
Digital Object Identifier (DOI) 10.1007/s00530-003-0109-0
Multimedia Systems (2003) Multimedia Systems

© Springer-Verlag 2003

Network-aware partial caching for Internet streaming media�

Shudong Jin1, Azer Bestavros1, Arun Iyengar2

1 Computer Science Department, Boston University, Boston, MA 02115, USA
2 IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Abstract. The delivery of multimedia over the Internet is af-
fected by adverse network conditions such as high packet loss
rate and long delay. This paper aims at mitigating such ef-
fects by leveraging client-side caching proxies. We present a
novel cache architecture and associated cache management al-
gorithms that turn edge caches into accelerators of streaming
media delivery. This architecture allows partial caching of me-
dia objects and joint delivery from caches and origin servers.
Most importantly, the caching algorithms are both network-
aware and stream-aware; they take into account the popular-
ity of streaming media objects, their bit rate requirements, and
the available bandwidth between clients and servers. Using In-
ternet bandwidth models derived from proxy cache logs and
measured over real Internet paths, we have conducted exten-
sive simulations to evaluate the performance of various cache
management algorithms. Our experiments demonstrate that
network-aware caching algorithms can significantly reduce
startup delay and improve stream quality. Our experiments
also show that partial caching is particularly effective when
bandwidth variability is not very high.

Key words: Web caching – Streaming media – Network mea-
surement – Partial caching

1 Introduction

The increasing popularity of multimedia content on the Inter-
net has stimulated the emergence of streaming media appli-
cations. Access to streaming media requires a high and sta-
ble transmission rate. To meet such requirements, customers
and ISPs typically upgrade their connections to the Internet,
e.g., by going to higher-bandwidth services. While necessary,
this upgrade of the “last mile” bandwidth does not translate
to improved quality of service for streaming media access.
Specifically, for such upgrades to yield the desired effects,
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Internet and streaming media servers must be able to handle
the increased demand. To that end, several issues need to be
addressed.

First, it is not clear whether the physical bandwidth of
the Internet can match the growth pace of the demand for
bandwidth. Internet resources are shared by a large number of
connections; an individual customer can only expect to get a
portion that reflects his/her “fair share” of the physical avail-
able bandwidth. This is the result of requirements that network
transport protocols for streaming media be “TCP-friendly”
[12,24,30]. Thus, the bandwidth available to an individual
connection is likely to be limited by the unpredictable sharing
of Internet resources. Second, the Internet exhibits extreme
diversity in terms of end-to-end packet loss rate and round-
trip delay. This diversity is made worse by the bursty nature
of these metrics as evidenced by findings in a number of stud-
ies on Internet traffic characteristics [11,22,13]. Finally, even
if the Internet transport would meet its end of the bargain,
streaming media servers may themselves become significant
bottlenecks, especially at times of high usage.

Combined, these factors suggest the importance of effi-
cient and robust streaming delivery mechanisms that go be-
yond the point-to-point, server-to-client delivery of stream-
ing media content. Caching is a good example of such mech-
anisms. By placing streaming media objects closer to cus-
tomers, network bandwidth requirements are reduced, user-
perceived quality is improved, and demand on servers is de-
creased. However, efficient streaming media caching algo-
rithms must consider several factors. They must consider the
characteristics of streaming media access workloads such as
the skewed popularity of streaming media objects and the het-
erogeneity of bit rate requirements. They must be network-
aware, i.e., they should consider network conditions such as
packet loss rate and end-to-end delay.

Paper contributions and overview: This paper proposes a
novel technique that turns edge caches into accelerators of
streaming media delivery. Partial or whole streaming media
objects are placed in caches closer to clients to accelerate ac-
cess and improve stream quality. The cache management algo-
rithms we propose are both stream-aware and network-aware;
they account not only for the popularity of streaming media
objects but also for the bit rate requirements of these objects
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as well as network condition such as the available bandwidth
between servers, clients, and caches. Using synthetically gen-
erated access workloads, our simulations show that the pro-
posed algorithms can efficiently utilize cache space to reduce
streaming application startup delay and improve stream qual-
ity. Our simulations are unique because they rely on models
reflecting Internet bandwidth characteristics we observed in
real proxy cache logs and measured over real Internet paths.

In the remainder of this paper, we first revisit related work
in Sect. 2. Then we formalize the cache problem and propose
our service acceleration algorithms. Section 4 describes the
methodology of our performance evaluation experiments, and
Sect. 5 presents results from our simulations. We end in Sect. 6
with conclusions and directions for future research.

2 Related work

Caching techniques have been widely used for traditional
Web content such as HTML pages and image files [1,6,9,
18]. A difference between Web caching and streaming media
caching is that Web caches can store nearly everything. This
strategy is too expensive for large streaming media objects.
Williams et al. [31] evaluated different Web caching policies.
Wooster andAbrams [32] considered document retrieval delay
in replacement algorithms. Cao and Irani [7] proposed cost-
aware replacement algorithms, capitalizing on the variable-
size variable-cost property of Web objects. Jin and Bestavros
[15] proposed caching algorithms that capture long-term ob-
ject popularity as well as the variable-size variable-cost nature
of Web objects.

The emergence of streaming media applications on the In-
ternet has resulted in an increased interest in effective stream-
ing media delivery techniques. Recent studies have focused
on streaming media workload characterization [2,4,5,10,20]
and synthesis [16] as well as caching techniques [3,17,25,28,
29].

Several studies have considered the implications of work-
load characteristics on the performance of streaming media
caching and prefetching techniques. Acharya et al. character-
ized streaming objects [2] and user access patterns [4]. Their
work revealed several observations including the highly vari-
able object sizes, the skewed popularity of objects, and the
existence of temporal locality. Chesire et al. [10] analyzed a
client-based streaming media workload and found that most
streaming objects are small and that a small percentage of
all requests are responsible for almost half of the total bytes
served. They found that requests during periods of peak loads
exhibit a high degree of temporal locality due to an object
popularity profile that fits a Zipf-like distribution. Almeida el
al. [5] analyzed workloads from two media servers used for
educational purposes. They studied request arrival patterns,
skewed object popularity, and user interactivities, extending
results obtained earlier by Padhye and Kurose [20] on user
interactivities with a media server.

Several studies have proposed caching schemes for
streaming media objects. Due to the large size of media ob-
jects, effective use of cache space becomes more important.
Aiming to reduce network bandwidth requirements, Wang et
al. [29] proposed that proxy servers cache part of a stream
with high bit rate. Their scheme is called video staging, which

they combined with work-ahead smoothing techniques [26].
Sen et al. [28] proposed that proxies cache the initial frames
of multimedia streams and use work-ahead smoothing. Pre-
fix caching requires only small cache space to effectively re-
duce startup delay. Miao et al. [17] proposed selective caching
to maximize the robustness of video streams against network
congestion. Rejaie et al. [25] considered layered-encoded mul-
timedia streams. They proposed a proxy caching mechanism
to increase the delivered quality of popular streams. Acharya
et al. [3] proposed the MiddleMan cooperative caching tech-
niques, which utilize the aggregate storage of client machines.
Reisslein et al. [23] developed and evaluated a caching strat-
egy that explicitly tracks client request patterns and achieves
higher hit ratios. Paknikar et al. [21] described a media caching
framework that uses RTSP [27] in communication. They eval-
uated different cache replacement policies. Chan and To-
bagi [8] studied various caching schemes, all employing cir-
cular buffers and partial caching. They analyzed the tradeoffs
between disk storage space and network bandwidth. In the
context of caching layered video, a recent work [33] investi-
gated how layered video transmissions can be TCP-friendly.
To the best of our knowledge, none of these schemes has con-
sidered measuring network bandwidth for caching algorithms,
and none has used bandwidth models derived from real Inter-
net measurements in their performance evaluation methodolo-
gies.

3 Caches as accelerators: proposed algorithms

In this section, we describe an architecture that uses caches
to accelerate streaming media access. Then we formalize the
cache management problem and propose a number of algo-
rithms accordingly.

3.1 Architecture of streaming media delivery

We consider an Internet streaming media delivery architecture
consisting of: (1) caches deployed at the edge of the Internet;
(2) streaming media objects that are replicated either entirely
or partially on these caches; and (3) clients whose requests are
satisfied by servers and caches, possibly partially by servers
and partially by caches. Figure 1 illustrates such an architec-
ture.

We first examine how streaming media accesses may pro-
ceed in the absence of caches.A client may request any objects
available from an origin server. To do so, the client measures
the bandwidth between the server and itself. If the bandwidth
is abundant, the client can play the stream immediately (it may
still need to buffer a few initial frames of the stream in order to
tolerate network jitters). If the bandwidth is not high enough
to support immediate and continuous play of the stream at an
acceptable quality, e.g., the object playback rate is 400 Kbps
but the bandwidth is only 200 Kbps, two choices are possible:
(1) it introduces a startup delay, during which it prefetches a
prefix of the stream, before continuously playing the stream,
or (2) it negotiates with the server and degrades the stream
quality. For the previous example, the client can retrieve half
of a layer-encoded object.

Now we turn to streaming media access in the presence of
caches deployed closer to the client. Rather than relying solely
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Fig. 1. Using caches to accelerate Internet streaming access. A client
request is served partially by a proxy cache and partially by a server.
Caches can eliminate bandwidth bottlenecks between clients and
servers

on the origin server, a client could retrieve an entire or partial
stream from a neighboring cache with higher bandwidth. It
does so by measuring the bandwidth from the server and the
bandwidth from the cache and then determining whether it is
possible for both the server and the cache to jointly support
immediate and continuous play of the stream. For the previous
example, if half of the object has been cached, then the client
can immediately and continuously play out the object; while
the client is playing out the object from the cache, the other half
is prefetched from the server. Generally, with caches, clients
are less affected by the limited and variable bandwidth from
the server.

3.2 Formalization of cache management problem

As we hinted earlier, “network awareness” is an important
aspect of the streaming media caching techniques we propose
in this paper. To appreciate this, consider the paths from a
cache to two origin servers shown in Fig. 1, whereby one path
has a bandwidth of 1 Mbps while the other can only support
streaming at a 0.1 Mbps rate. Intuitively, it is more valuable
to cache objects available from the second origin server.

Before we formalize the cache management problem, we
make several assumptions (we relax some of them later in the
paper). First, we assume that the bandwidth of a specific path is
constant over some appropriate timescale. In a real setting, and
as we explained earlier, the bandwidth achievable over a given
Internet path may vary significantly with time. In Sect. 3.5,
we relax this assumption and show how our algorithms can be
modified to handle bandwidth variability. Second, we assume
that the objective of the system is to minimize average startup
delay. We define the startup delay to be the total delay per-
ceived by the client before the playout of an object (at some
acceptable quality) can begin. In Sect. 3.6, we also consider
other objectives. Third, we assume that streaming media ob-
jects are encoded using a constant bit rate (CBR) technique.
For variable bit rate (VBR) objects, we assume the use of the
optimal smoothing technique [26] to reduce the burstiness of

transmission rate. It has been shown that a relatively small
buffer is sufficient to smoothen out VBR, essentially close
to CBR. Hence this portion of buffer space is ignored in our
analysis. Finally, we assume abundant bandwidth on the client
side. Also, we assume that clients behind a caching proxy (a
client cloud) are homogeneous.

Let N be the number of media objects available for access.
For any such object i, we denote by Ti the object’s duration in
seconds, by ri the object’s CBR encoding in Mbps, by λi the
arrival rate of requests for that object, and by bi the bandwidth
between the cache and the original server storing that object.
The notation y+ means that y+ = y if y > 0 and 0 otherwise.

Let C denote the total capacity of the cache, and let xi

denote the size of the cached part of object i. Upon requesting
object i, the playout of that object must be delayed by [Tiri −
Tibi −xi]+/bi. Notice that Tiri reflects the overall size of the
requested object and that Tibi reflects the size of the portion
of the object that can be streamed during playout. Note it is
assumed that bottleneck bandwidth is not at the client.

The optimization problem is thus to find a set of values
{xi, 1 ≤ i ≤ N} that would minimize the average startup
delay of all streaming media accesses, that is, to minimize

1
∑N

i=1 λi

N∑

i=1

λi[Tiri − Tibi − xi]+/bi

subject to the constraint
∑N

i=1 xi ≤ C, xi ≥ 0. Notice that
the constant factor 1/

∑N
i=1 λi can be ignored.

3.3 An optimal solution for populating caches

We derive the optimal solution under static conditions. By
static conditions, we mean the cache content is static, i.e.,
no replacement is necessary. By optimal solution, we mean
caching decisions are made with prior knowledge of request
arrival rates. We obtain the optimal solution by solving the
above optimization problem.

First, for an object i, if ri ≤ bi (i.e., the bandwidth is higher
than the object’s bit rate), then there is no need to cache that
object (i.e., xi = 0).

Now we consider all other objects. Let I denote the set of
objects whose bit rate is higher than the bandwidth. The above
optimization problem is equivalent to minimizing:

∑

i∈I

λi(Tiri − Tibi − xi)/bi,

subject to the constraint
∑

i∈I xi ≤ C, 0 ≤ xi ≤ (ri − bi)Ti.
Notice that we restrict xi to be less than or equal to (ri −bi)Ti

since a larger xi does not yield more delay reduction.
The above minimization is equivalent to maximizing∑

i∈I λixi/bi. This is a fractional knapsack problem with has
the following optimal solution: the caching algorithm chooses
those objects with the highest λi/bi ratios and caches them up
to (ri − bi)Ti until the cache is used up.

The above analysis assumes that bi does not change with
time and is independent of xi. There is a subtle problem. A
larger xi results in lower bandwidth requirements on the path
to the server since the client needs to retrieve a smaller portion
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during Ti; by contrast, decreasing xi results in higher band-
width requirements. Therefore, there may be self-induced con-
gestion on shared paths to the servers. However, this factor is
less critical for two reasons. First, the servers satisfy requests
from many clients and proxies across the Internet. Here we
are considering a single proxy cache, where the change in bi

due to xi is limited. For example, if a server has 100 connec-
tions on average, but there are only a few connections from the
proxy we are considering, then xi will not affect the available
bandwidth (fair share) very much. Second, our algorithms are
adaptive to changes in bi. If at some time a value of xi is de-
cided upon, but subsequent probes indicate a larger bi than
expected, then our algorithm will automatically decrease xi.
We should also point out that an algorithm working in such
an adaptive fashion may not be optimal. In order to optimize
the caching algorithm while considering the dependence of bi

on xi, the caching proxy needs full knowledge about the load
on the server and in the network. To have such knowledge is
often difficult and very costly.

3.4 Dealing with unknown request rates
through replacement

In practice, caching algorithms have no prior knowledge of
request arrival rates. Thus, the optimal solution derived in
the previous section is not practical. To approximate the opti-
mal solution, we propose a cache replacement algorithm. Our
cache replacement algorithm estimates the request arrival rate
λi of each object by recording the number or frequency of
requests to each object, which we denote by Fi. Our cache
replacement algorithm works as follows.

As before, if the bit rate of an object is lower than the
measured bandwidth to the server, i.e., if ri ≤ bi, then the
object is not cached. Otherwise, we define the utility of object
i as the ratio Fi/bi. The cache replacement algorithm always
caches those objects with the highest utility value. The size of
the cached part of object i is up to (ri − bi)Ti.

Such a replacement algorithm can be implemented with a
heap that uses the utility value as the key. Note that on each ac-
cess to an object, the object’s utility value is increased. There-
fore, the replacement algorithm may evict other objects. The
processing overhead for heap operations is O(log n), where n
is the number of objects in the cache.

3.5 Dealing with bandwidth variability
through overprovisioning

In our exposition so far, we assumed that the bandwidth of a
path is a constant. In realistic settings, the bandwidth of an end-
to-end path may change over time, possibly drastically and un-
predictably. Without prior knowledge of bandwidth variabil-
ity, it is impossible to derive an optimal solution for caching.
Hence we use a heuristic modification of our caching algo-
rithm. With such a modification, we do not have to assume,
for example, that bandwidth during prefetching is the same as
that during playback.

The basic idea behind our heuristic is to make partial
caching decisions based on a more conservative estimation
(i.e., underestimate) of bandwidth. Such a conservative es-
timate of bandwidth would result in caching more than the

minimum Ti(ri − bi) needed for object i. To understand why
we need to do so, we observe that when bandwidth varies sig-
nificantly, if we only cache Ti(ri − bi), then it is very possible
that this portion of object i will not be enough to hide the
access delay. But how much of the object would be enough
to cache? Intuitively, such a determination should depend on
the amount of bandwidth variability. If bandwidth does not
vary much, then caching Ti(ri − bi) is close to optimal. If
bandwidth varies, then more conservative caching decisions
are warranted; the larger the variations, the larger the portion
of the object to be cached.

In the extreme case, the most conservative heuristic would
yield a caching algorithm that chooses those objects with the
highest λi/bi ratios and would cache them up to riTi (i.e.,
it would cache whole objects) until the cache is used up. We
use the term integral caching to refer to techniques that re-
strict cached content to be of complete objects. Thus, integral
caching disallows partial caching. With integral caching, the
cache can be used up quickly since it would accommodate
fewer objects. As we show in Sect. 5, such an approach is only
advantageous when bandwidth variability is extremely high.

3.6 Addressing other caching objectives

So far we have assumed that the primary objective of caching
is to reduce delay. However, caching may be desirable for other
objectives. We consider the following application as an exam-
ple. Each streaming media object has an associated value.1

When a client requests immediate service of a streaming me-
dia object, the cache decides whether the server and the cache
can jointly support it. There is an added value if the object
is played. Here, the objective is to maximize the revenue of
the cache. We formalize the problem as follows. Let Vi de-
note the value of the i-th object. We need to find the set of
objects I to maximize

∑
i∈I λiVi, subject to the constraint∑

i∈I [Tiri−Tibi]+ ≤ C. Note that we need to partially cache
[Tiri − Tibi]+ of the i-th object to provide immediate service
to the requests.

We solve this problem as follows. As before, those objects
with a bit rate lower than bandwidth need not be cached. The
problem is thus to decide on a set of other objects to be partially
cached. This is a knapsack problem that is NP-hard. A simple
but suboptimal greedy solution is caching those objects with
the highest λiVi

Tiri−Tibi
ratio.

3.7 Implementation issues

The techniques discussed thus far assume that it is possible
for a cache to measure the bandwidth from the origin server.
Two approaches are possible: active measurement and pas-
sive measurement. Using active measurement approaches, end
systems (clients, servers, or caches) send a few probing pack-
ets and then estimate bandwidth based on observed packet
loss and/or delay measurements [14]. For example, for TCP-
friendly streaming media transports, the available bandwidth
from the server should be close to TCP’s throughput, which

1 This value may reflect the relative importance of the object in a
multimedia setting, e.g., audio vs. video.
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is inversely proportional to the square root of packet loss rate
and round-trip time [19]. Both packet loss rate and round-trip
time could be measured using end-to-end approaches. Clearly,
active measurement approaches incur some overhead. Using
passive measurement approaches, end systems estimate band-
width by observing the throughput of past connections. Such
approaches do not introduce additional network overhead but
may not be accurate as bandwidth may change drastically over
time. Either way, the estimation of bandwidth can be easily
combined into the caching algorithms, and the modification
to the caching decision need not be updated very frequently.

The techniques discussed thus far assume that it is possible
for a client to be jointly served by both the origin server and the
cache. Clearly, some coordination is needed to ensure that the
content served from the cache and the origin server are com-
plementary. One approach to ensure this is to restrict caching
to object prefixes rather than any interval of an object. When
a client starts playing the prefix of an object fetched from the
cache, the remainder of the object is prefetched from the cor-
responding server. Certainly there are many implementation
details such as partial object (prefixes or fine-grain segments)
maintenance, prefetching decisions, and partial object service
protocols.

4 Evaluation methodology

This section describes the methodology used in our simula-
tions. We first present results of analyses of NLANR proxy
cache [18] logs as well as results from measurement exper-
iments we conducted on representative Internet paths to get
realistic bandwidth models (base bandwidth distributions and
variability characteristics) for use in our simulations. Next,
we describe how synthetic streaming media access workloads
were generated to drive our simulations. Finally, we describe
the performance metrics used to compare the performance of
various algorithms.

4.1 Network bandwidth modeling

For our performance evaluation simulation experiments, we
needed to adopt a model of the base bandwidth over various
paths and see how such base bandwidth may vary over time.
We derived such models using two methods: (1) analysis of
proxy cache logs and (2) measurement of observed bandwidth
over a set of real Internet paths. We are not claiming that our
measurement and analysis capture all aspects of Internet band-
width. However, they can help us understand the heterogeneity
and variability of Internet bandwidth, and experiments based
on them can help us understand how they impact the effec-
tiveness of various caching algorithms.

We obtained bandwidth statistics by analyzing the
NLANR proxy cache logs. We used a 9-d log of site UC during
12–20 April 2001. This site has a popular client (a low-level
proxy). We observed those missed requests for objects larger
than 200 KB. A bandwidth sample is obtained by dividing the
size of an object by the connection duration. We used requests
for large objects since the long duration of HTTP connections
results in more accurate measurement of bandwidth. We used
the missed requests so that the objects were served by the
original servers and not by the NLANR proxy cache.
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Fig. 2a,b. Internet bandwidth distribution observed in NLANR cache
logs. The histogram in a is generated by showing the number of
samples in each 4-Kbps slot. Each sample is obtained by computing
the throughput of a HTTP connection. The cumulative distribution
in b is derived from the histogram

Figure 2a shows a histogram of the bandwidth values ob-
served from analysis of the log. It shows that the bandwidth
of various paths varies drastically. The possible causes are
(1) the packet loss rate and delay vary significantly from one
server to another, and (2) server loads can be quiet different,
i.e., congestion at the server. Figure 2b shows the cumulative
distribution of bandwidth. We found that 37% of the requests
have bandwidth lower than 50 Kbps, and 56% have bandwidth
lower than 100 Kbps. We also note that a large portion of the
requests yielded much higher bandwidth. This heterogeneity
of bandwidth suggests that caching algorithms could benefit
from differentiating between objects from origin servers with
widely different bandwidth.

We also observed the bandwidth variability for requests to
the same server (i.e., using the same Internet path) over differ-
ent times. To do this, we first computed the average bandwidth
of each path. Then we took the ratio of the bandwidth sam-
ples to the average value. Figure 3a shows the distribution of
this sample-to-mean ratio. It indicates that the bandwidth of a
single path may vary significantly. Figure 3b shows the cumu-
lative distribution function. While the sample-to-mean ratio
can be very large, the CDF plot indicates that in about 70%
of the cases, the sample bandwidth is 0.5–1.5 times the mean.
One question is how such variation affects the performance of
caching algorithms.

It is important to note that the analysis of NLANR logs can-
not give us a realistic model for bandwidth variability, rather,
it is likely to magnify bandwidth variations. It provides a fairly
pessimistic (i.e., bursty) model of bandwidth variability com-
pared to what one would observe for a typical transaction. In



6 S. Jin et al.: Network-aware partial caching for Internet streaming media

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

# 
of

 S
am

pl
es

Ratio of Sample to mean bandwidth

a Histogram

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Ratio of Sample to mean bandwidth

b Cumulative distribution

Fig. 3a,b.Variation of bandwidth observed in the NLANR cache logs.
The average bandwidth of each path is computed. Then we take the
ratio of the samples to the average value. Panel a shows the histogram
of this ratio. Panel b shows the cumulative distribution function of
the ratio

particular, Fig. 3a is over an unrestricted time scale, i.e., the
requests were not restricted to a particular time of day. Specifi-
cally, variability that results from diurnal traffic patterns (over
time scales of many hours) may indeed be much larger than
variability over shorter time scales. Other factors that con-
tribute to this include our inability to separate variability due
to network conditions as opposed to NLANR proxy caching
load.

To obtain more realistic bandwidth variability models, we
measured the bandwidth of real Internet paths over long peri-
ods. We repeatedly downloaded large files from Web servers
around the world. Each download takes 5 to 30 s. We care-
fully scheduled the downloads to avoid overlapping them on
the client machine (IP address: 128.197.12.3). Figure 4 shows
the bandwidth evolution of three such paths spanning over 30
to 45 h (starting from 2 pm, 15 October 2001). We have also
generated sample-to-mean ratio histograms for three of these
paths, also shown in Fig. 4. The following observations were
made. (1) The magnitude of bandwidth variability depends
largely on the paths. For instance, the INRIA server appears
to have much lower variability than the other two servers.
(2) All paths have much lower variability than those obtained
through analysis of the NLANR cache logs. This comparison
was done by computing the coefficient of variation for the his-
togram plots in Fig. 4 and contrasting it to the coefficient of
variation obtained from Fig. 3.

Table 1. Characteristics of the synthetic workload

Number of objects 5,000
Object popularity Zipf-like
Number of requests 100,000
Request arrival process Poisson, mean IAT ≈ 30 s
Object size Lognormal, µ = 3.85, σ = 0.56
Object bit rate 48 Kbps
Total storage 790GB
Cache size 4 ∼ 128GB
Bandwidth distribution NLANR logs
Bandwidth variation NLANR logs and measurement

4.2 Synthetic workload generation

We used the GISMO toolset [16] to generate a synthetic work-
load for the purpose of driving our simulation experiments.
Table 1 lists the characteristics of this workload.

The workloads used in our simulations consisted of re-
quests to N = 5000 unique streaming media objects whose
popularity follows a Zipf-like distribution [34]. With Zipf-
like distributions, the relative popularity of an object is pro-
portional to r−α, where r is the rank of the object’s popu-
larity. The probability that the i-th ranked object is accessed
is r−α/

∑N
j=1 j−α. The default value for α is 0.73; we also

present results with a range of values.
Each workload (for a single simulation run) consisted of

100,000 requests, spanning over one month. Request arrivals
were generated using a Poisson process, i.e., the requests ar-
rive independently with mean interarrival time (IAT) close to
30 s. The duration (in minutes) of the streaming media objects
follow a Lognormal distribution with parameter µ = 3.85 and
σ = 0.56. The average duration of the objects is about 79 K
frames, or about 55 min since we assume 24 frames per sec-
ond. The bit rate of the objects is 48 Kbps. The total unique
object size is 790 GB.

Although we have changed the numeric values shown in
Table 1 and generated workloads of different characteristics,
we found that the relative performance of the various algo-
rithms is fairly similar to that observed using the base values.

In our simulation experiments, we varied the cache size
from 4 GB, about 0.5% of the total unique object size, to
128 GB, about 16.9% of the total unique object size. The band-
width between the cache and the servers follows the sample
distribution from the NLANR logs (Fig. 2). When we study
the impact of bandwidth variability, we generate bandwidth
instances varying according to the models depicted in Figs. 3
and 4.

4.3 Performance metrics

In our experiments, we considered a number of performance
metrics, each reflecting a different objective of caching. We
discuss these metrics below.

• Caching algorithms may aim at reducing backbone traf-
fic. To capture the effectiveness of a caching algorithm
in reducing backbone traffic, we define the traffic reduc-
tion ratio as the fraction of the total bytes served by a
cache. Traffic reduction ratio does not necessarily reflect
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Fig. 4a–c. Bandwidth variation of real paths from Boston University (IP address: 128.197.12.3) to three servers. Top plots show the sample
bandwidth in time series. One sample was taken every 4 min. Bottom plots show the histogram of the sample-to-mean ratio

user-perceived quality. To capture this, we introduce three
additional metrics.

• When bandwidth (assisted by cache or not) is not enough
to support the immediate playout of a stream, the client
may choose to wait for service. During this waiting period,
the client prefetches a prefix before continuously playing
the stream. In this case, we are interested in the average
waiting time, which we call the average delay.

• When bandwidth (assisted by cache or not) is not enough to
support a full stream, the client may choose to downgrade
the quality of the stream to play it out immediately. In this
case, we are interested in theaverage streamquality, which
we define as the percentage of the full stream that yields an
immediate playout. For example, if a layer-encoded object
has four layers with equal size but only three layers can be
supported, then the quality is 0.75.

Different caching algorithms have different objectives. A
given algorithm may optimize one performance metric but sac-
rifice others. For example, one algorithm (e.g., LFU) caches
objects based on their access frequency only, not based on
the network bandwidth. It aims at improving hit ratios and
reducing traffic but not the average delay or stream quality.
Therefore, we need to compare several performance metrics
so that we can understand the tradeoffs of different algorithms.

5 Simulation results

This section presents results from our simulation experiments
in which we compared the performance of various caching
algorithms and heuristics presented in this paper. Specifically,
we study how bandwidth variability affects the performance
of caching algorithms. Each result is obtained by averaging
ten runs of the simulated system.

5.1 Performance of replacement algorithms

We conducted the first set of simulations to compare the per-
formance of three cache replacement algorithms. The first al-
gorithm caches those objects with the highest request arrival
rates and only allows whole objects to be cached. We call this
integral frequency-based caching, or IF caching for short. The
second algorithm is the one described in Sect. 3.3. It caches
those objects from origin servers without abundant bandwidth
for streaming, i.e., preference is given to those with a higher
λi/bi ratio. Also, it allows partial caching. We call this partial
bandwidth-based caching, or PB caching for short. The third
algorithm is the one described in Sect. 3.5. It caches those
objects with the highest λi/bi ratio, but does not allow partial
caching. We call this integral bandwidth-based caching, or
IB caching for short. These three algorithms estimate object
access frequency and network bandwidth progressively and
make eviction decisions when the cache is used up.

Figure 5 shows the results we obtained from our simulation
experiments. For each run of the simulation program, we first
warm up the cache using the first half of the workload and
then compute the performance metrics from the second half.
For this set of simulations, we assumed that the bandwidth of
a path does not vary over time.

As depicted in Fig. 5a, IF caching achieves the highest
backbone traffic reduction, while PB caching achieved the
least such reduction. This is expected since PB caching does
not cache whole objects even if the objects are very hot. Al-
ternatively, Fig. 5b,c shows that PB caching achieves the low-
est average delay and the highest average quality, whereas
IF caching achieves the worst results for these metrics. Even
when cache size is relatively high, the inferiority of IF caching
is still obvious. The reason is that it results in caching hot ob-
jects even when there is abundant bandwidth for streaming
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Fig. 5a–c. Comparison of IF, PB, and IB cache replacement algorithms under constant bandwidth assumption
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Fig. 6a–c. Effect of Zipf-like popularity distribution parameter α

such objects from origin servers, thus limiting its ability to
effectively use the cache.

Figure 5a shows that IB caching yields performance met-
rics that lie in between those of the other two algorithms. IB
caching achieves high traffic reduction ratios and is reason-
ably close to PB caching in terms of average delay and stream
quality. An additional advantage of IB caching is simplicity:
it caches whole objects, making it unnecessary to coordinate
joint service by origin servers and caches, whereas PB caching
requires a client to download a stream from the cache and the
origin server in parallel.

5.2 Impact of temporal locality of reference

We conducted a second set of simulations to study the effect
of the skewness, i.e., parameter α of the Zipf-like distribution
governing streaming media object popularity. This skew is a
measure of temporal locality of reference. When α increases,
temporal locality in the workload is intensified. In simula-
tions, we varied α from 0.5 to 1.2. Figure 6 shows the results

of these simulations with respect to the various performance
metrics. Only the results of IB caching and PB caching are
presented. In general, intensifying temporal locality results in
performance gains for both algorithms. Moreover, the relative
performance of the algorithms does not seem to change: IB
caching obtains much higher traffic reduction ratios, whereas
PB caching achieves moderately better average delay and av-
erage stream quality.

5.3 Impact of bandwidth variability

We conducted a third set of simulations to study the impact of
bandwidth variability on the performance of the three caching
algorithms under consideration. In these simulations, we al-
lowed the bandwidth of a path to change over time. We gener-
ated such variations as follows: each path has an average band-
width that follows the distribution in Fig. 2, but an instance of
the bandwidth is obtained by multiplying that bandwidth by a
random ratio that follows the distribution in Fig. 3. The results
from this set of simulations are shown in Fig. 7.
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Fig. 7a–c. Comparison of different caching algorithms under variable bandwidth assumption. The variation is obtained from cache logs
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Fig. 8a–c. Comparison of different caching algorithms under variable bandwidth assumption. The variation is measured from real Internet
paths

Comparing Fig. 7a with Fig. 5a shows no noticeable differ-
ence in traffic reduction ratio for all three algorithms. However,
the other two performance metrics (average delay and aver-
age stream quality) exhibit major differences. First, bandwidth
variability results in increased delay and degraded stream qual-
ity for all three algorithms. When bandwidth varies drastically
over time, partial caching becomes less effective in acceler-
ating access and improving stream quality. High bandwidth
variability makes it difficult to choose the right objects and the
right fraction of each object to cache. Second, IB caching is no
worse than PB caching. This is because the optimality of PB
caching depends on the constant bandwidth assumption.When
bandwidth is insufficient due to variability, clients see higher
delays or lowered quality. On the contrary, IB caching makes
conservative caching decisions and caches whole objects with
the highest λi/bi ratio. That is, it caches those objects with
high access frequency and low bandwidth for streaming.

As we discussed before, the bandwidth observed from
NLANR cache logs appears to have higher variability than
real Internet path measurements we performed. To that end,
we conducted a fourth set of simulations using the lower vari-
ability modeled by the distribution in Fig. 4. The results of
these simulations are shown in Fig. 8. We observe that with
this more realistic setting, PB caching outperforms the other
integral algorithms (IF and IB) in reducing delay and improv-
ing stream quality. These results suggest that the choice of
partial vs. integral caching should indeed depend on the level
of bandwidth variability.

As has been noted repeatedly, IB caching is the algo-
rithm that is most tolerant to bandwidth variability, whereas
PB caching is the most susceptible to bandwidth variabil-
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Fig. 9a,b. Effect of partial caching based on bandwidth estimation

ity. Thus it is interesting to find out if a hybrid algorithm
could bridge these two extremes. To do so, we conducted a
fifth set of simulations in which the average bandwidth from
the origin server was underestimated by multiplying it by a
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constant e. In Fig. 9, we plot the traffic reduction ratio and
the average delay as e changes between 0 and 1. This gives
us the performance of a spectrum of partial bandwidth-based
caching algorithms that range from IB caching (when e = 0)
to PB caching (when e = 1). Figure 9 shows that IB caching
is always better in reducing network traffic but that choosing
a moderate value of e results in slightly lower average delay.

6 Conclusion

In this paper, we proposed a cache architecture and associ-
ated algorithms that turn Internet edge caches into accelera-
tors of streaming media delivery. Our algorithms allow partial
caching of streaming media objects and joint delivery of con-
tent from caches and origin servers. More importantly, they are
both network-aware and stream-aware in that they optimize
cache occupancy decisions based on knowledge of available
bandwidth from an origin server as well as streaming media
object properties such as object popularity and encoding bit
rate characteristics.

The performance evaluation experiments we performed
using realistic streaming media access workloads augmented
with a model of Internet path bandwidth measurements
demonstrate the effectiveness of caching mechanisms that take
into consideration network bandwidth information. Our simu-
lation experiments have shown that bandwidth variability may
impact the effectiveness of partial caching in reducing startup
delay and stream quality. However, they also show that simple
overprovisioning heuristics work reasonably well, even in the
presence of high bandwidth variability.

Our ongoing and future work will proceed on a number
of fronts. First, as evident from our findings, accurate mea-
surement of network bandwidth and jitter is key to efficient
streaming media delivery techniques. We are in the process
of augmenting GISMO [16] with realistic models of Inter-
net path bandwidth and bandwidth variability distributions.
Second, we are investigating the possibility of combining our
partial caching mechanisms with other streaming content de-
livery techniques such as patching and batching techniques
at caching proxies. Finally, given the importance of real-time
bandwidth measurement techniques, we are considering ap-
proaches that integrate active bandwidth measurement tech-
niques [14] into proxy caches. This would allow us to proto-
type the acceleration architecture proposed in this paper using
off-the-shelf caching proxies.
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