
A Formal Type-Centric Framework for Verification and Resource Allocation
in Pervasive Sense-and-Respond Systems†

Michael Ocean
Endicott College∗

Computer Science
Beverly, MA

mocean@endicott.edu

Assaf Kfoury
Boston University
Computer Science

Boston, MA
kfoury@cs.bu.edu

Azer Bestavros
Boston University
Computer Science

Boston, MA
best@cs.bu.edu

Abstract

A shared Sense-and-Respond infrastructure that is em-
bedded into a physical environment requires considerable
run-time support to facilitate the dynamic dispatch and exe-
cution of new service instances. Such an infrastructure must
also be able to statically analyze new services in order to
verify their safety and derive their specific resource require-
ments (i.e., prior to dispatch). Toward this goal we have
developed a multi-dimensional type system for our perva-
sive sensory service composition language; this formalism
extracts implicit constraints from service instances to verify
an expanded notion of type safety. While our formal system
is rigorous, it is light-weight and essentially transparent to
a service programmer. The type-system automatically infers
data types that are annotated with a vector of type specific
attributes and uses these annotations to establish and ver-
ify a range of resource constraints (bounds for computation
and memory usage, camera resolution requirements, etc.).
In this paper we present an overview of our formal method-
ology, provide concrete examples of how these formalisms
are used in practice (through service logic examples and
derived constraint sets) and discuss the details of our im-
plementation.

1. Introduction
The Sensor Network WorkBench (SNBENCH [7]) is a

collection of compile-time tools and run-time components
that enable the painless development and deployment of
Sense-and-Response services that run on a shared infras-
tructure. Toward SNBENCH’s goal of enabling unsophis-

† This work was supported partially by NSF Awards #0820138, #0720604,
#0735974, and #0524477. Any opinions, findings, conclusions, or recom-
mendations expressed in this work do not necessarily reflect the views of
the NSF.
∗ This author’s work was conducted primarily while at Boston University.

ticated users to compose these services we provide our
users with high-level languages that are compiled down to a
functional-style Domain Specific Language (DSL), called
STEP (Sensor Task Execution Plan). STEP is resource
agnostic insofar as service logic may refer to particular
types of resources (e.g., an image sensor) without indicat-
ing which specific resources should be utilized within the
service.

Our ability to allocate resources on which to deploy
STEP services is contingent upon our ability to verify the
safety of new services and to derive resource requirements
from new service instances. While the motivation of the
SNBENCH project and specific implementation details for
its vision, architecture and use have been published else-
where ([4],[16] and [15] respectively), in this paper we
present the static analysis techniques that we have devel-
oped to provide safety and resource constraint extraction on
our sensing-centric language, STEP.1 STEP is analogous to
a common Instruction Set Architecture; by providing anal-
ysis techniques at the level of STEP, we extend this func-
tionality to any and all higher-level languages.

We base our type system on sized (a.k.a. static-
dependent) type systems, wherein upper bound size anno-
tations on types coupled with cost functions are used to de-
termine memory (storage) and processing (worst case exe-
cution) bounds. We expand our size tracking to multiple di-
mensions (i.e., multiple dimensions of size annotations) to-
ward the goals of (1) supporting images as a first-class data
type and (2) enabling the static inference of required image
(and image sensor) resolutions from implicit constraints.

Unlike traditional scalar data, both size bounds of an im-
age (i.e., upper and lower, where the lower bound is the
potential minimum image resolution) may have an impact
on functional correctness. For example, attempting to rec-

1In this paper we present only a subset of our formal system and omit
the proof of Soundness (Progress and Preservation); the complete formal-
ism appears in a Technical Report [14].

MOMPES’09, May 16, 2009, Vancouver, Canada
978-1-4244-3721-4/09/$25.00 © 2009 IEEE ICSE’09 Workshop31

ognize a face in a low-resolution image may never succeed,
or worse, might diverge depending on the implementation.
While one could consider adding additional types and sub-
typing relations to the type system to support awareness
of image resolutions (e.g., LowResolutionImage, Medium-
ResolutionImage, HighResolutionImage) it should be obvi-
ous that this sort of solution does not scale.

Our sized type system can bound costs for memory and
computation, and also produces sensing domain specific
resource constraints. In tracking bound both upper size
bounds and lower size bounds we are able to make state-
ments that bound a worst-case execution time and also pro-
vide bounds for image resolution; the latter property ulti-
mately leads to establishing the correctness of image pro-
cessing expressions.

A Motivating Example
Our goal is to be able to leverage the size annotations in

the type system to provide both an upper-bound for com-
putational requirements of services (as prior works have
done), while additionally (1) maintaining minimum size as-
pects to verify correctness in the presence of functions that
require a minimum size to ensure correctness and (2) de-
termining and maintaining implicit constraints on resources
and data sizes as extracted from contextual usage in a given
service instance.

For example consider the code fragment below:

(* Every 100 milliseconds, try to detect motion
in an image taken from a random camera.
If motion is detected, send an e-mail. *)

letonce IMG = get(sensor(IMAGE,ANY)) in
period(100ms,
trigger(facedetect(IMG),email("mocean",IMG))

)

In the code given, the variable IMG represents an image
captured from “any” image sensor. However not all image
sensors (i.e., cameras) have the same capabilities with re-
spect to image resolution (e.g., a webcam might capture im-
ages at a resolution several times lower than that of an em-
bedded Pan-Tilt-Zoom camera). In this program instance
there are implicit constraints on the image that indicate that
not just any sensor will do. The function (or as we call
it, Opcode) facedetect constrains the size of IMG, as it re-
quires a minimum resolution to correctly detect a face in
an image. A trigger construct specifies repetitive condi-
tional evaluation. It repeatedly evaluates a boolean expres-
sion (until it is true) and then evaluates a second expression
(the first expression “triggers” the second). The explicit
periodicity function (or as well call it, Flowtype) period

indicates that this expression must run every 100 millisec-
onds. Thus there are two constraints on the resolution of
the acquired image; the resolution must satisfy the mini-
mum requirements imposed by the face detection operation,

yet also be small enough to allow computation to occur ev-
ery 100 milliseconds. These constraints on the resolution
of the image must propagate back to the image sensor from
which the image will be acquired to ensure that the sensor
reserved for this program can support the required resolu-
tion (or range of resolutions).

Our sized constraint set (when solved) can be used to (1)
guide task assignment (e.g., do not split computation over
the network where the data size will incur a steep network-
ing overhead), (2) guide resource allocation (e.g., reserve
the correct sensor determined from a resolution range de-
rived from use in context), and (3) determine if a program
is fundamentally or temporarily infeasible (e.g., some spe-
cific resolution too low to perform computations, required
periodicity cannot be met given current available resources).
While it may not be clear that this particular, simple exam-
ple requires a strict periodic deadline, our environment also
targets tasks that provide coordination across various time-
sensitive entities (e.g., video sensors that guide robots).

As far as we are aware, we are the first project to em-
ploy such static verification techniques in this domain. The
static methods presented here have benefit beyond their ap-
plication to image data, and may be extended to other data
types that have multiple aspects (e.g., image quality, video
frame-rate or aspect ratio, audio sampling rate).

2. The SNBENCH Paradigm
To orient the reader to the platform to ease further discus-

sion, in this section we briefly highlight the salient features
of SNBENCH. The vision, goals and high-level overview of
the SNBENCH infrastructure have been reported elsewhere
[4]. Implementation details may be found in [16] and a
study of its successful use in the domain of combined phys-
ical and network security are available in [15].
Overview: SNBENCH consists of programming support
and a runtime infrastructure for Sensor Networks comprised
of heterogeneous sensing and computing elements that are
physically embedded into a shared environment. We re-
fer to such a physical space with an embedded SN as a
Sensorium [6]. The SNBENCH framework allows Senso-
rium users to easily program, deploy, and monitor the ser-
vices that run in this space while insulating the user from
the complexity of the physical resources therein. The sup-
port that SNBENCH extends to a Sensor Network is akin to
the support that higher-level languages and operating sys-
tems provide to traditional, single machine environments
(language safety, APIs, virtualization of resources, schedul-
ing, resource management, etc). SNBENCH is extensible
by design such that new hardware and software capabilities
may be painlessly folded into the infrastructure by its ad-
vanced users and those new capabilities easily leveraged by
its novice users.

32

Programming Life Cycle: SNBENCH provides a high-
level programming language with which to specify pro-
grams (services) that are submitted to the resource manage-
ment component which in turn disseminates program frag-
ments to the run-time infrastructure for execution. At the
lowest level, each sensing and/or computing element hosts
a Sensor eXecution Environment (SXE) that abstracts away
specific details of the host and attached sensory hardware.
SXEs are assigned tasks by the resource management com-
ponents of SNBENCH; the Sensorium Service Dispatcher
and Sensorium Resource Manager in tandem monitor SN
resources, schedule (link) and assign (bind) tasks to avail-
able SXEs. A graphical representation of this end-to-end
support is shown in Figure 1.

The Virtual Instruction Set Architecture of SNBENCH is
the Sensorium Task Execution Plan (STEP), a domain spe-
cific tasking-language used to describe complete programs
and fragments alike. A STEP program is a graph of a
SN programs’s data-flow and computational dependencies,
where the nodes of a STEP graph represent the atomic com-
putation and sensing operations and edges represent data
flow. In execution, demand for evaluation pushes down
from the root of the graph to the leaves and values percolate
up from the leaves back to the root. STEP nodes describe
data, control flow (e.g., repetition, branching) and compu-
tation operations that we refer to as STEP Opcodes and the
SXE maintains implementations of the Opcodes with which
it may be tasked.
Run-Time Support: STEP tasks (or subtasks) are as-
signed (linked) to the available SXEs for execution by the
Service Dispatcher. The Service Dispatcher must, there-
fore, be able to characterize the STEP tasks to ensure that
they are valid, and to estimate their resources requirements
for the purpose of allocation. For illustration’s sake, we
make a distinction between uncertified STEP tasks and
those that have been certified (i.e., validated by our type sys-
tem as correct and annotated with resource requirements).
Where certification occurs is ultimately immaterial pro-
vided that the information is available and can be trusted
(i.e., cannot be forged).
Verification Support: To allow the physical sensing,
computation, and actuation resources to be simultaneously
shared by services provided by the occupants of the space
(who are expected to lack formal training in software de-
velopment), it is critical that new services are vetted prior
to dispatch (i.e., statically) to bound their potential resource
consumption and verify safety. In the SNBENCH paradigm,
novice users program their tasks in accessible, higher-level
languages that are compiled into a functionally equivalent
representation in STEP. Providing verification to the STEP
language, the common instruction set of our language hier-
archy, ensures that all higher level languages may enjoy the
benefits of this analysis. It is a challenge to effectively re-

port meaningful warnings and/or error messages to the user
when analyzing a target (compiled) language rather than the
source. To help close this gap our initial analysis implemen-
tation records the line numbers in the source language with
each constraint such that, at a minimum, we may point the
user to the correct location in the event that a problem is
detected.

3 Related Work
Finding upper bounds on the execution time of programs

and program fragments is a well-established problem in
computing [20]. For example, the static analysis provided
by the aiT tool (described in [19], and elsewhere), provides
worst and best case execution time bounds using control-
flow analysis and abstract interpretation. We narrow our
consideration of related works to those that also use type-
systems for resource constraint discovery and assessment.
We distinguish ourselves from many of these works, in
some part, in that we statically infer and inject viable speci-
fications into vaguely specified programs (i.e., resource ag-
nostic code).

Our work has been largely inspired by existing works
that estimate an upper bound on execution time and mem-
ory requirements via a formal type system that has been an-
notated with upper size bounds on data types. These works
can be viewed as belonging to what have been called De-
pendent Type Systems.

We have made the conscious decision to apply static ver-
ification to our single target tasking language which may
be in turn translated into other representations for execution
on the target platform (e.g., the native language of the target
device). This approach is contrasted with works in other do-
mains that provide verification to the lowest level language.
Our approach provides verification benefits independent of
the source language or the target language (or the target
platform, for that matter). Examples of applying static veri-
fication at the lowest (i.e., Assembly language) level include
the Typed Assembly Language [13] and a closer compari-
son can be made to the Dependently Typed Assembly Lan-
guage [22] or its current incarnation as ATS (Applied Type
System) [21]. Ultimately these works, insofar as they are
focused on the lowest level language, are naturally used to
verify properties that are relatively outside the scope of the
Sense-and-Respond environments that we target (e.g., the
computation of array size bounds to prevent memory leaks
is different from determining image sensor constraints for
resource allocation).

Works that define Dependent Type Systems for bounding
execution time on higher-level functional languages include
(but are not limited to) Static Dependent Costs [17], Sized
Type Systems [10], and Sized Time Systems [12]. Indeed,
there has been a large interest in applying custom type sys-
tems to domain specific languages (which peaked in the late

33

SNAFU
compiler

compilation

SSD/
SRM

bound
STEP

bound
STEP

bound
STEP

SXE

SXE

.

.

.

.

.

.

linking dispatch

SNAFU
program

unbound
STEP

program

verification

STEP

static

verifier

certified
STEP

program

Figure 1. The SN program life-cycle as enabled by snBench. Rectangles represent data, circles
represent tasks/processes, and the dashed lines represent control communication (dependency).

nineties, e.g., the USENIX Conference on Domain-Specific
Languages (DSL) in 1997 and 1999). Later type systems
have been used to bound other resources such as expected
heap space usage (e.g., [9], [3]).

While many Dependent Type Systems directly target re-
source bounding for the real-time embedded community
(e.g., the current incarnation of the Sized Time System
[8], Mobile Resource Guarantees for Smart Devices [3]),
SNBENCH’s support for distributed image processing re-
quires the construction of new formal methods. Addition-
ally the operating environment of SNBENCH is intrinsically
distributed and time dependent and, as such, the techniques
of Dependent Typing require more than small adjustments
to facilitate the verification of type safety and the extraction
of execution time bounds.

Our language (and infrastructure) supports the direct
modification of image data which, unlike traditional scalar
data, has an overloaded notion of size (i.e., resolution) that
has a direct impact on functional correctness. In this envi-
ronment the type signature of a function must include ex-
plicit resolution (size) bounds to convey what size ranges
of data a function can correctly process. In prior works size
annotation has nothing to do with functional correctness; we
recognize a need to track a lower size bound (annotation) in
addition to the upper size bound, and from this need, we
have established a system in which the size annotations are
multi-dimensional. While the formalism described in Sec-
tion 4 only includes a lower and upper size bound, Section 7
discusses how easily more dimensions could be added and
gives examples.

Additionally our system uses size constraints to solve for
data size when it is not explicitly specified by the program-
mer (i.e., size annotation variables). Our constraint set is ex-
plicit within the typing rules yet constraints are derived im-
plicitly from program code, using our constrained size type
signature for primitive operators. In solving the constraint
set we can deduce feasible (and/or optimal) data sizes which
directly map to image resolutions, resource constraints and
sensor capabilities for image manipulation programs. Fi-

nally, we allow primitive operators that directly manipulate
the constraint set, allowing the programmer to explicitly
constrain types without influencing the execution (so called,
Flowtypes). We are unaware of any other work that treats
images as first class datatypes or that uses a type system to
statically create such size constraint relationships to deduce
required image sizes and sensor capabilities.

4. The Formal Framework
In this section we highlight the salient aspects of the

formal logic that underlies the verification component de-
scribed above. Due to space constraints, we present only
a subset of the complete formalism and omit the proof of
Soundness (= Progress Theorem + Preservation Theorem).
These complete details are available in a Technical Report
[14].

4.1 Typing and Sizing of Expressions

The typing (static semantic) of an expression takes the
general form:

Γ ` e : t{smin,smax} $c, κ

Where e is an expression, t is a base type (e.g., Int, Bool,
Img), the pair {smin, smax} is the size annotation for the
type (smin is the lower size bound, smax is the upper size
bound), c is an approximation of the computational cost of
the expression and κ is a size constraint set (smax and smin

are size annotations constrained by the simple equations
stored in κ, as we will see later). In English we read this
as: “Expression e has a worst-case computational cost of c
and is of type t under the typing environment Γ, where t has
a minimum size smin, a maximum size smax, and is subject
to size constraints κ.” The size annotation, described here as
a pair, is a tuple that may be expanded to track any number
of dimensions/aspects (as described in Section 7).

Over the course of the typing derivation of a complex
expression, annotations will accumulate constraints in the
constraint set κ. The goal of our type system is to build and

34

solve (i.e., unify) the constraint set following type inference.
The solution of this constraint set will either provide bounds
for those expressions whose sizing annotations have been
omitted (i.e., are variables), or reflect that the constraint set
is infeasible for the given program.

For some insight as to how these terms are used in the
system, consider expressions that are constants (fixed val-
ues). The computational cost (c) for a fixed value is always
0. A constant integer value has both size annotation vari-
ables constrained to the integer’s actual value.

For image data, the general form of the annotation pair
specifies the range of possible resolutions for the image (the
number of pixels the image may contain). Resolution in
this context does not include the aspect ratio or color-depth,
which could be modeled as additional annotations in the tu-
ple (and would be nil for non-image data). As with integers,
both values will be the same for a specific instantiation of
an image; the typing rule for constant images (i.e., a single
image frame) is presented below.

(T-IMG)
Γ ` i : Img{r,r} $ 0, {r = resolution(i)}

A Sensor is a container type; a sensor of type Sensor τ
will return values of type τ when read. The Sensor type
has a negligible, and therefore omitted, static size however
the inner (contained) type is annotated with size bounds to
indicate the capabilities of the sensor (e.g., the range of res-
olutions a camera can support). The typing rule for sensors
given below reflects that an image sensor that can return im-
ages ranging in size from rmin to rmax, where these values
correlate with the minimum and maximum resolution capa-
bilities of physical hardware. This judgment has no premise
and introduces the size variables r1 and r2 into the deriva-
tion tree; once derivation is complete, unification will solve
the constraint set to find a range of valid values for these
variables in particular.

(T-IMGSENSOR)
Γ ` image : Sensor Img{r1,r2} $ 0, κr

where κr = {r1 ≥ rmin} ∪ {x2 ≤ rmax}

4.2 Subtyping relations and Images
We define a multi-dimensional subtyping relation that,

in one dimension, is similar to the subtyping relation (E) in
[12] which allows a weakening of the type to increase a size
bound in order to provide an upper bound of estimation of
work to be completed. In our environment, however, we no-
tice that the correctness of image processing functions may
be impacted by the size of the input (i.e., resolution of the
image); as such we cannot arbitrarily increase the logical
size of data (which in the case of images is tantamount to
increasing the resolution of an image) without adverse con-
sequences to functional correctness.

There is a tension between the desire to provide an upper
work bound (which would suggest that the subtype relation
for images would enable arbitrary increases to the size of
an image) and the desire for the type system to suggest vi-
able image resolutions when resolution is omitted (based
on constraints that image manipulation operations place on
their input size). Thus, our type annotations are multi-
dimensional and, in this example, we track both the up-
per and lower bounds of sizes. The need to track the lower
bound extends into all aspects of the type system, (i.e., an-
notating all expression types, not just images) and so we
use a general sizing/weaken rule (S-SIZED) to describe the
subtype relationship for these specific size annotations.

(S-SIZED)
(smin ≥ s′min) (smax ≤ s′max)

t{smin,smax} <: t{s′
min,s′

max}

Finally, we give the rule for weakening via the subtype
relation, which is used with S-SIZED, above. Notice the
constraint set κ grows to include the sizing relationship be-
tween τ1 and τ2. If one were to expand the sizing pair to
include more dimensions/aspects of type size, then the S-
SIZED and T-WEAKEN constraints would be augmented to
support the new sizing logic (Section 7 has more on this).

(T-WEAKEN)
Γ ` e : τ1 $ c, κ τ1 <: τ2

Γ ` e : τ2 $ c, κ ∪ κ2

where κ2 = {minsize(τ2) ≤ minsize(τ1),
maxsize(τ2) ≥ maxsize(τ1)}

For some insight to non-type theorists: the above does
not state that a smaller image may be substituted in place of
a larger image, or vice-versa, but rather conveys the loos-
ening of constraints when determining valid forms of input.
The minimum size represents the largest size that we can
guarantee, and the maximum size represents the smallest
size that we can guarantee, thus decreasing the minimum
size and/or increasing the maximum size are the only safe
operations to allow for the subtype relation.

Notice there is a substantial difference between say,
padding a zero in the case of substituting an integer for a
real number and padding extrapolated content in the case
of filling additional pixels via interpolation methods. Sim-
ilarly, the reader might reason that images are similar to
records of records and wish to provide the subtype rela-
tion in the opposite direction (ignoring those fields that are
not necessary), however the analogy to records is erroneous:
larger records contain extraneous, unrelated data while dis-
regarding pixels in an image discards potentially useful data
points (not unlike attempting to coerce a real number to
an integer by rounding). As both image interpolation and
scaling are potentially lossy operations, they should only
be applied when explicitly requested by the programmer (a
situation analogous to traditional type coercion via casting
functions).

35

4.3 Conditionals

As an illustration of the construction of constraints
(κ) and costs (c), the typing rule for a conditional (i.e.,
if-then-else) is presented below. The cost function that we
currently use is an upper bound of computational work.
The equation for computing the cost of a conditional is the
well-accepted bound of the cost of the predicate plus the
larger of the two branches’ costs. For the constraint set, we
take the union of all sizing constraints (the predicate and
both branches) even if one branch is ultimately unreachable.

(T-IF)

Γ`e1 :Bool $c1, κ1 Γ`e2 :τ $c2, κ2 Γ`e3 :τ $c3, κ3

Γ ` cond e1 e2 e3 : τ $ c0, κ1 ∪ κ2 ∪ κ3

where c0 = 1 + c1 + max(c2 c3)

In the (common) event where terms of the conditional
branches share a common base type but differ in size anno-
tation, an application of weaken is used to relax the bounds
on either side to meet at the lower minimum size and larger
maximum size. If either branches’ type is annotated with a
size variable, each branch may be weakened using the sub-
type relationship to a new, common size variable for the
conditional. Example A.1 in the Appendix portrays exactly
this scenario: Two images (or expressions of type image)
that have different, yet unknown sizes that are supplied as
the branches of a conditional, and T-WEAKEN is applied to
each prior to the application of the conditional to arrive at
new size variables.

4.4 Constraints and Costs for Prim-Ops

Our type system treats all STEP Opcodes as primitive
operations. The SNBENCH engineers who create their own
opcodes are expected to define the cost function and type
annotation constraints as a part of the Opcode’s definition
(i.e., an extended type signature). The lcost() func-
tion (analogous to the latentcost() function defined
in [17]) returns the discretized computational cost of each
opcode as an equation of the size of its input. For example,
the complexity of finding a face in an image is expected to
be a function of the total number of pixels in the image. Our
lcost() function diverges from the use in [17] insofar as
we use not only the upper-bound cost of the function itself,
but also include the derived type size bounds to better reflect
the cost of computation (i.e., produce a tighter size bound).

Two examples of primitive operations that manipulate
images are included in Listing 4.4. The lcost() functions
and sizes in this section have been contrived to ease the pre-
sentation and readability. For example, the face counting
opcode (facct) requires that its input be in the size range of
320 to 1024, using image widths as a size rather than the ac-
tual total numbers of pixels (which would be in the millions

of pixels). The definitions of these opcodes implicitly com-
bine an aspect of T-WEAKEN, by using size ranges (rather
than single values) in their constrained size variables.

The other example presented is the resample Opcode. A
resampling operation alters the number of pixels in the im-
age and in that respect is analogous to an explicit type cast-
ing operation to alter the size. While a resampling operation
does increase the number of pixels in an image, it does not
improve image quality. We will return to this issue in Fig-
ure 2. It has no explicit values for the size variables of its
input, and its only constraint is that the input be of some
positive size (greater than zero).

Although the two examples given place sizing con-
straints on image data, we could easily imagine operational
constraints being placed on all data types. For example,
the output of a facct operation is an Integer with sizes that
range from a minimum of zero to a maximum that could be
expressed as a function of the resolution of the input image.

4.5 Flowtypes
Finally we introduce a new function whose sole purpose

is to inject run-time constraints (a Flowtype in SNBENCH
nomenclature). The deadline flowtype indicates that an ex-
pression (its argument) has an explicit completion deadline.
In terms of the typing formalism, the typing rule (shown be-
low) augments the constraint set to include that the compu-
tational cost of the expression should be less than (or equal
to) the specified deadline. The example given in Section 1
uses the function period() which would be implemented
as syntactic sugar using deadline().

(T-DUE)
Γ ` n : Int{n,n}$ 0, κ1 Γ ` e2 : τ $ c2, κ2

Γ ` deadline n e2 : τ $ c2, κ1 ∪ κ2 ∪ κ3

where κ3 = {c2 ≤ n}

5. The Formal System in Practice
In this section several examples are constructed as an il-

lustration of the use of the type system.

5.1 Inferring Optimal Image Resolution
In practice, a user may describe a computation that

makes use of an image, yet the image itself is not part of
the desired output. In such cases you would not expect the
programmer to provide a specific resolution (size bound) for
images that are used as a part of a larger computation. For
example, a user who wishes to determine whether or not a
light is on in a particular office is interested in a boolean
result, not the intermediate image used to generate this re-
sult. Hardware image sensors (cameras) are able to capture
images in a range of possible resolutions, and our type sys-
tem can use its size constraint system to suggest an optimal
resolution, a range of feasible resolutions, or indicate that
there is no feasible solution for the program as specified.

36

(T-FACECT)
type(facect) = Img{r1,r2} → Int{n1,n2} constr(facect) = κ1

facect : Img{r1,r2} → Int{n1,n2} $ 0, κ1

κ1 = {r1 ≥ 320, r2 ≤ 1024}
latentcost(facect, τ) = (maxsize(τ)/2)

(T-RESAMPLE)
type(resample) = Int{n1,n2} × Img{r1,r2} → Img{r3,r4} constr(resample) = κ1

resample : Int{n1,n2} × Img{r1,r2} → Img{r3,r4} $ 0, κ1

κ1 = {n1 > 0, r1 > 0, r3 = r1 ∗ n1, r4 = r2 ∗ n2}
latentcost(resample, τ) = (maxsize(τ)/8)

Figure 2. The typing rule for the face-count and resample operations (i.e., prim-ops). The type signa-
ture of these functions includes constraints and costs that enable the type system to construct the
constraints and costs of larger, composite expressions.

Example 1:

This first example shows how the type system can be
used to derive the resolution requirements from a code frag-
ment, and how those constraints can be used to limit the
selection of an image sensor at the time of dispatch.

(* face counting within an image from an
image sensor with no explicit size bounds *)

let IMG = get(sensor(IMAGE,ANY)) in
facect(IMG)

While the complete derivation is presented in the appendix,
the result of the derivation is presented here.

...

facect(img) : Int{n1,n2} $ c2, κ1 ∪ κ2

c1 = 1 + lcost(get, r2) = 1 + (r2/8)
c2 = 1 + c1 + lcost(facect, r2) = 1 + c1 + r2/2
κ1 = {r1 ≥ rmin, r2 ≤ rmax}
κ2 = {r1 ≥ 320, r2 ≤ 1024}

Solving the constraints for r1 and r2 (we minimize r1
and maximize r2 subject to the constraints given above, we
determine the simple constraints that the resolution of the
image to manipulate, and thus the sensor itself, fall in the
range [320, 1024]. Thus the SSD may allocate any available
sensor that can produce images within this range of reso-
lutions. A camera that can capture images at resolutions
ranging from 1024 to 4096 is valid for this service fragment
(provided it samples at 1024), as is a camera that can cap-
ture images at the range from 320 to 512.

Example 2:

This second example builds on the first, this time count-
ing faces within a resampled image. As before, the original
image is captured from an image sensor with no explicit
size bounds. The result of resampling is an image with four
times as many pixels, and the face count opcode will per-
form more work as a result. The face count operation is
not aware of the resolution of the original image, or the fact
that the additional pixels offer no more information than the
original (motivating a notion of image quality in Section 7).

(* face counting within a resized image from an
image sensor with no explicit size bounds *)

let IMG = get(sensor(IMAGE,ANY)) in
facect(resample(4,IMG))

The costs and constraints that result from the derivation are
presented below.

...

facect(resample(4,img)) : Int{n3,n4} $ c3, κ4

c1 = 1 + lcost(get, r2) = 1 + (r2/8)
c3 = lcost(facect) + lcost(resample) + c1

κ1 = {r1 ≥ rmin, r2 ≤ rmax}
κ2 = {n > 0, r1 > 0, r3 = r1 ∗ 4, r4 = r2 ∗ 4}
κ3 = {r3 ≥ 320, r4 ≤ 1024}
κ4 = {n = 4} ∪ κ1 ∪ κ2 ∪ κ3

We obtain that r1 ∗ 4 ≥ 320 ⇒ r1 ≥ 80 and r2 ∗ 4 ≤
1024 ⇒ r2 ≤ 256. Minimizing for r1 and maximizing for
r2 gives the resolution range [80,256] required of the sensor
to be allocated for this fragment.

37

Bear in mind that the minimum resolution in a range of
resolutions is not always the most desirable value; while the
minimum will consume the least computational resources,
it may do so at the expense of computation confidence (e.g.,
it may not be possible to detect all the faces in an image
if the resolution is too small). In other scenarios, the use
of the maximum resolution (that the resources available can
accommodate) may be an unnecessary overhead. The pro-
cessing overhead is easily measured by computing the cost
function (c2, in the above) for both the maximum and min-
imum feasible resolutions.

5.2 Computational Cost and Size Bounds
The worst case computational cost is given as a result

of our type system as the first argument after the $ in a
typing judgment. This is an approximation and could be
adjusted/calibrated as a function to estimate actual execu-
tion times on various physical resources. The worst-case
computational bounds provided by our system provide one
static-time validation mechanism to determine if explicit
deadlines or other run-time constraints (given Flowtypes)
cannot be met as specified. As presented, the deadline
opcode relies on this unadjusted approximation of compu-
tation time.

Example 3:

Building on Example 1, this example performs a face
counting operation on an image with no explicit size
bounds, yet the computation has an explicit deadline.

(* counting faces from an arbitrary image sensor.
The computation has an explicit deadline *)

let IMG = get(sensor(IMAGE,ANY)) in
deadline(322,facect(IMG))

Again, only the result of the derivation is presented here.
The complete derivation is available in the appendix.

...

deadline(322,facect(img)) : Int{n1,n2} $ c2, κu

c1 = 1 + lcos(get, r2) = 1 + (r2/8)
c2 = 1 + c1 + lcost(facect, r2) = 1 + c1 + r2/2
κ1 = {r1 ≥ rmin, r2 ≤ rmax}
κ2 = {r1 ≥ 320, r2 ≤ 1024}
κ3 = {c2 ≤ 322}
κu = {n = 322} ∪ κ1 ∪ κ2 ∪ κ3

In this example the valid range for capture is no longer
[320, 1024]. Solving for r1 and r2 the range is now lim-
ited to [320, 512] (as larger values of r2 would exceed the
constraint imposed by κ3).

In addition to the static verification of Flowtypes, the
computed cost may be leveraged in other ways as well. The
key responsibility of the Service Dispatcher component of
SNBENCH is to partition a task across physical resources (if
there is insufficient computing resources available on a sin-
gle node to accommodate the entire task). The worst case
computational cost, as presented, provides us with an initial
metric to guide the allocation of physical computing nodes
and sensory resources for a given task (and its constituent
subtasks). Similarly, for any given task or sub-task we can
look at the upper bound size annotation on its type informa-
tion to determine the potential network overhead associated
with partitioning the larger task at that point.

6 Implementation Details
In its current incarnation, the type system described in

this document is presented as part of the SNBENCH pro-
gram development tool chain. The implementation is pro-
grammed in Java and makes use of the open-source JavaCC
(Java Compiler Compiler) project [18]. The type checker is
automatically invoked when compiling our high-level lan-
guage (SNAFU) programming language to STEP. Every
constraint that is added to the constraint set (κ) also includes
the line number in the SNAFU source code that caused this
constraint to be added. In this way, should unification fail,
the tool can point the programmer to the problematic line in
their native source language (reporting an error to a SNAFU
programmer in STEP would be not unlike reporting an er-
ror by referring to the bytecode rather than the original Java
source code).

As the implementation is entirely modular and checks
STEP code rather than SNAFU code, nothing prevents the
use of the type checker apart from the SNAFU compila-
tion process (i.e., on the Service Dispatcher, at the time of
task submission). However (1) the type checker implemen-
tation includes several hooks to track line numbers within
SNAFU code as a convenience to the users of SNAFU and
(2) SNAFU is eminently more readable than STEP. It is our
intent that the type checker will be invoked by the compilers
of other future high-level languages in the SNBENCH.

While the implementation of the type checking engine
includes some form of support for all the major constructs
in the STEP programming language, there are some limi-
tations to this support. For STEP constructs or prim-ops
for which complete type annotation/constraint is lacking,
heuristics are used to bound cost. In the worst case, for
those opcodes which lack complete size constraint anno-
tation, unsized type checking is used rather than the size
annotated type checking.

To solve the constraint sets we invoke the GNU Linear
Programming Toolkit (GLPK) [2]. GLPK can be used to
solve a system of constraints for linear programming and
mixed integer programming. The decision to use GLPK

38

is based on project maturity, community support and API
availability. At present we emit our sizing constraints in the
GNU MathProg language and invoke the GLPK via an au-
tomated script, though nothing (other than time) precludes
finer integration via the GLPK Java Interface [5]. The use
of a linear solver limits the complexity of constraints that
can be represented, however we have plans to integrate a
Quadratic solver in the near future.

Figure 3. A screen shot from the SNAFU development
environment that shows the successful type checking of a
STEP program. Results generated from the implementation
of the type checker are given to the user graphically.

7 Future Work
Additional Type Annotations

In this paper we have presented upper and lower size
bound data type annotation, yet other useful annotations ex-
ist and can be easily integrated into this type system by ex-
tending the existing annotation pair to a tuple or keyed set
and defining the desired subtyping relation and expanded
type signatures.

One such example is the notion of image quality, which
is different from data size. Data size is used to bound the
operational requirements of a function (including those that
manipulate images), whereas image quality speaks to the
valid data in the image. As far as operational/functional cor-
rectness is concerned a resized image is operationally valid,
however with respect to the desired programmatic output, a
smaller image that has been resized to a larger resolution is
not truly interchangeable with an image captured at a larger

resolution. When an image is resized (e.g., via scaling or
resampling, say) the minimum size (resolution) of the im-
age no longer reflects the original number of data points (we
call this “quality”).

We could easily support a notion of an image’s qual-
ity within our type annotations by adding a dimension for
the “lowest” value that we have ever seen for a lower size
bound (recall the definition of T-RESAMPLE increases both
the upper and the lower size bound). This value could dis-
tinguish between a true high resolution image and data that
has been (perhaps foolishly) up-cast or coerced to satisfy
a function’s minimum size constraints. Quality also has a
well established meaning with respect to numerical data as
well, and might be defined to reflect potential for rounding
errors, data accuracy, etc. Certainly other image and video
related aspects could be tracked as well, including color-
depth for images, frame rates for video, and so on.

Applications to Image Pyramids
Image Pyramids [11],[1] are a well established technique

in the field of image processing. The technique involves
maintaining multiple copies of the same image at differ-
ent resolutions (the a hierarchy of resolutions form a log-
ical pyramid) such that an image of the “ideal” resolution
can be used for processing depending on the needs of the
specific processing function. The beneficial applications of
our formalism to this image processing community is po-
tentially two-fold. (1) We can extend the type system to
include an image pyramid as a first class type and extend
the annotations to support the list of resolutions available
in the pyramid. (2) Static analysis of the image process-
ing flow can tell us precisely which resolutions need to be
kept in the pyramid and which can be removed. In the latter
case, the potential benefit of SNBENCH and sized typing is
quite significant as it might be possible to remove the pyra-
mid entirely. For distributed computations, we can split the
pyramid into individual image instances based on the anal-
ysis of size/use and ensure that we are passing as few copies
of the image (inside the pyramid) and as few copies of the
pyramid itself, as possible.

Costs and Sizes for New Opcodes
The operational correctness of the type system is contin-

gent on the presence of accurate size, cost and constraint
data for Opcodes (primitive operators). SNBENCH provides
a facility by which new Opcodes may be added to a service
library quickly and easily, through the implementation of
a simple Java interface. At present the type system main-
tains an embedded definition for the latent costs and size
constraints of the current Opcode library, however for the
sustainability of the type system, it is essential that these
definitions are provided by the Opcode authors and auto-
matically extracted directly from the Opcode definitions.
Beside changing the Opcode implementation interface, the

39

type system must also change to import the rules from the
Opcode library directly. There is also a concern that Opcode
authors might specify very weak size constraints and very
high costs (possibly lacking the knowledge to do so cor-
rectly) and that the end result is a type system that is only
as strong as its weakest link. Any future work that would
automatically extract this information from an Opcode im-
plementation would be a fantastic solution to this problem
(and others).

Different Models of Cost
At present our type system provides a single model of

computational cost, a worst-case upper bound. Just as there
is the possibility for multiple size annotations or dimensions
of types, there is also an opportunity to provide multiple
cost metrics based on these additional dimensions. Other
cost models would be possible, including a “minimum”
computational cost (or optimal case), an average compu-
tational cost, a financial cost, and a total memory utilization
cost. The most elegant seeming approach would be to sup-
port multiple, user defined functional costs, such that mul-
tiple costs appear on the right hand side of the $, and each
would be computed from user-provided functions that ma-
nipulate the annotations available in the typing rules.

8 Conclusions
In this paper, we have presented our formal type sys-

tem for multi-dimensional sized types for a functional-
style, sensing-centric domain specific language. Unlike
other sized type systems our work tracks both an upper and
lower size bound for data, defines a logical subtype relation
for images capable of bounding computation, maintaining
functional correctness, and deduce feasible data sizes from
implicit and explicit constraints within program fragments.
We presented this system and have provided examples that
illustrate the use of the type system. We are confident in
the many potential uses for this formalism to the image pro-
cessing and Sense-and-Respond communities.

References
[1] F. Ackermann and M. Hahn. Image pyramids for digital

photogrammetry. Digital Photogrammetric Systems, pages
43–59, 1991.

[2] Andrew Makhorin, Department for Applied Informatics,
Moscow Aviation Institute, Moscow, Russia. GNU Linear
Programming Kit. http://www.gnu.org/software/glpk/.

[3] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and
I. Stark. Mobile resource guarantees for smart devices. In
Construction and Analysis of Safe, Secure and Interoperable
Smart Devices: Proceedings of the International Workshop
CASSIS 2004, number 3362 in Lecture Notes in Computer
Science, pages 1–26. Springer-Verlag, 2005.

[4] A. Bestavros, A. Bradley, A. Kfoury, and M. Ocean.
SNBENCH: A Development and Run-Time Platform for

Rapid Deployment of Sensor Network Applications. In
IEEE International Workshop on Broadband Advanced Sen-
sor Networks (Basenets), October, 2005.

[5] Bjoern Frank. GNU Linear Programming Kit 4.8 Java Inter-
face. http://bjoern.dapnet.de/glpk/.

[6] Boston University, CS Dept. Sensorium Research Home-
page. http://www.cs.bu.edu/groups/sensorium/.

[7] Boston University, CS Dept. snBench Research Homepage.
http://csr.bu.edu/snbench/.

[8] K. Hammond, C. Ferdinand, and R. Heckmann. Towards
formally verifiable resource bounds for real-time embedded
systems. SIGBED Rev., 3(4):27–36, 2006.

[9] M. Hofmann and S. Jost. Static prediction of heap space
usage for first-order functional programs. In POPL03, pages
185–197. ACM Press, 2003.

[10] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness
of reactive systems using sized types. In ACM PoPL, pages
410–423, 1996.

[11] W. Kropatsch. Image pyramids and curves. an overview.
Technical report, Department for Pattern Recongition and
Image Processing of the Institute of Automation, University
of Technology, Vienna, Austria, 1991.

[12] H.-W. Loidl and K. Hammond. A sized time system for a
parallel functional language. In Proceedings of the Glasgow
Workshop on Functional Programming, Ullapool, Scotland,
July 1996.

[13] G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem f to typed assembly language. ACM TOPLAS, pages
85–97, 1999.

[14] M. Ocean, A. Kfoury, and A. Bestavros. A Type System For
Safe SN Resource Allocation. Technical Report BUCS-TR-
2008-011, CS Dept., Boston University, June 14 2008.

[15] M. J. Ocean and A. Bestavros. Extending the snBench to
support wireless intrusion detection. In WiSec’08: The First
ACM Conference on Wireless Network Security, Alexandria,
Virginia, March 2008. (Best Paper Award).

[16] M. J. Ocean, A. Bestavros, and A. J. Kfoury. SNBENCH:
Programming and Virtualization Framework for Distributed
Multitasking Sensor Networks. In VEE ’06: The 2nd In-
ternational Conference on Virtual Execution Environments,
pages 89–99, New York, NY, USA, 2006. ACM Press.

[17] B. Reistad and D. K. Gifford. Static dependent costs for es-
timating execution time. In LISP and Functional Program-
ming, pages 65–78, 1994.

[18] Sriram Sankar, Metameta. Java Compiler Compiler (Java
CC). The Java Parser Generator. http://javacc.dev.java.net/.

[19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
wcet prediction by separated cache and path analyses. Real-
Time Syst., 18(2-3):157–179, 2000.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström. The worst-case execution-time
problem—overview of methods and survey of tools. Trans.
on Embedded Computing Sys., 7(3):1–53, 2008.

[21] H. Xi. Applied type system (extended abstract). In LNCS
3085, pages 394–408. Springer-Verlag, 2004.

[22] H. Xi and R. Harper. A dependently typed assembly lan-
guage. ACM SIGPLAN, 36(10):169–180, 2001.

40

A. Sample Derivations
The derivations presented here refer to typing rules that do not appear in this report, yet are included here to give the reader

a sense of what is involved in the formal system.

A.1 Conditionals and Subtypes

...
b : Bool $c0, κ0

i1 : Img{r1,r2} $ c1, κ1
(T-WEAKEN)

i1 : Img{r5,r6} $ c1, κ1 ∪ κ′1

i2 : Img{r3,r4} $ c2, κ
(T-WEAKEN)

i2 : Img{r5,r6} $ c2, κ ∪ κ′2 (T-COND)
cond b i1 i2 : Img{r5,r6}$ c0 + max(c1, c2), κ0 ∪ κ1 ∪ κ′1 ∪ κ2 ∪ κ′2

where:
κ′1 = {r5 ≤ r1, r6 ≥ r2}
κ′2 = {r5 ≤ r3, r6 ≥ r4}

A.2 Derivation for Example 1

D0 =
type(get) = Sensor τ → τ

(T-IMAGESENSOR)
image : Sensor Img{r1,r2} $ 0, κ1

(T-SENSORREAD)
get(image) : Img{r1,r2} $ c1, κ1

D1 =

type(facect) = Img{r1,r2} → Int{n1,n2} constr(facect) = κ2
(T-FACECT)

facect : Img{r1,r2} → Int{n1,n2} $ 0, κ2 D0
(T-OPAPPLY)

facect(get(image)) : Int{n1,n2} $ c2, κ1 ∪ κ2

c1 = 1 + lcost(get, r2) = 1 + (r2/8)
c2 = 1 + c1 + lcost(facect, r2) = 1 + c1 + r2/2
κ1 = {r1 ≥ rmin, r2 ≤ rmax}
κ2 = {r1 ≥ 320, r2 ≤ 1024}

A.3 Derivation for Example 3

(T-INT)
322 : Int{n,n} $ 0, κ0 D1

(T-DEADLINE)
deadline 322 facect(get(image)) : Int{n1,n2} $ c2, κ0 ∪ κ1 ∪ κ2 ∪ κ3

c1 = 1 + lcost(get, r2) = 1 + (r2/8)
c2 = 1 + c1 + lcost(facect, r2) = 1 + c1 + r2/2
κ1 = {r1 ≥ rmin, r2 ≤ rmax}
κ2 = {r1 ≥ 320, r2 ≤ 1024}
κ0 = {n = 322}
κ3 = {c2 ≤ 322}

41

