
Colocation as a Service
Strategic and Operational Services for Cloud Colocation†

VATCHE ISHAKIAN
visahak@cs.bu.edu

Computer Science Dept
Boston University, USA

RAYMOND SWEHA
remos@cs.bu.edu

Computer Science Dept
Boston University, USA

JORGE LONDOÑO
jmlon@cs.bu.edu

Computer Science Dept
Boston University, USA

AZER BESTAVROS
best@cs.bu.edu

Computer Science Dept
Boston University, USA

Abstract—By colocating with other tenants of an Infras-
tructure as a Service (IaaS) offering, IaaS users could reap
significant cost savings by judiciously sharing their use of
the fixed-size instances offered by IaaS providers. This paper
presents the blueprints of a Colocation as a Service (CaaS)
framework. CaaS strategic services identify coalitions of self-
interested users that would benefit from colocation on shared
instances. CaaS operational services provide the information
necessary for, and carry out the reconfigurations mandated by
strategic services. CaaS could be incorporated into an IaaS
offering by providers; it could be implemented as a value-
added proposition by IaaS resellers; or it could be directly
leveraged in a peer-to-peer fashion by IaaS users. To establish
the practicality of such offerings, this paper presents XCS – a
prototype implementation of CaaS on top of the Xen hypervisor.
XCS makes specific choices with respect to the various elements
of the CaaS framework: it implements strategic services based
on a game-theoretic formulation of colocation; it features novel
concurrent migration heuristics which are shown to be efficient;
and it offers monitoring and accounting services at both
the hypervisor and VM layers. Extensive experimental results
obtained by running PlanetLab trace-driven workloads on the
XCS prototype confirm the premise of CaaS – by demonstrating
the efficiency and scalability of XCS, and by quantifying the
potential cost savings accrued through the use of XCS.

I. INTRODUCTION

Motivation: Cloud computing in general and Infrastructure
as a Service (IaaS) in particular have emerged as compelling
paradigms for the deployment of distributed applications
and services on the Internet due in large to the maturity
and wide adoption of virtualization technologies. The value
proposition of IaaS offerings [1], [2] is highly dependent on
the efficient utilization of cloud resources [3]. For an IaaS
provider, this necessitates a judicious mapping of physical
resources to virtualized instances that could be acquired
over prescribed, fixed periods (e.g., daily or hourly). To be
flexible, an IaaS provider must be able to offer a range of
such instances so as to cater to a wide range of customer
needs, spelled out as SLAs defined over the various resources
of the instance (e.g., CPU, memory, local storage, network
bandwidth). To be practical, an IaaS provider must limit the
set of instance choices available to customers. For example,
as of February 2010, Amazon EC-2 offers seven instance
types: three types of standard instances, two types of high-
memory instances, and two types of high-CPU instances [1].

While varied, the range of instance types available to
IaaS customers is unlikely to match their specific application
needs. As a result, IaaS customers must “over provision” by
acquiring instances that are sized to support peak utilizations.

† This research was supported in part by NSF awards #0720604,
#0735974, #0820138, and #0952145.

More importantly, since many applications exhibit highly-
variable resource utilization over time (e.g., due to diurnal
workload characteristics), and given the overheads associated
with resizing acquired instances, IaaS customers may end up
over-provisioning over extended periods of time.
Scope: In an IaaS setting, more efficient instance utilization
could be achieved by appropriately colocating applications
from multiple IaaS customers on the same instance. We note
that virtualization allows both colocation and performance
isolation of applications by viewing such applications as
independent Virtual Machines (VMs). Such VM colocation
could be done in a multitude of ways: (1) It could be offered
as a (distinguishing) feature by the IaaS provider. (2) It
could be developed as a mechanism that allows an IaaS
reseller (a third party that is neither the provider nor the
customer) to leverage the efficiencies resulting from IaaS
customer aggregation, allowing it to offer more economical
IaaS offerings to customers who are willing to colocate with
others. (3) It could be used in a peer-to-peer fashion to
allow IaaS customers to form coalitions that benefit from
colocation.

Whether leveraged by IaaS providers, resellers, or cus-
tomers, the functionality we envision requires the develop-
ment of specific colocation services. To that end, this paper
introduces the concept of Colocation as a Service (CaaS) and
develops a framework in support of that concept by providing
the means for efficiently allocating resources in a dynamic
IaaS environment. Our framework is made concrete through
a prototypical implementation of CaaS on top of the Xen
hypervisor.
Challenges: The problem of VM consolidation has been
previously considered, but only from a singular perspective –
that of the provider (i.e., assuming that both the infrastructure
and the VMs belong to a single party) [4], [5], [6], [7],
[8]. When VMs belong to different, independent, and self-
interested customers (as is the case in an IaaS setting), VM
consolidation must be seen as a process that must involve
all parties involved since VM consolidation will ultimately
affect the prices extended by providers and resellers, and the
cost accrued by customers.

Another consideration when consolidating IaaS VM
workloads is the fact that IaaS environments may be highly
dynamic due to the churn caused by arrival and departure
of VMs, and/or the need of customers to change their
own resource reservations in tandem with changes in the
workloads that their VMs must handle. In such settings,
complex sets of VM migrations must be performed in such
a way that the impact on performance is minimized.

2010 Network Computing and Applications

978-0-7695-4118-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NCA.2010.17

76

2010 Ninth IEEE International Symposium on Network Computing and Applications

978-0-7695-4118-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NCA.2010.17

76

2010 Ninth IEEE International Symposium on Network Computing and Applications

978-0-7695-4118-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NCA.2010.17

76

Contributions: This paper presents Colocation as a Service
(CaaS) – a framework for enabling VM colocation in such
a way that the infrastructure is (quasi-)optimally utilized,
while ensuring that the interests of customers (in terms of
the costs that accrue for the resources they acquire) are
guaranteed. Our CaaS framework outlined in § III requires
the development of two sets of services: (a) strategic “match
making” services that aim to identify groupings (or coali-
tions) of VMs that reflect the best interests (in a selfish as
opposed to a socially-optimal sense) of the various parties
involved, and (b) operational services that efficiently realize
the quasi-optimal configurations obtained through the use of
the strategic services. CaaS strategic services can be seen as
implementing the decision-making processes that ensure that
each individual customer is able to acquire the IaaS resources
it needs at the least possible cost. Operational services can
be seen as implementing what it takes to enable and carry
out (act upon) the strategic choices made by (or on behalf
of) customers.

For our CaaS framework to be practical, we must
demonstrate that the set of services it provides do not
negatively impact the IaaS value proposition. CaaS strategic
services are off-line, in the sense that they could be carried
out as background, control-plane processes: while they may
consume resources, they have no negative impact on the
performance of customer VMs. CaaS operational services, on
the other hand, are on-line, in the sense that they involve the
manipulation of (or interaction with) the VMs themselves,
e.g., for performance profiling or migration purposes. Thus
CaaS operational services could potentially have a negative
impact on the performance of customer VMs. Indeed, an
important contribution of this paper is to demonstrate that
such services could be implemented in such a way so as to
make such an impact negligible. In particular, in § V we
present a scheduling algorithm that is able to identify and
carry out a VM group migration plan efficiently.

As a proof of concept demonstrating practicality and
efficiency, and to enable us to report concrete performance
metrics, in § IV of this paper we also present XCS – a
prototypical implementation of CaaS on top the Xen Hy-
pervisor. Our experimental evaluation in § VI – quantifying
the cost-benefit as well as the performance overheads of
CaaS – is based on measurements obtained by deploying real
applications using XCS, as well as measurements obtained
from extensive trace-driven experiments (using PlanetLab
traces).

II. BACKGROUND AND RELATED WORK

VM consolidation and colocation are very active research
topics. The goal of minimizing the operational cost of a data
center (in terms of hardware, energy, and cooling), as well
as providing a potential benefit in terms of achieving higher
performance at no additional cost has been considered by
Jason et al[4]. Also, a lot of work has gone into studying the
consolidation of workloads across various resources: CPU,
memory and network. Wood et al [6] promote colocation
as a way to minimize the actual memory utilization by
sharing portions of the physical memory between multiple
colocated VMs. Network-aware consolidations have been
addressed in [7], [9], [8]. In [8], the authors consolidate
VMs in a way similar to bin packing, while providing
a monitoring technique that triggers migrations to resolve

hotspots. Colocation has also been explored as the means for
reducing the power consumption in data centers, for example
by Cardosa et al [5].

VM migration mechanisms have an impact on CPU
and network capacity. Recent work [10], [11], [12], [13]
considered ways to migrate VMs so as to minimize CPU
and network overheads, with careful consideration so as not
to violate a client SLAs. We note that these mechanisms
are designed for the benefit of the infrastructure provider,
and indeed are carried out without the knowledge or consent
of VM owners. They are done for the sole purpose of
reducing the total cost of operation of the data center by
reducing cooling and electricity costs. In our system, the
purpose of migration is radically different (and so would
be the resulting VM configurations). In particular, we view
CaaS not as an optimization framework to minimize the
provider’s operational costs, but rather as a framework
that enables an efficient marketplace that empowers various
parties – customers, providers, aggregators, and resellers –
to maximize their utilities.

Our CaaS strategic services bring into consideration
the economics of the system from the customer’s (selfish)
perspective. Many resource management systems have been
developed for large-scale computing infrastructures [14],
[15], [16], [17], [18] using various micro-economic models,
such as commodity markets, auctions, double-auctions, and
combinatorial auctions. One particular line of work that
influenced our conception of CaaS and our implementation of
XCS is that by Londoño, Bestavros, and Teng [19], in which
VM colocation is seen as a special case of more general
pure-strategies Colocation Games. In that setting, customer
interactions is driven by the rational behavior of users, who
are free to re-locate and choose whatever is best for their
own interests. The colocation games model in [19] has two
attractive properties. First, it is shown that the interaction
among customers for VM colocation purposes – termed as
the Process Colocation Game (PCG) in [19] – converges to a
Nash Equilibrium (NE), i.e. a state where no customer in the
system is incentivized to migrate. Second, it is shown that
the Price of Anarchy (the ratio between the overall cost of all
customers under the worst-case NE and that under a socially-
optimal solution) is bounded. Moreover, the bound is the
same as the best-known approximation ratio for a centrally
computed solution.

III. COLOCATION AS A SERVICE

We assume an IaaS setting consisting of any number of
possibly heterogeneous instances (servers), to which we refer
as “Physical Machines” (PM). Each instance is characterized
by a number of capacitated resources (e.g., CPU, network,
memory, and disk space) which constitute dimensions of
the instance capacity vector. Workloads associated with an
instance are similarly characterized by a multi-dimensional
utilization vector. Instances may have additional attributes
(other than those associated with specific physical resources,
e.g., location, virtualization technology, etc.) that may also be
considered as part of the customer workload SLA constraints.
Without loss of generality, in this paper, we only consider
dimensions related to physical resources.

As we alluded before, there are two types of services
underlying a CaaS framework: strategic and operational.

777777

Fig. 1. CaaS Framework services (in the context of the XCS prototype).

While strategic services may be implemented differently
(e.g., as a result of adopting different pricing schemes, or
depending on whether CaaS is used by operators, resellers, or
customers), operational services are assumed to be universal,
in the sense that they would be useful (and necessary) under
all possible settings.

CaaS services (as well as the data and control flows
between them) are illustrated in Figure 1. Strategic services
produce a desirable configuration which acts as the input
to the migration service, which in turn issues migration
commands to relocate VMs so as to realize that desirable
configuration. In support of CaaS services, the virtualization
infrastructure must support two functionalities – denoted in
Figure 1 by the “System Monitoring Engine” (SME) and the
“User Monitoring Engine” (UME). The SME is responsible
for the collection of information about each customer’s re-
source utilization, and is also responsible for the execution of
the migration commands received from the migration service.
The UME can be used by customers to gather additional,
finer resolution information (e.g., to measure application
specific QoS characteristics, which may be needed for future
provisioning purposes). All data gathered by either SME or
UME for a particular VM is available to the VM’s owner
(the customer or a software agent thereof), who may utilize
such data to adjust future resource reservations (e.g., for the
next reservation epoch). Based on the desirable configuration
generated by the strategic services, a CaaS accounting service
distributes accrued costs.
CaaS Strategic Services: Strategic services are invoked
periodically, every epoch – e.g., corresponding with the
intervals used for instance reservation purposes. The input to
these services consists of the users’ workload (reservations)
expressed in terms of an instance multi-dimensional resource
utilizations (for CPU, memory, and network bandwidth, for
example). The output of these services is the “desirable” VM
configuration, reflecting what the service deems best for each
customer in the system.
CaaS Operational Services: We discuss three types of
operational services: migration services, accounting services,
and monitoring and profiling services.
Migration: The migration service is needed at the beginning
of any epoch in which a new VM configuration is requested.
It takes as input the current as well as the desirable VM
configuration and produces a migration plan, which it carries
out by issuing migration commands to the constituent VMs.
Accounting: In addition to the cost that each user incurs as a
result of their own use of resources, the various CaaS services
themselves consume resources that must be accounted for as

well (e.g., in our XCS prototype, CaaS services are hosted on
a VM that consumes resources just like any customer’s VM
would). The cost of CaaS services constitute an overhead
that must be borne by the parties benefiting from CaaS
services (provider, reseller, or customers). Clearly, there are
many ways to appropriate the cost of such overhead. For
instance, if customers are to collectively bear such costs,
one option may be to charge only the users who use the
strategic service. Another option would be to distribute the
cost in proportion to the benefit that customers begets from
relocation. Yet, a third option (and the one we adopt in
our XCS prototype) would be to charge customers equally,
independent of whether they benefit from the CaaS services
or not.
Monitoring and Profiling: The monitoring service1 is respon-
sible for tracking CPU, network and memory utilization of
each VM. It tracks the usage of resources over a predefined
interval α. This service is offered through two engines.
The System Monitoring Engine (SME) runs on the physical
machine and monitors all colocated user instances on that
physical machine, whereas the User Monitoring Engine
(UME) provides monitoring from within each VM. While
the SME does not require any modification of the VM (user
application), it is only able to provide raw resource utilization
data. The UME, on the other hand, allows tracking of
application-specific metrics (e.g., response times), allowing
for finer management of SLAs.

IV. THE XCS PROTOTYPE

In this section we present the Xen Colocation Service (XCS):
a prototype implementation of our CaaS framework. We
chose the open-source Xen platform [20] because it supports
physical resource reservations, as well as live migration
using iterative bandwidth adapting (pre-copy or post-copy)
memory page transfer algorithms [21], [22].2

The XCS Cluster: Our XCS prototype consists of a cluster
of 3.2 GHz quad-core hosts (the PMs), each of which with 3
GB of memory. The servers are connected to each other using
a one gigabit Ethernet, and to a network file server containing
the VMs’ disk images. One of the PMs is dedicated to
supporting the various XCS functionalities and services,
while the remaining PMs are free to host VM instances of
different sizes. All PMs run Xen 3.4.2, and all hosted VMs
run different versions of Linux Fedora distribution.

Each PM in the cluster consists of a Virtual Machine
Monitor (VMM) and at least one VM instance. VM instances
are allocated specific fractions of the PM resources using
Xen reservation APIs. In particular, for the CPU, we use the
cap option of Xen. This option caps the CPU cycles that a
domain is able to get through the Xen credit scheduler, which
assigns the CPU bandwidth fairly across all domains without
exceeding the assigned cap levels, even if the physical host
has idle CPU cycles. For memory, we are able to allocate
specific amounts of physical RAM to each VM. As for
network bandwidth, and since the Xen API does not provide

1The main purpose of this service is to provide users with the raw data
that enables them to adjust their reservations. Users might adopt different
techniques to analyze/process this data (e.g., averaging or statistical time
series analysis/prediction).

2We note that our CaaS framework could be realized atop other virtual-
ization technologies such as VMWare [23], or hosted as a service on top of
systems such as Kittyhawk [24].

787878

for an explicit allocation of network bandwidth, we have
implemented a Linux packet filter to support it.

XCS’s strategic and run-time support services are java
based applications. The user and system monitoring engines
(UME and SME) are implemented in python. The SME is
set up to collect and report statistics about CPU, network,
and memory utilizations every 5 seconds. The monitoring
engine is also used to execute migration commands with the
use of Xen’s migration and resource reservation commands.
The XCS PCG Strategic Service: Recall that our CaaS
framework calls for the implementation of a strategic service
that is responsible for initiating any necessary reconfiguration
of the VMs in the cluster. In our XCS prototype, we have
chosen to implement a specific strategic service based on the
Process Colocation Game (PCG) game-theoretic formulation
in [19].3 Under PCG, each PM has a fixed cost (e.g.,
corresponding to what an IaaS provider would charge for
it). This cost is split among all VMs (users) sharing the PM
in proportion to their fractional use of the PM’s resources.4

This pricing is assessed periodically, every colocation epoch
– taken to be 5 minutes in our XCS implementation. Under
PCG, each VM (player) is able to entertain a “move” to
a different PM, if such a move would reduce its cost (at
the next epoch). As established in [19], such moves by the
various players are guaranteed to converge to a fairly efficient
Nash Equilibrium (NE), constituting a new configuration of
colocated VMs on the cluster.5

To support PCG within our XCS prototype, we have
implemented APIs that allow users to specify the various
resource reservations they require (see Figure 1). Users
can change such settings at any time (e.g., as a result of
changes in the workload, resulting in degraded performance
as reported by the profiling services), but such changes are
not effective until the strategic services are invoked again
at the end of the current colocation epoch to effect the
colocation in the following epoch.

The XCS strategic service we have implemented can
be seen as carrying out the PCG game every epoch. For a
given VM (player), this is done by evaluating if there is a
“better response” for such a player – i.e., a colocation that
reduces the overall cost of the player – in the upcoming
epoch. This cost reduction may be required to be above
some pre-defined threshold to avoid relocations that are not
justifiable (relative to the overhead of underlying migrations).
By letting players take (random) turns in evaluating and
executing their better responses, the PCG game eventually
(and typically very rapidly) converges to a Nash Equilibrium
– when no cost-reducing moves are possible for any player
(VM) in the system. As depicted in Figure 1, at this point,
the XCS strategic service reports this new configuration to
the migration service, which realizes it for the next epoch.

When new users (VMs) join the XCS cluster, they are
assigned exclusive PMs, and they are charged accordingly for
the remainder of the current epoch. By invoking the XCS
strategic services, such users are able to participate in the

3The XCS prototype could be easily adapted to support other choices.
4Shapley cost pricing [25] has the desirable property of being budget

balanced while satisfying a strong notion of fairness between VMs (users).
5For PMs with homogeneous capacities and unit prices (which is the

case in our setting), the Price of Anarchy (PoA) is 3/2 [19], which is
quite efficient since there is no approximation algorithm for the on-line
bin-packing problem with an approximation ratio better than 3/2 [26].

next PCG epoch, and thus are able to find cost-effective
colocations. User departures result in the deallocation of
the corresponding VMs (and associated reservations), thus
excluding such users from being part of the next PCG epoch.
The XCS DTM/UTM Migration Services: The XCS mi-
gration service is responsible for efficiently realizing the
colocation configuration obtained through the XCS strategic
service (i.e., the NE outcome of the PCG). In particular, given
a configuration for the current epoch, the migration service
must determine the set of VMs that must be migrated as
well as the ordering of such migrations so as to realize the
configuration requested by the strategic service in the most
efficient way. For example, consider a current configuration
in which V M1 and V M2 are colocated on the same PM,
while V M3 is by itself. If for the next epoch, the strategic
service requests the colocation of V M2 with V M3 (instead
of V M1), then it will be necessary to migrate V M2 from the
first PM to the second, or else to migrate V M1 from the first
PM to the second and migrate V M3 from the second PM to
the first. Which of these two options to follow is a decision
that the migration service must determine and execute. To
that end, we have developed two migration services: A Data
Transfer Minimization (DTM) migration service and a User
Transfer Minimization (UTM) migration service. DTM aims
to minimize the amount of data that needs to be transferred
in the system, whereas UTM aims to minimize the number
of users (VMs) that are migrated. In the next section, we
describe the algorithms underlying both DTM and UTM,
showing that they are within a constant factor of the optimal.
The XCS Monitoring and Profiling Services: The XCS
monitoring service uses a similar approach to those presented
in [10], [27], [28]. The monitoring engines send their data
to the profiling service whose purpose is to generate a profile
of the users’ resource utilization. Users may opt to use
this information to change their resource reservations, which
will only be effective during the next reconfiguration epoch.
We implemented profiling models based on the Exponential
Weighted Moving Average (EWMA) and percentiles profil-
ing (95 percentile), with the option of changing the user
reservation only upon user consent.

The SME runs as a service in Domain0 and provides
the system with information about the volume of the user
workload – specifically processor, network and memory uti-
lization. To track CPU usage of VMs, we utilize the xenmon
[29] monitoring tool because of its low CPU utilization.
Network monitoring uses the Linux /proc/net/dev interface,
which allows us to monitor the number of bytes sent and
received on each Xen bridged interface. Monitoring a VM’s
main memory is non trivial, since Xen only provides a
reservation bound on the amount of each VM’s main memory
usage. To that extent, we use the working set size as an
indicator. To estimate the working set size of each VM, we
use the technique defined in [10], [27], where the reads and
writes to each swap partition are possible to monitor as they
reside on the network and can be tracked. This technique
allows us to infer accurately information about the memory
usage of the system during high load periods.

The UME runs inside the VM and provides two options
for gathering CPU, memory, and network utilization: through
the /proc interface or through dstat process [30] mon-
itoring tool. Since users have full control over their VMs,

797979

they are able to employ their own monitoring and profiling
scripts. The profiling service API is designed to accept input
from a possibly-user-modified monitoring service.
The XCS Accounting Service: We have implemented an
accounting service that apportions the cost of using all XCS
services on all system users, equally. Here we note that
we have considered other choices for how to apportion the
overhead costs of XCS over all users, but opted to stick
to this simple approach, which has the added advantage of
being highly scalable to a large number of users.

V. EFFICIENT MIGRATION IN XCS

Basic Definitions and Notation: Given two VM configura-
tions – one for the current epoch and another for the next
epoch – a VM bundle is defined to comprise all VMs that
are colocated on the same PM in both configurations. VM
bundles (or simply bundles) define the entities that migration
heuristics must handle.

Let S(x) be the memory footprint of bundle x. Let
M(P) be the cost of migrating a set of bundles P , which
equals the size of all the bundles in P that need to relocate
from their current PMs to new PMs. We define �(x) to
be the PM where bundle x is located (in the current/old
configuration) and �′(x) to be the PM where bundle x should
be relocated (in the next/new configuration).

Consider bundle x in the configuration illustrated in
Figure 2. We denote by {αk}, the set of bundles that will be
colocated with x in the new configuration,6 and we denote
by {βk} the set of bundles that were colocated with x
in the previous configuration – i.e., �′(αk) = �′(x) and
�(βk) = �(x). Let Ak denote the set of bundles colocated
with αk in the old configuration, and let Bk denote the set
of bundles colocated with βk in the new configuration – i.e.,
�(αk) = �(Ak) and �′(βk) = �′(Bk).

Fig. 2. DTM keeps the biggest bundle x and relocates all αk, βk bundles.

Data Transfer Minimization (DTM): To minimize the total
data migrated, we use the greedy Algorithm 1 (over bundles)
shown below. The algorithm works recursively by pinning
the bundle x with the largest footprint (Step 1) to the PM it
is currently in, thus ensuring that this bundle will not move
(Step 2). Then, the bundles to be colocated with x in the new
configuration, i.e., αk are moved into the same PM (Steps 3-
5). Once the location of all bundles that used to be colocated
with x in the old configuration is determined (as a result of
the recursive call in Step 7), these bundles are moved to their
new PM (Steps 8-10).

An important aspect of our DTM algorithm relates to the
resources needed to migrate VMs, since the spatial capacities

6Conveniently, we use k for enumeration and omit quantifiers over k.

Algorithm 1 DTM(P)
1: x← argy∈P max S(y)
2: �′(x)← �(x)
3: for all αk colocated with x in the new configuration do
4: �′(αk)← �(x)
5: end for
6: P ′ ← P − ({x}+

⋃
∀k{αk}+

⋃
∀k{βk})

7: DTM(P ′)
8: for all βk colocated with x in the old configuration do
9: �(βk)← �′(Bk) (determined by the recursive call)

10: end for

of existing PMs may not be able to accommodate such swap-
ping. Thus, we distinguish between spatially constrained
settings in which the PMs are memory constrained (i.e.,
migration may require the use of intermediate PMs) and
spatially unconstrained settings in which the PMs are not
memory constrained (i.e., migration does not require the use
of intermediate PMs).

Our DTM greedy algorithm is not optimal; the follow-
ing theorem establishes a constant-approximation bound on
DTM’s performance relative to an optimal algorithm.

Theorem 1: In spatially unconstrained settings, the
DTM algorithm results in at most twice the amount of
data transfer incurred by an optimal algorithm, whereas in
spatially constrained settings, it results in at most four times
the amount of data transfer.

Proof Sketch: A complete proof is provided in [31].
In unconstrained settings, we observe that at each iteration
of Algorithm 1, the optimal solution may keep two smaller
bundles in a PM (instead of the largest bundle chosen
by DTM). Thus, by pinning down the largest bundle in
the PM, we accrue the cost of migrating the other two
bundles, which are smaller in size by definition. This yields
the 2-approximation result for unconstrained settings. In
constrained settings, we further observe that in the worst
case each DTM migration may require two moves (through
an intermediary PM), another factor of two blow-up in the
amount of data transferred. This yields the 4-approximation
result for constrained settings.
User Transfer Minimization (UTM): Rather than mini-
mizing the amount of data movement resulting from a re-
configuration, UTM minimizes the number of VMs affected
(disrupted) by the reconfiguration. The UTM algorithm is
identical to that of DTM, except that the “size” of a bundle
is taken to be the number of VMs that constitute the bundle
(as opposed to the memory footprint of the bundle). The
performance bounds for UTM are also similar to those of
DTM – a 2-approximation for unconstrained settings and a
4-approximation for constrained settings.
Concurrent Migration Scheduling: Our base implementa-
tion of DTM (UTM) produces migration requests sequen-
tially to minimize the intermediary space needed to hold
VMs as they are moved in an out of PMs. While efficient
in space, performing migrations sequentially can be a time
consuming process, especially for large clusters. To mini-
mize migration time, it would be natural to issue migration
commands in parallel. However, since migration can have
an effect on both the source and destination PMs (in terms
of resources consumed), we must ensure that concurrently
executing migrations do not conflict.

808080

(a)

0 20 40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

D
at

a
T

ra
n

sf
er

 R
at

io

DTM
UTM

(b)

0 20 40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

D
at

a
T

ra
n

sf
er

 R
at

io

DTM
UTM

(c)

0 20 40 60 80 100 120 140
0.5

0.55

0.6

0.65

0.7

0.75

Epoch

M
ig

ra
ti

o
n

 R
at

io

DTM
UTM

(d)

0 20 40 60 80 100 120 140
0.5

0.55

0.6

0.65

0.7

0.75

Epoch

M
ig

ra
ti

o
n

 R
at

io

DTM
UTM

Fig. 3. Performance of DTM and UTM algorithms: Under exponential (a & b) and powerlaw (c & d) session times.

The problem of parallelizing migrations is similar to a
scheduling problem for storage systems, which was proven
to be NP-complete [32] by reducing it to the graph edge
coloring problem. In [32], the authors present heuristics to
solve the problem under various constraints. For XCS migra-
tions services, we follow a similar approach by developing a
service that maximizes the number of concurrent migrations,
while ensuring that no source, destination, or intermediary
PM is involved in more than one VM migration at a time
(i.e., either sending or receiving, but not both).

VI. PERFORMANCE EVALUATION

In this section we present results from extensive experimental
evaluations of our XCS prototype. Our main motivation is
to establish the feasibility of CaaS as incarnated in our XCS
prototype by: (1) contrasting the performance of various XCS
design choices, e.g., DTM versus UTM, (2) show that the
impact of deploying XCS on the performance of hosted VMs
is minimal, (3) quantify the potential monetary gains that
users of XCS services may stand to achieve.
DTM versus UTM: We use trace-driven workloads to
contrast the performance of DTM versus UTM. The traces
we use were derived from publicly available PlanetLab traces
of CoMon [33]. PlanetLab is an example of a hosting infras-
tructure that allows researchers to submit tasks that utilize
various resources from the PlanetLab servers. The traces we
used give us snapshots of PlanetLab server capacities, as well
as the utilization of the slices assigned to the various tasks
(users) colocated on each server. The main advantage of this
data set is that it gives us a realistic distribution of typical
task utilizations on a fairly large scale.

We used the PlanetLab data set to synthesize a workload
in which user (VM) arrivals are Poisson with a rate λ, and in
which user (VM) session times follow either an exponential
or a powerlaw distribution with a mean δ. Each user (VM)
session acquires a slice with resource utilizations that are
drawn from the Planet Lab data set. In our experiments, we
set the arrival rate to be λ = 10 users/epoch, and we set the
average session times to δ = 10 epochs (for an average of
100 VMs in the system). We also assume the existence of
only one intermediary PM to be used to perform swappings
if needed (this is a conservative assumption).

We ran the experiment for 150 epochs, with the first 30
epochs used for warm-up. Every epoch (of five minutes), the
XCS strategic service is invoked on behalf of all users in the
system, and the resulting colocation configuration is realized
using either DTM or UTM. Figures 3(a) and 3(b) show the
percentage the data migrated in the system (by normalizing

the amount of data transferred by the total amount of data
in the system). As expected, these results show that DTM
incurs much less data transfer overhead than UTM. Figures
3(c) and 3(d) show the percentage of the VMs migrated (by
normalizing the number of migrations by the total number of
VMs in the system). Surprisingly, the performance of both
UTM and DTM is quite similar. The results in Figures 3
show that the results under exponential and powerlaw session
times are quite similar. Overall, these results confirm that the
DTM algorithm is superior to the UTM algorithm.
Impact of XCS Migrations on VM Performance: We
consider the effect of frequent live migrations on the perfor-
mance of a migrating VM as well as on the performance of
non-migrating VMs, which might be impacted by overheads
due to data transfers or other overheads underlying live
migration. To do so, we use a baseline VM running the
(TPC-W) web application benchmark [34]. Our choice of
the TPC-W benchmark is motivated by the fact that I/O-
bound applications are more prone to disruption of service
due to migrations than CPU-Bound applications. The TPC-W
benchmark models an Amazon-bookstore-like web applica-
tion that provides workload generators that simulate multiple
concurrent browser clients accessing the application. Our
TPC-W benchmark uses MySQL 5.05 and runs on Tomcat
version 5. All experiments are repeated multiple times, and
all results are reported with 95% confidence.

(a)

 40

 45

 50

 55

 60

 65

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
hr

ou
gh

P
ut

 (
W

IP
S

)

Migration Rate

(b)

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 0.01 0.02 0.03 0.04 0.05 0.06

R
es

po
ns

e
T

im
e

(m
se

c)

Migration Rate

Fig. 4. Impact of migration on throughput (a) and response time (b).

To measure the impact of XCS migration services on
the migrated VM, we use a setting consisting of two PMs.
We run a single VM that hosts the TPC-W web application
on one of the two PMs, and we perform migrations of that
VM from the PM it is running on to the other PM under a
variety of conditions. We use the TPC-W workload generator
to create 350 clients which are run (on external hosts) against
the TPC-W server for 300 seconds, allowing for server
throughput and response time metrics to be collected.7

7The impact of VM live migration on VM performance is well docu-
mented in the literature, e.g., [21], [35].

818181

(a)

 40

 42

 44

 46

 48

 50

 52

 54

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
hr

ou
gh

P
ut

 (
W

IP
S

)

Migration Rate

(b)

 40

 42

 44

 46

 48

 50

 52

 54

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
hr

ou
gh

P
ut

 (
W

IP
S

)

Migration Rate

(c)

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 0.01 0.02 0.03 0.04 0.05 0.06

R
es

po
ns

e
T

im
e

(m
se

c)

Migration Rate

(d)

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 0.01 0.02 0.03 0.04 0.05 0.06

R
es

po
ns

e
T

im
e

(m
se

c)

Migration Rate

Fig. 5. Impact of XCS services on non-migrating TPC-W VM: Effect on throughput (a & b) and on response time (c & d).

Figure 4(a) shows the average throughput of the TPC-
W server, measured in Web Interactions per Second (WIPS).
Figure 4(b) shows the corresponding average response time
observed by clients, measured in milliseconds. The migration
rate (on the horizontal axis) is measured in Hertz and ranges
from one migration every 100 seconds, to one migration
every 20 seconds. As indicated by the results in Figure 4,
and as expected, as the TPC-W server is migrated more
frequently, its throughput is decreased (by as much as 15%)
and its response time is increased (by as much 30%). These
results are quite encouraging since the rate with which a
single VM is likely to migrate is likely to be much less than
the rates we used. With an epoch of 5 minutes, the maximum
migration rate for a VM is once every 300 seconds.

We now turn our attention to the impact of XCS on VMs
that are not involved in migrations (e.g., due to contention
over system resources, such as network bandwidth, CPU,
and memory). We do so using a setting involving two VMs
on two PMs. One of the VMs is pinned to one of the PMs
whereas the other is made to relocate back and forth between
the two PMs every colocation epoch. The non-migrating VM
runs the TPC-W web application benchmark (as before),
whereas the migrating VM is configured to use various
percentages of the PM resources (to evaluate the impact of
contention over various resources).

In particular, we report results for two extreme settings.
In the first, the migrating VM is CPU-bound, i.e., it hosts
an application that uses 100% of the CPU cycles allocated
to it by XCS. In the second, the migrating VM is network-
I/O-bound, i.e., it hosts an application that uses 100% of the
network bandwidth allocated to it by XCS. In both of these
cases, we perform XCS migrations at different rates. And, as
before, we use the workload generator provided with TPC-
W to measure performance (throughput and response time)
with 350 clients for 300 seconds.

Figures 5(a) and 5(c) show the average throughput and
response times of the TPC-W server in the presence of an
I/O-bound migrating VM, whereas Figures 5(b) and 5(d)
show the same results for a CPU-bound migrating VM.
As with our results for migrating VMs, we note that the
impact of XCS migration on non-migrating VMs is also more
pronounced as migration rates increase. However, we note
that the impact in this case (even with fairly high migration
rates) is minimal – limited to a 5% decrease in throughput
and a 4-7% increase in response time.
Overall Cost Savings: We use our XCS prototype to mea-
sure the cost savings that are possible to achieve per user.
To do so, we run the system with a random set of 100 users
(VMs) selected from the PlanetLab workload. We assume

that if users opt not to use our system, then they will end
up paying a unit cost. Using our system, the XCS system
calculates the cost of each user (including the amortized cost
of running all XCS services – strategic and operational).

Figure 6(a) shows the cumulative distribution function
(CDF) of the cost savings accrued by users (the difference
between the unit cost of using a PM exclusively and the
cost of colocation through the XCS system). These results
suggest that (at least for PlanetLab-like workloads) more than
50% of the users achieve savings upwards of 50% – with
the average cost saving for all users being 33%. Our results
also show that the amortized costs of the XCS services are
insignificant compared to the actual savings achieved by most
users (VMs). In particular, the average cost per user is 0.64,
of which only 0.01 accounts for the amortized cost of running
the various XCS services.

To appreciate the cost savings achievable through the
use of XCS, we also calculate the cost inflation ratio (CIR).
For a given user, CIR is the ratio of the actual cost borne by
the user to the Utopian cost for that user, where the Utopian
cost is the minimal possible cost – reflecting only the cost
of the resources that the user actually uses. Utopian costs
are achievable only if a perfect packing of the VMs into
PMs is possible. Figure 6(b) shows the CDF of the CIR for
all users: Almost 40% of all users end-up with costs that
are indistinguishable from Utopian costs (i.e., with a CIR
approaching 1) and over 95% of all users achieve a CIR less
than 1.5, which is the best approximation ratio known for
bin packing.

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Cost Savings

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2

P
ro

ba
bi

lit
y

Cost Inflation Ratio

Fig. 6. CDF of user cost savings (a) and inflation ratio (b).

System Scalability: The main overheads in XCS are those
attributed to supporting strategic services (namely the better-
response computation needed for PCG) and supporting mi-
gration services (namely the data transfers underlying live
migrations). For strategic services, supporting up to 500 users
in real-time was shown to be quite feasible [19]. Beyond that,
finding better-responses may become computationally expen-
sive and reaching NE take a long time. For migration using

828282

DTM, our experiments suggest that supporting hundreds of
users is quite feasible with respect to data transfer overheads.
For extremely large clusters with high churn rates (either
high arrival/departure rates or high reservation adjustment
rates), the total amount of data transfers in support of XCS
migrations might become an impediment to scalability. Even
beyond these large scales, it is possible to boost scalability
by partitioning users into clusters — based on broad criteria
(e.g., based on geographical proximity or based on similar-
ity in session lifetimes or workload characteristics). These
clusters could be managed using independent XCS services.

VII. CONCLUSION

Significant cost savings could be realized by supplying
cloud tenants with the means to efficiently colocate their
workloads on cloud resources. In this paper, we have shown
the feasibility and promise of the Colocation as a Service
(CaaS) concept. We presented the blueprints of a CaaS
framework, which we instantiated on a Xen virtualization
platform by implementing and evaluating a Xen Colocation
Services (XCS) prototype. Our work on XCS made use of
specific design and implementation choices; our current work
extends XCS to accommodate different choices as well as to
enable new functionalities, which we exemplify below.

Our choice of a game-theoretic formulation for strate-
gic services anticipates a “peer-to-peer” CaaS deployment,
in which the customers (peers) are autonomous and self-
interested (selfish), and in which a single provider offers
cloud resources (which are assumed plentiful) at fixed prices.
Alternative deployment scenarios – e.g., in which one or
more providers adopt a dynamic pricing scheme based on
supply and demand, or in which third parties may act as
resellers – would necessitate making different choices with
respect to the strategic services to be implemented in a CaaS
offering, e.g., using auction or optimization techniques.

In the work presented in this paper, we have restricted
our attention to colocation on resources that admit multiplex-
ing through the reservation of (additive) resource capacities.
In many settings, however, efficient resource multiplexing
by colocated tenant may depend highly on a more granular
workload specification. For example, if services to be co-
hosted are of a periodic, real-time nature, then the identifica-
tion of groupings of tenants that can be efficiently colocated
would require the development of new functionalities and
services, such as those envisioned in our recent work on the
colocation of periodic real-time systems [36].

REFERENCES

[1] Amazon.com, Inc., “Amazon Elastic Computing Cloud (Amazon
EC2),” http://aws.amazon.com/ec2/, Jan 2010.

[2] “Eucalyptus project,” http://eucalyptus.cs.ucsb.edu/, 2009.
[3] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool, 2009.

[4] J. Sonnek and A. Chandra, “Virtual Putty: Reshaping the Physical
Footprint of Virtual Machines,” in USENIX/HotCloud’09, 2009.

[5] M. Cardosa, M. Korupolu, and A. Singh, “Shares and utilities based
power consolidation in virtualized server environments,” in Proc. of
IFIP/IEEE Integrated Network Management 2009, 2009.

[6] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers,” in VEE ’09, 2009.

[7] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and co.: communication-aware cpu scheduling for
consolidated xen-based hosting platforms,” in VEE ’07, 2007.

[8] G. Khanna, K. A. Beaty, G. Kar, and A. Kochut, “Application per-
formance management in virtualized server environments,” in NOMS,
2006, pp. 373–381.

[9] A. Stage and T. Setzer, “Network-aware migration control and schedul-
ing of differentiated virtual machine workloads,” in Proc. of the
IEEE/ICSE Workshop on Software Engineering Challenges of Cloud
Computing, 2009.

[10] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-
box and gray-box strategies for virtual machine migration,” in NSDI,
2007.

[11] S. Ranjan, J. Rolia, H. Fu, and E. Knightly, “Qos-driven server
migration for internet data centers,” in Proceedings of IWQoS, 2002.

[12] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
wide-area migration of virtual machines including local persistent
state,” in VEE ’07. New York, NY, USA: ACM, 2007.

[13] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proc. of the
18th ACM international symposium on High performance distributed
computing, 2009.

[14] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik, “G-commerce: Market
formulations controlling resource allocation on the computational
grid,” IPDPS, 2001.

[15] J. Gomoluch and M. Schroeder, “Performance evaluation of market-
based resource allocation for grid computing: Research articles,”
Concurr. Comput. : Pract. Exper., vol. 16, no. 5, pp. 469–475, 2004.

[16] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Gener. Comput. Syst.,
vol. 25, no. 6, pp. 599–616, 2009.

[17] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: An architecture
for a resource management and scheduling system in a global com-
putational grid.” IEEE Computer Society Press, 2000, pp. 283–289.

[18] A. AuYoung, P. Buonadonna, B. N. Chun, C. Ng, D. C. Parkes,
J. Shneidman, A. C. Snoeren, and A. Vahdat, “Two auction-based
resource allocation environments: Design and experience,” in Market
Oriented Grid and Utility Computing, R. Buyya and K. Bubendorfer,
Eds. Wiley, 2009, ch. 23.

[19] J. Londoño, A. Bestavros, and S.-H. Teng, “Collocation Games
And Their Application to Distributed Resource Management,” in
USENIX/HotCloud’09, 2009.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03, 2003.

[21] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
NSDI, 2005, pp. 273–286.

[22] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migra-
tion of virtual machines,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp.
14–26, 2009.

[23] VMWare, http://www.vmware.com.
[24] J. Appavoo, V. Uhlig, and A. Waterland, “Project kittyhawk: building a

global-scale computer: Blue gene/p as a generic computing platform,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 1, pp. 77–84, 2008.

[25] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, September 2007.

[26] V. V. Vazirani, Approximation Algorithms. Springer, March 2004.
[27] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Geiger:

monitoring the buffer cache in a virtual machine environment,” in
ASPLOS-XII, 2006.

[28] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in xen,” in Proc. of the
ACM/IFIP/USENIX International Conference on Middleware, 2006.

[29] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon: Qos monitoring
and performance profiling tool,” HP Labs, Tech. Rep. HPL-2005-187,
2005.

[30] Dstat, “Versatile resource statistics tool,” http://dag.wieers.com/home-
made/dstat/, Jan 2010.

[31] V. Ishakian, R. Sweha, J. Londoño, and A. Bestavros, “Colocation as
a Service. Strategic and Operational Services for Cloud Colocation,”
CS Dept, Boston University, Tech. Rep. BUCS-TR-2010-003, 2010.

[32] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes, “On algorithms
for efficient data migration,” in SODA ’01, 2001.

[33] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system
for planetlab,” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, 2006.

[34] Wayne D. Smith, “TPC-W: Benchmarking An Ecommerce Solution.”
http://www.tpc.org/information/other/techarticles.asp.

[35] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of
virtual machine live migration in clouds: A performance evaluation,”
in CloudCom, 2009, pp. 254–265.

[36] V. Ishakian, A. Bestavros, and A. Kfoury, “A Type-Theoretic Frame-
work for Efficient and Safe Colocation of Periodic Real-time Systems,”
CS Dept, Boston University, Tech. Rep. BUCS-TR-2010-002, 2010.

838383

