dimensions related to
consumable physical resources.
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Fig. 3. An example illustrating different workload models.

the MapReduce workload, where some communicating tasks need to run con-
currently. We introduce a marker node, (in red), that has a duration of zero
and a utilization of zero; it forces a number of tasks to run concurrently once
the marker node is scheduled. This feature is essential for High Performance
Computing workloads.

Note that current customers of cloud offerings such as Amazon need to specify
and map their actual applications to resource requests as part of their adequate
resource reservation (e.g. small, medium, large). Profiling and benchmarking
techniques such as the ones described in [8, 39] can be used to predict an appli-
cations resource consumption.

3.2 CLOUDPACK: Allocation Component

In the previous section, we presented our workload specification language, which
allows IaaS customers to describe their workloads. In this section, we formulate
the allocation problem and present a linear programming optimization solution.
The objective of the system is to fulfill the requests of all customers, taking into
consideration their flexibility (constraints) while incurring the minimal total cost.
The aggregate load on the system can be represented by the graph G =< V,E >,
representing the union of the DAGs Gi =< Vi, Ei > representing the workloads
of all customers i ∈ U – namely, V =

⋃
∀i Vi and E =

⋃
∀iEi.

We define Y (t, j) to be a binary decision variable that equals to one when
resource j is in use at time t. We also define X(j, t, k, l) to be a binary decision
variable such that

X(j, t, k, l) =

1 If resource j at time t is assigned to node k’s duration l.

0 Otherwise
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We formulate our colocation optimization problem as follows, (verbal description
to follow):

min
∑
∀t,j

(Y (t, j)× Pj + Y (t, j)× (α(t)× v0)

+ α(t)× (1− v0)Uj(t)×Rj) (1)

Subject to: ∑
∀l

X(j, t, k, l) ≤ Y (t, j) ∀t, j, k (2)∑
∀k,1≤l≤dk

X(j, t, k, l)× u(k, l) ≤ Rj ∀j, t (3)

∑
∀j,t

X(j, t, k, l) = 1 ∀k ∈ V, 1 ≤ l ≤ dk (4)

X(j, t, k, l) = X(j, t+ 1, k, l + 1) (5)

∀j, t, k ∈ V, 1 ≤ l < dk

X(j, t, k, l) = 0 ∀j, k ∈ Vi, t < T si , 1 ≤ l ≤ dk (6)

X(j, t, k, l) = 0 ∀j, k ∈ Vi, t > T ei , 1 ≤ l ≤ dk (7)∑
j,t<t′

X(j, t, k, dk) ≥
∑
j′

X(j′, t′, k′, 1) ∀t′, (k, k′) ∈ E (8)

∑
j

X(j, t′, k, dk) ≤
∑

j′,t′<t≤t′+We+1

X(j′, t, k′, 1) (9)

∀t′, (k, k′) ∈ E

where Pj and Rj are the cost and capacity of a specific physical resource j, u(k, l)
is the utilization request of a nodes k’s duration l, Uj(t) is the total utilization of
resource j at time t is formally defined as (

∑
∀k,1≤l≤dk X(j, t, k, l)× u(k, l))/Rj ,

v0 is the energy consumed by resource j while idle, and α(t) is the cost of
energy at time t. This formulation is a general enough to model different types
of resources. Intuitively, the optimization problem aims to minimize the cost
of resources across time while keeping in line with each customer’s specified
flexibility. The objective function is the sum of three parts, reflecting the cost of
leasing the resource: Y (t, j) × Pj reflects the fixed cost of leasing the resource,
Y (t, j)×α(t)×v0 is the initial cost of energy to run the resource at an idle state
if that resource is in use at time selected at time t, and α(t) × (1 − v0)Uj(t) ×
Rj stands for the additional (variable) cost as a consequence for utilizing the
resource.5

Equation (2) ensures that a resource j is utilized at time t, by setting Y (j, t)
to one if that resource is used to serve the requests of any customer during

5 We do not multiply the third component of Equation (1) by Y (t, j), since if the
resource j is not assigned during time t, then its Uj(t) = 0.
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that time. Equation (3) ensures that the utilization of a single resource does
not exceed a fixed capacity Rj . This constraint is needed not to overprovision
the resources. Equation (4) guarantees that all periods of each task are fulfilled
exactly once. Equation (5) ensures that a task’s periods are allocated consecu-
tively on the same resource. This constraint is essential for fulfilling requirements
of workloads such as a WebServer. Equation (6) and (7) ensure that the time
of execution of customer i’s tasks are between the start time T si and end time
T ei specified by the customer. Finally, Equation (8) and (9), guarantee that the
allocation of resources respects the client’s edge constraints (flexibility). In par-
ticular, Equation (8) constrains the allocation of the first timeslot of a request k′

to follow the resources allocated to the last timeslot of request k, while Equation
(9) guarantees that such an allocation happens within the specified client’s delay
We on edge (k, k′).

3.3 CLOUDPACK: Greedy Heuristic

The optimization problem defined in the previous section is a variant of mixed-
integer programming, which is known to be NP-hard in general6. Therefore, in
this section, we propose a greedy algorithm that results in solutions to our allo-
cation problem, which we show to be effective in our experiments. The algorithm
starts from an initial valid solution and iterates over several greedy moves un-
til it converges. The final solution is the configuration based on which physical
resources are going to be allocated to the customers.

The initial solution is generated by randomly assigning workloads to re-
sources, such that each workload’s specific constrains are satisfied. Naturally,
the initial solution’s total cost is far more expensive than an optimal solution.

At each greedy move (iteration), the algorithm chooses a workload which has
the highest current-to-optimal cost ratio r among all customer workloads. Cal-
culating the optimal cost of a workload is not trivial, however, we can calculate
the utopian cost, a lower bound on the optimal workload cost efficiently, where
the utopiancost of a workload reflects only the cost of energy and resources that
the workload actually uses. The utopian cost is calculated under the assumption
that there is a perfect packing of the workload, with the energy cost being the
minimum throughout the customer’s specified workload start and end times.

Once the workload with the highest r is identified, we proceeds to relocate
it such that r is minimized. If the relocation results in reducing the total cost
of the solution, then the relocation (move) is accepted, the solution is updated,
and the process is repeated. Otherwise, the algorithm chooses the workload with
the second highest ratio r and iterates. The algorithm stops when the iteration
step fails to find a move for any of the workloads.

3.4 CLOUDPACK: Pricing Component

The allocation component is designed to minimize the total aggregate cost of
using resources. However, we need a pricing component to apportion (distribute)

6 The proof of NP-hardness is omitted due to space limitations.
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this total cost across all customers. This component requires an appropriate
pricing mechanism, which ensures that the interests of customers, particularly
fairness in terms of costs that customers accrue for the resources they acquire,
and provides guarantees of no mistreatment of a customer’s flexibility.

There are many ways to apportion the total cost across customers. For in-
stance, one option would be to divide the cost equally among customers. Clearly,
this mechanism will not be fair as it does not discriminate between customers
with large jobs and customers with small jobs. Another option would be to charge
each customer based on the proportional cost of each resource they utilize. As
we will show next, such an option is also not fair.

Consider an example of two customers A and B each with a single task
workload with 50% resource utilization. Customer A is constrained to run during
the highest energy cost period. Customer B has no such constraint. Let cl be the
cost of running during low energy period, and ch be the cost of running during
high energy period. An optimized solution would colocate customer A and B to
run during the highest energy cost period with a total cost of ch. For all costs of
ch > 2× cl, a proportional share pricing mechanism would divide the total cost
across both customers, thus forcing unfairly customer B to pay more than what
he/she would have paid (cl) had he/she run by herself at the lowest cost period.

A “rationally fair” pricing mechanism allocates the total cost over the cus-
tomers in accordance with each customer’s marginal contribution to the aggre-
gate cost of using the resources. Such mechanism should take into consideration
not only the actual customer workload demands, but also the effects of the
workload constraints.

To quantify per-customer contribution, we resort to notions from economic
game theory. In particular, we adopt the concept of Shapley value [29], which
is a well defined concept from coalitional game theory that allows for fair cost
sharing characterization among involved players (customers).

Given a set of n customers U , we divide the total cost of the system C(U) by
ordering the customers, say u1, u2, · · · , un, and charging each customer his/her
marginal contribution to the total system cost. Thus, u1 will be charged C(u1),
u2 will be charged C(u1, u2)−C(u1), etc. Since the ordering of customers affects
the amount they will be charged, a fair distribution should take the average
marginal cost of each customer over all possible ordering permutations. Then
the marginal cost of φ(C) of each customer u is defined as follows:

φu(C) =
1

N !

∑
π∈SN

(C(S(π, u))− C(S(π, u) \ u)) (10)

where S(π, u) is the set of players arrived in the system not later than u, and π
is a permutation of arrival order of those customers. Thus player u is responsible
for its marginal contribution v(S(π, u)) − v(S(π, u) \ u) averaged across all N !
arrival orders of π.

Looking back at the previous example of two customers A and B, there are
two possible ordering: B,A and A,B. For the first, the cost of B = cl and
the cost of A = ch − cl. For the second, the cost of A = ch, and the cost of
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B = 0. After averaging both costs, we end up with a rationally fair individual
cost distribution: B = cl

2 and A = ch − cl
2 .

By adopting Shapley value as a rationally fair mechanism for allocating costs,
customers have the incentive to declare the flexibility (if any), because the pric-
ing mechanism guarantees that a customer’s cost will not increase because of
flexibility. We formalize this notion in the following theorem.

Theorem 1. The fair pricing mechanism under Shapley value guarantees no
mistreatment as a result of customer flexibility, i.e., φi(C)− φi(C)F ≥ 0, where
φi(C) is the cost of customer i and φi(C)F is the cost of flexible customer i
under Shapley value.

Proof. The proof is by contradiction. Assuming that the opposite is true, i.e.,
φi(C) − φi(C)F < 0, implies that there exists at least one permutation where
C(S(π, i)) − C(S(π, i) \ i) − C(S(π, i))F + C(S(π, i) \ i)F < 0. Since the con-
figuration of other players did not change, then C(S(π, i) \ i)F = C(S(π, i) \ i).
Thus, C(S(π, i))−C(S(π, i))F < 0. This implies that the optimization solution
OPT (i) resulting in C(S(π, i)) is better than the optimization solution OPT (i)F
resulting in C(S(π, i))F . But if OPT (i) is better than OPT (i)F then the opti-
mization should have found it, since the flexibility of the customer contains the
constrained version as well – a contradiction.

While computing the exact cost for each customer using Equation (10) is
straightforward for small number of customers, finding the exact cost becomes
infeasible as the number of customers increases. Thus, we resort to computing an
estimate of the Shapley value using sampling.7 We utilize Castro’s [7] polynomial
time estimation of Shapley value, which not only achieves a good estimation of
the original Shapley value, but also provides bounds on the estimation error.
Let the vector of estimated Shapley values based on all possible N ! permutations
be Sh = (φ1(C), φ2(C), · · ·φn(C)); Let the vector of estimated Shapley values

based on m sample permutations be Sĥ = (φ̂1(C), φ̂2(C), · · · , φ̂n(C)). Using the
central limit theorem, Castro’s technique calculates the number of permutations
m needed such that P (|φi(C)− φ̂i(C)| ≤ ε) ≥ 1−α, where ε is the error bound,
and α is the confidence factor. Calculating the number of samples m required to
achieve the bound P (|φi(C)− φ̂i(C)| ≤ ε) ≥ 1−α requires knowing the standard
deviation σ, which is an unknown value. In our setting, to calculate σ, we first
(conservatively) take the standard deviation σi of each customer to be ωh − ωl:
ωl reflects the cost incurred by the customer under the assumption that there is
an optimal packing of the workload with minimum cost of energy, and ωh reflects
the cost incurred by the customer under the assumption that the workload is the
only workload in the system with a maximal cost of energy. A worst case value
on σ could be calculated by taking σ = max(σ1, σ2, · · · , σi) for all customers i.

Let φ̂i(C)F be the flexibility of a customer using a Shapley value sampling
technique. The mistreatment guarantee by the system no longer holds. However,

7 Estimating Shapley value has proven to be effective in calculating the contribution
of customers to the effective network peak demand [36].
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as we show in Theorem 2, we can bound the mistreatment of the customer based
on the original Shapley value.

Theorem 2. The fair pricing mechanism under an estimated Shapley value
bounds the mistreatment of a customer as a result of his/her flexibility from

the original Shapley value to be ≤ ε i.e., P (φ̂i(C)F − φi(C) ≤ ε) ≥ 1− α
2 , where

φ̂i(C)F is the sampled cost of flexible customer i, φi(C) is the cost of customer
i under Shapley value, ε is the error bound, and α is the confidence factor.

Proof. Using a Shapley value sampling technique, we have P (|φ̂i(C)F−φi(C)F | ≤
ε) ≥ 1−α, thus, P (φ̂i(C)F −φi(C)F ≤ ε) ≥ 1− α

2 . But we know from Theorem

1 that φi(C)F ≤ φi(C), thus, P (φ̂i(C)F − φi(C) ≤ ε) ≥ 1− α
2 .

Since comparison against Shapley valuation is impractical because of it com-
putational inefficiency, which might not provide confidence for customer to be
flexible, A further motivation is provided by bounding the flexible Shapley value
with the estimated Shapley value.

Theorem 3. The fair pricing mechanism under estimated Shapley value bounds
the mistreatment of a customer as a result of his/her flexibility to be ≤ ε1 + ε2,

i.e. φ̂i(C)F ≤ φ̂i(C) + ε1 + ε2 with probability (1 − α
2 )2, where φ̂i(C)F is the

sampled cost of flexible customer i, φ̂i(C) is the sampled cost of customer i, ε1
and ε2 are the sample error bounds, and α is the confidence factor.

Proof. Using the Shapley value sampling technique, we have the following re-
sults: |φi(C)− φ̂i(C)| ≤ ε1 and |φ̂i(C)F −φi(C)F | ≤ ε2 with probability (1−α).

Thus, P ((φi(C)− φ̂i(C)) ≤ ε1) ≥ 1− α
2 and P (φ̂i(C)F − φi(C)F ≤ ε2) ≥ 1− α

2 .

Since the sampling process is independent, The probability of (φi(C)− φ̂i(C)) ≤
ε1 and φ̂i(C)F − φi(C) ≤ ε2 is equal to (1− α

2 )2.
In addition, from Theorem 1, we have φi(C)F ≤ φi(C). Therefore we have

φ̂i(C)F ≤ ε2 + φi(C)F ≤ ε2 + φ̂i(C) + ε1 with probability (1− α
2 )2.

Finally, an added property of Shapley and sampled Shapley value is budget
balance i.e. the total cost of customers is always equal to the total cost of the
resources used. This property works as incentive for providers or resellers, since
it guarantees that they are going to get a revenue which covers the resources
they lease.

4 CLOUDPACK: Experimental Evaluation

In this section, we present results from extensive experimental evaluations of
CloudPack colocation framework. Our main purpose is to establish the feasi-
bility of our proposed framework as an underlying mechanism to make effective
use of a provider’s IaaS and still achieve a fair distribution of costs among cus-
tomers, by (1) establishing the efficacy of our greedy heuristic by comparing it to
optimally allocated workloads, (2) evaluating the cost incurred by the customer
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Fig. 4. High Performance Computing Workloads

to use such a system to allocate a workload compared to the utopian cost, and
(3) measure the benefit of a customer from flexibility.
Workload models: To evaluate our experiments, we synthetically generate
workloads based on the workload models (shown in Figure 3), such as batch,
and MapReduce workloads. We generate two pipeline workload versions: Web-
server which has a single node with an execution length equal to the length
of the epoch, and a chain workload which has a variable number of sequential
tasks.8 In addition, we enrich our set of workloads with two additional High
Performance Computing workloads (c.f. Figure 4) for Protein annotation work-
flow (PAW), and Cognitive Neuroscience (fMRI) [40]. We believe that this set
of workload models is representative for many cloud based applications. We as-
sume homogeneous resources with the fixed cost part equal to 10 cents per hour,
a resource capacity equal to one, and an epoch consisting of twenty four hours
where customers configurations are calculated at the beginning of the epoch. To
calculate the number of samples m required to estimate a Shapley costs, we take
ε = 0.1, and α = 0.05. Based on available server power consumption measure-
ments provided by Koomey [23], specifically for mid-range server, we assume
that a physical resource’s power consumption is 500 watts per hour.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  5  10  15  20

C
os

t $

Hours

Fig. 5. Energy Cost (KW/H)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 10  20  30  40  50  60  70  80  90  100

R
at

io

# of Physical Machines

Fig. 6. Packing Ratio (Heuristic/Optimal)

Energy Cost: To model the energy cost for our framework, we use real energy
costs from the Ameren website [1]. Ameren publishes energy costs daily on an
hourly basis. We get energy cost for a one month period (from 08/01/11 to

8 We vary the length of the chain workload in our experiments.
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08/31/11) and average them per hour. Figure 5 shows the average price of energy
for this period over a 24-hour period. The cost of energy reflects a diurnal pattern
– higher during the day and cheaper at night.

Efficacy of our greedy heuristic: In this experiment, we evaluate the perfor-
mance of our greedy heuristics compared to an optimal allocation of tasks. Since
knowing an optimal allocation is difficult (bin packing is NP-hard), we resort
to generating workloads for which we know (by construction) that an optimal
allocation exists.

We do so by simulating a set of physical machines for the duration of an
epoch, and repeatedly creating fragments that sum up to a physical machine’s
full capacity. We generate fragments based on a uniform distribution between
zero and one, thus the average number of fragments per resources is two.9 Similar
results for physical machine’s fragmentation were observed given other distribu-
tions but were omitted due to lack of space. We proceed in a round-robin fashion
over the set of workload models in our disposal (except the batch), and greed-
ily embed each workload over the physical machines. Once no more workloads
can be embedded, we assign the remaining unembedded fragments as part of
a batch workload. By construction, we know that a “perfect” allocation exists
(with every resource being fully utilized for the entire epoch).

We set the start time and end time of all workloads to be the beginning and
end of the epoch, respectively. Next, we place the resulting workloads to be the
input to our greedy heuristic. Our purpose from this experiment is to evaluate
how far our heuristic is from an optimal allocation. Therefore, we assume that
the cost of electricity is fixed (i.e., independent of time).

Figure 6 shows the ratio of allocation achieved using our algorithm relative to
an optimal allocation. The x-axis shows the number of physical machines used,
and the y axis shows the ratio of workload allocation achieved using our heuristic
over that of an optimal allocation. The results are reported with 95% confidence.
The figure shows that our algorithm’s performance is highly comparable to the
optimal. Furthermore, as we increase the number of physical machines, the ratio
decreases.

Fair pricing scheme vs. utopian customer cost: Unlike the previous ex-
periment, which aimed to show the efficacy of our heuristic by comparing its
performance to an optimally-allocated set of workloads, the purpose of this ex-
periment is to highlight the fairness of our game-theoretic inspired pricing scheme
in comparison to the utopian cost of the customer. As we alluded before, the
utopian cost is the (possibly unrealistic) minimal possible cost – reflecting only
the cost of the energy and resources the customer actually uses.

To generate workloads, we start by selecting a workload model based on
a uniform distribution where each workload model: HPC (fMRI, PAW), Web-
Server, MapReduce (MR), Chain, and batch get equal percentages (20%) of the
total workload population. Once a workload is selected, we generate a start time
randomly for the workload to execute, and set the end time of the workload

9 If the generated fragment is greater than the leftover resource capacity, then we
assign the fragment the remaining resource capacity.
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to be the start time plus the length of execution of the workload. This is an
easy step since all of the workloads except chain have fixed structures. For chain
workloads, we generate the number of consecutive resource requests based on an
exponential distribution with a mean of six. If the end time is greater than the
duration of the epoch, then we exclude that workload, and proceed to generate
a new one, otherwise we accept the generated workload as part of the overall
workload population.

To model the utilization of the webserver workload, we use a standard method
of generating the workloads based on an exponential distribution whose mean
is modulated by a Sine function. This is done to model the diurnal pattern of
higher web server load during the day, and lower web server load at night. For
the remaining workload models, we generate the utilization of requests based on
a uniform distribution between 0.2 and 1.
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Figure 7 shows the distribution of costs based on sampled Shapley value for
30 workloads, where all workload models have equal percentage of workload pop-
ulation (20%). We also show the utopian cost, as well as the cost incurred by the
customer had she opted to execute her workload by herself (i.e. no colocation),
which we denote as Worst cost. As shown, approximate Shapley value is close
to the utopian cost. An interesting observation is the ratio between the utopian
and approximate cost is highest for webserver workloads, while batch workloads
are very close to the utopian. In fact, we also observe that batch workloads can
even pay less than their utopian. This is due to the fact that batch workloads are
the least restrictive workloads in terms of modeling (no edges between tasks),
and have complete time flexibility, while webservers have the least flexibility.

To further investigate this phenomena, we proceed to measure the sensitivity
of workload costs to fluctuation in energy costs. To model variability in energy
cost, we use the distribution of energy highlighted in Figure 5, and modulate it
by multiplying it with α, where α varies between 0 and 2.5. For each workload
model, we generate 50 workloads and calculate the cost of colocation using the
modulated energy cost. We generate two additional variations of chain workloads
with length based on exponential distribution with mean 12 and 18 respectively.
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We define the efficiency ratio as the ratio between the actual customer cost over
the utopian cost. Figure 8 highlights our results. The x-axis plots the changing
values of α. For α = 1, the cost of energy reflects the actual cost shown in Figure
5. As highlighted, inflexible workloads, such as the webserver suffer most as a
result of increase in energy cost with overall increase of more than 20 percent,
while batch workloads do not show any increase.
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Given the fluidity (maximal flexibility) of batch workloads, we investigate
their effect when colocated with other workload models. We performed experi-
ments using the same settings as the previous experiment: set the value of α = 1,
and for each workload, we mix it with different percentages of batch workloads.
Figure 9 shows the measured efficiency ratio for different percentages of batch
workload mix. We observe that pipeline based workloads like chain and web-
server are a better fit for batch workloads than HPC or MR workloads. One
reason which is based on observing the actual allocation outcome is due to the
existence of parallel branches in MR and HPC models, which provides these
workloads – unlike chain and webserver workloads – an additional opportunity
for allocation.

Benefit from flexibility: To measure the effect of flexibility on the overall
reduction in cost, we performed experiments using the same setting as before,
while allowing the extension of start time and end time of workloads by σ, for
different values of σ (hours). Figure 10 shows the effect of customer flexibility
on workloads.10 As expected, the more flexible a workload is, the better the
efficiency ratio.

5 Related Work

Economic models for resource management: Several resource management
techniques have been proposed for large-scale computing infrastructures using

10 We do not include models of webserver and chains with average length 18 since they
do not allow for much flexibility in a 24-hour epoch.
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various micro-economic models such as auctions, commodity markets, and iter-
ative combinatorial exchange [4,6,30,38]. Amazon EC2 spot instance is a prime
example of one of these markets. Customers bid for resources, and will be al-
located such resources as long as their bid is higher than the market price at
the time of allocation. Unlike EC2 spot instance which does not provide an SLA
regarding the allocation period, in CloudPack, customers are guaranteed to
execute throughout the entire time of their allocation.

Ishakian et al, [20] develop a colocation service which allows for migration,
profiling and allocation of workloads. In that setting, a customer’s workload
consists of a single task and interactions are driven by the rational behavior of
customers, who are free to relocate as long as the relocation minimize their cost.
In this Setting, a customer’s workload consists of multiple tasks and we optimize
the allocation of resources and apportion costs using the game-theoretic-inspired
Shapley concept – what we devise is a pricing mechanism and not a game. As a
result, each customer ends up paying a marginal cost.

Unlike all of the models referenced above, CloudPack allows for an ex-
plicit consideration of the flexibility of customers (as opposed to having such a
flexibility be expressed through the strategic choices of customers).

Data center energy management: Minimizing the operating cost of data
centers is a very active research topic. Along these lines, there has been signifi-
cant breakthroughs in terms of optimizing the use of resources through efficient
server power management [14, 33], optimized workload distribution and consol-
idation [16, 32] or better cooling [31]. The authors in [33] motivate the need
for coordination among different energy management approaches because they
may interfere with one another in unpredictable (and potentially dangerous)
ways. They present a power management solution that utilizes control theory
for coordination of different approaches.

A common characteristic in the above-referenced, large body of prior work
is that the IaaS provider is doing the optimization, which does not provide any
incentive for customers. In our model, we aim to minimize the overall opera-
tional cost of the datacenter, and provide the transparency that allows flexible
customers to take advantage of their flexibility.

Workflow scheduling: Different workflow management and scheduling tools
have been proposed that focus on scheduling DAGs with the purpose of opti-
mizing the makespan and consider QoS properties like deadlines and/or budget
constraints [17,26,34,40]. Henzinger et al [17] provide a static scheduling frame-
work that is based on small state abstractions of large workloads, Similar to
previous work, Our model aims to minimize the overall operational cost of the
datacenter. However, we provide a provably fair pricing mechanism which dis-
tributes the cost of leasing resource over customers and provides them with the
incentive to declare their flexibility.

Service Level Agreements: There has been significant amount of research on
various topics related to SLAs. The usage , specification, and economic aspects
of resource management in grids have been considered in [5,9,22,28]. An inher-
ent assumption in such systems is that the customer’s SLAs are immutable. We
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break that assumption by allowing the customer to provide multiple yet func-
tionally equivalent forms of SLAs. Our framework utilizes this degree of freedom
to achieve a better colocation.
Languages and execution environments: Workflow/dataflow languages have
been proposed since the sixties, with IBM job control language [19] a prime ex-
ample. Since then, different languages and execution engines have been devel-
oped [10,11,30]. These languages modeled coordination or dependencies among
tasks (programs) as DAGs. Task dependencies reflect data dependencies between
tasks. In our language, workloads define resource requests and dependencies are
model customer temporal tolerance or flexibility.

Parkes et al [30] outline a tree based bidding language (TBBL), where re-
sources are mapped to the leaves of the tree, and inner nodes model logical
operations. TBBL can be used to describe customer requests, however, a such
description would be inefficient due to the exponential increasing number of
nodes resulting from a customer’s flexibility.

6 Conclusion

In this work, we proposed a new pricing model for cloud resources that bet-
ter reflects the costs incurred by IaaS providers, and gives cloud customers the
opportunity and incentive to take advantage of any scheduling flexibilities they
might have. We presented CloudPack: a framework for colocation of customer
workloads. Our framework provides (1) a resource specification language that
allows customers to formally express their flexibility, (2) an algorithm that op-
timizes the use of cloud resources, and (3) a game-theoretic inspired pricing
mechanism that achieves a rationally fair distribution of incurred costs over cus-
tomers. We presented performance evaluation results that confirm the utility
and potential of our framework.

Our on-going research work is pursued along three dimensions. Along the
first, we are investigating extensions to our specification language to allow for
yet more expressive forms of SLAs – e.g., non-parametric constraints, such as
geographic location, anti-colocation, and network proximity, as well as provid-
ing customers with a choice construct that allows them to specify alternative
workload configurations and physical resource flexibilities. Our second line of
work is focusing on extending CloudPack to allow for resource allocation with
uncertainty, i.e., account and provide cost for resource failures. Our third line of
work is focused on developing a prototype of a our colocation framework that
will allow us to conduct experiments in a dynamic setting that is subject to the
overheads resulting from actual allocation and relocation of workloads. Elements
of this prototype have been developed as part of our earlier work on XCS a VM
cloud colocation service [20].
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