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Abstract. We consider distributed collaborative caching groups where
individual members are autonomous and self-aware. Such groups have
been emerging in many new overlay and peer-to-peer applications. In a
recent work of ours, we considered distributed caching protocols where
group members (nodes) cooperate to satisfy requests for information ob-
jects either locally or remotely from the group, or otherwise from the
origin server. In such setting, we identified the problem of a node being
mistreated, i.e., its access cost for fetching information objects becom-
ing worse with cooperation than without. We identified two causes of
mistreatment: (1) the use of a common caching scheme which controls
whether a node should not rely on other nodes in the group by keeping
its own local copy of the object once retrieved from the group; and (2)
the state interaction that can take place when the miss-request streams
from other nodes in the group are allowed to affect the state of the local
replacement algorithm. We also showed that both these issues can be
addressed by introducing two simple additional parameters that affect
the caching behavior (the reliance and the interaction parameters). In
this paper, we argue against a static rule-of-thumb policy of setting these
parameters since the performance, in terms of average object access cost,
depends on a multitude of system parameters (namely, group size, cache
sizes, demand skewness, and distances). We then propose a feedback con-
trol approach to mitigating mistreatment in distributed caching groups.
In our approach, a node independently emulates its performance as if
it were acting selfishly and then adapts its reliance and interaction pa-
rameters in the direction of reducing its measured access cost below its
emulated selfish cost. To ensure good convergence and stability prop-
erties, we use a (Proportional-Integral-Differential) PID-style controller.
Our simulation results show that our controller adapts to the minimal
access cost and outperforms static-parameter schemes.
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1 Introduction

Background, Motivation, and Scope: Network applications often rely on
distributed resources available within a cooperative grouping of nodes to ensure
scalability and efficiency. Traditionally, such grouping of nodes is dictated by an
overarching, common strategic goal. For example, nodes in a CDN such as Aka-
mai or Speedera cooperate to optimize the performance of the overall network,
whereas IGP routers in an Autonomous System (AS) cooperate to optimize
routing within the AS.

More recently, however, new classes of network applications have emerged for
which the grouping of nodes is more “ad hoc” in the sense that it is not dictated
by organizational boundaries or strategic goals. Examples include the various
overlay protocols [1, 2] and peer-to-peer (P2P) applications. Two distinctive fea-
tures of such applications are (1) the fact that individual nodes are autonomous,
and as such, their membership in a group is motivated solely by the selfish goal
of benefiting from that group, and (2) group membership is warranted only as
long as a node is interested in being part of the application or protocol, and as
such, group membership is expected to be fluid. In light of these characteris-
tics, an important question is this: Are protocols and applications that rely on
sharing of distributed resources appropriate for this new breed of ad-hoc node
associations?

As part of our recent work [3, 4], we studied this question for content net-
working applications, whereby the distributed resource being shared amongst a
group of nodes is storage. In particular, we considered a group of nodes that
store information objects and make them available to their local users as well
as to remote nodes. A user’s request is first received by the local node. If the
requested object is stored locally, it is returned to the requesting user immedi-
ately, thereby incurring a minimal access cost. Otherwise, the requested object is
searched for, and fetched from other nodes of the group, at a potentially higher
access cost. If the object cannot be located anywhere in the group, it is retrieved
from an origin server, which is assumed to be outside the group, thus incurring a
maximal access cost. Contrary to most previous work in the field, we considered
selfish nodes, i.e., nodes that cater strictly and only to the minimization of the
access cost for their local client population (disregarding any consequences for
the performance of the group as a whole).

In [3, 4] we established the vulnerability of many socially optimal (SO) object
replication/caching schemes to mistreatment problems. A mistreated node was
defined as a node whose access cost under some cooperative scheme is higher
than the corresponding minimal access cost that the node can guarantee for it-
self by being uncooperative. Unlike centrally designed/controlled groups where
all constituent nodes have to abide by the ultimate goal of optimizing the social
utility of the group, an autonomous, selfish node will not tolerate such a mis-
treatment. Indeed, the emergence of such mistreatments may cause selfish nodes
to secede from the replication group, resulting in severe inefficiencies for both
the individual users as well as the entire group.
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Distributed Selfish Caching: Proactive replication strategies such as those
studied in [3] are not practical in a highly dynamic content networking setting,
which is likely to be the case for most of the Internet overlays and P2P appli-
cations we envision for a variety of reasons: (1) Fluid group membership makes
it impractical for nodes to decide what to replicate based on what (and where)
objects are replicated in the group. (2) Access patterns as well as access costs
may be highly dynamic (due to bursty network/server load), necessitating that
the selection of replicas and their placement be done continuously, which is not
practical. (3) Both the identification of the appropriate re-invocation times [5]
and the estimation of the non-stationary demands (or equivalently, the timescale
for a stationarity assumption to hold) [6] are non-trivial problems. (4) Content
objects may be dynamic and/or may expire, necessitating the use of “pull”
(i.e., on-demand caching) as opposed to “push” (i.e., pro-active replication)
approaches. Using on-demand caching is the most widely acceptable and natu-
ral solution to all of these issues because it requires no a priori knowledge of
local/group demand patterns and, as a consequence, responds dynamically to
changes in these patterns over time (e.g., introduction of new objects, reduction
in the popularity of older ones, etc.).

Therefore, in [4] we considered the problem of Distributed Selfish Caching
(DSC), which could be seen as the on-line equivalent of the Distributed Selfish
Replication (DSR) problem [3]. In DSC, we adopted an object caching model,
whereby a node used demand-driven temporary storage of objects, combined
with replacement. We examined the operational characteristics of a DSC group
that can give rise to mistreatment problems and argued that simple parametric
versions of already established protocols and mechanisms are capable of mit-
igating these problems. In this work we design a control theoretic framework
for regulating the value of these parameters and thus adapting to fluid group
conditions (varying group size, node capacities, delays and demand patterns).
We thus significantly enhance our results from [4] which introduced these new
control parameters but did not prescribe a complete method for regulating them
in an adaptive manner.

Organization of the Paper: The rest of the paper is organized as follows. In
Section 2 we describe our model of a distributed caching group. In Section 3
we demonstrate the causes of mistreatment in distributed caching groups. The
design of a generic feedback controller for the mitigation of mistreatment is
covered in Section 4. In this section, we also evaluate the performance of our
adaptive scheme. Section 5 concludes the paper.

2 Model of a Distributed Caching Group

In this section we present the model of a distributed caching group that we
consider in our study. Let oi, 1 ≤ i ≤ N , and vj , 1 ≤ j ≤ n, denote the ith unit-
sized object and the jth node, and let O = {o1, . . . , oN} and V = {v1, . . . , vn}
denote the corresponding sets. Node vj is assumed to have storage capacity for up
to Cj unit-sized objects, a total request rate λj (total number of requests per unit
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time, across all objects), and a demand described by a probability distribution
over O, pj = {p1j , . . . , pNj}, where pij denotes the probability of object oi being
requested by the local users of node vj . Successive requests are assumed to be
independent and identically distributed.1 For our numerical examples in later
sections we will assume that the ith most popular object is requested according
to a generalized power-law distribution, i.e., with probability pi = K/iα (such
distributions have been observed in many measured workloads [11, 13]).

Let tl, tr, ts denote the access cost paid for fetching an object locally, re-
motely, or from the origin server, respectively, where ts > tr > tl

2; these costs
can be interpreted either as delay costs for delivering an object to the requesting
user or as bandwidth consumption costs for bringing the object from its initial
location. User requests are serviced by the closest node that stores the requested
object along the following chain: local node, group, origin server. Each node
employs an object admission algorithm for storing (or not) objects retrieved
remotely either from the group or from the origin server. Furthermore, each
node employs a replacement algorithm for managing the content of its cache.
In this work we focus on the Least Recently Used (LRU) replacement algo-
rithm but we can obtain similar results under other replacement algorithms, such
as Least Frequently Used (LFU) replacement algorithm (see also our previous
work in [4]).

3 Mistreatment in Distributed Caching Groups

The examination of the operational characteristics of a group of nodes involved
in a distributed caching solution enabled us to identify two key culprits for the
emergence of mistreatment phenomena [4]: (1) the use of a common caching
scheme across all the nodes of the group, irrespectively of the particular ca-
pabilities and characteristics of each individual one, and (2) the mutual state
interaction between replacement algorithms running on different nodes.

3.1 Mistreatment Due to Common Scheme

The common caching scheme problem is a very generic vehicle for the mani-
festation of mistreatment. To understand it, one has first to observe that most
of the work on cooperative caching has hinged on the fundamental assumption
that all nodes in a cooperating group adopt a common caching scheme. We use
the word “scheme” to refer to the combination of: (i) the employed replacement
algorithm, (ii) the employed request redirection algorithm, and (iii) the employed

1 The Independent Reference Model (IRM) [7] is commonly used to characterize cache
access patterns [8, 9, 10, 11]. The impact of temporal correlations was shown in [6, 12]
to be minuscule, especially under typical, Zipf-like object popularity profiles.

2 The assumption that the access cost is the same across all node pairs in the group
is made only for the sake of simplifying the presentation (those values can also be
assumed as upper bounds of our analysis). Our results can be adapted easily to
accommodate arbitrary inter-node distances.
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object admission algorithm. Cases (i) and (ii) are more or less self-explanatory.
Case (iii) refers to the decision of whether to cache locally an incoming object af-
ter a local miss. The problem here is that the adoption of a common scheme can
be beneficial to some of the nodes of a group, but harmful to others, particularly
to nodes that have special characteristics that make them “outliers”. A simple
case of an outlier, is a node that is situated further away from the center of the
group, where most nodes lie. Here distance may have a topological/affine mean-
ing (e.g., number of hops, or propagation delay), or it may relate to dynamic
performance characteristics (e.g., variable throughput or latencies due to load
conditions on network links or server nodes). Such an outlier node cannot rely
on the other nodes for fetching objects at a small access cost, and thus prefers
to keep local copies of all incoming objects. The rest of the nodes, however, as
long as they are close enough to each other, prefer not to cache local copies of
incoming objects that already exist elsewhere in the group. Since such objects
can be fetched from remote nodes at a small access cost, it is better to preserve
the local storage for keeping objects that do not exist in the group and, thus,
must be fetched from the origin server at a high access cost.

Enforcing a common scheme under such a setting is bound to mistreat either
the outlier node or the rest of the group. Consider the group depicted in Figure 1
in which n − 1 nodes are clustered together, meaning that they are very close to
each other (tr → tl ≈ 0), while there’s also a single “outlier” node at distance t′r
from the cluster. The n − 1 nodes would naturally employ a Single Copy (SC)
scheme, i.e., a scheme where there can be at most one copy of each distinct object
in the group (e.g. LRU-SC [14]) in order to capitalize on their small remote access
cost. From the previous discussion it should be clear that the best scheme for
the outlier node would depend on t′r. If t′r → tr, the outlier should obviously
follow LRU-SC and avoid duplicating objects that already exist elsewhere in the
group. If t′r � tr, then the outlier should follow a Multiple Copy (MC) scheme,
i.e., a scheme where there can be multiple copies of the same object at different
nodes — an example of an MC scheme is the LRU-MC. Under LRU-MC, if a
node retrieves an object from a remote node in the group (or the origin server),
then it stores a copy of it locally replacing an existing object if the cache is full,
according to the LRU policy.

3.2 Mistreatment Due to State Interaction

The state interaction problem takes place through the so-called “remote hits”.
Consider nodes v, u and object o. A request for object o issued by a user of v that
cannot be served at v but could be served at u is said to have incurred a local
miss at v, but a remote hit at u. Consider now the implications of the remote hit
at u. If u does not discriminate between hits due to local requests and hits due
to remote requests, then the remote hit for object o will affect the state of the
replacement algorithm in effect at u. If u is employing LRU replacement, then o
will be brought to the top of the LRU list. If it employs LFU replacement, then
its frequency will be increased, and so on with other replacement algorithms [15].
If the frequency of remote hits is sufficiently high, e.g., because v has a much
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higher local request rate and thus sends an intense miss-stream to u, then there
could be performance implications for the second: u’s cache may get invaded by
objects that follow v’s demand, thereby depriving the users of u from valuable
storage space for caching their own objects. This can lead to the mistreatment
of u, whose cache is effectively “hijacked” by v.

4 Towards Mistreatment-Resilient Caching

From the exposition so far, it should be clear that there exist situations under
which an inappropriate, or enforced, scheme may mistreat some of the nodes.
While we have focused on detecting and analyzing two causes of mistreatment
which appear to be important (namely, due to cache state interactions and the
adoption of a common cache management scheme), it should be evident that
mistreatments may well arise through other causes. For example, we have not
investigated the possibility of mistreatment due to request re-routing [16], not to
mention that there are vastly more parameter sets and combinations of schemes
that cannot all be investigated exhaustively.

4.1 Design Disciplines

To address the above challenges, we first sketch a general framework for designing
mistreatment-resilient schemes. We then apply this general framework to the two
types of mistreatments that we have considered in this work. We target “open
systems” in which group settings (e.g., number of nodes, distances, demand
patterns) change dynamically. In such systems it is not possible to address the
mistreatment issue with predefined, fixed designs. Instead, we believe that nodes
should adjust their scheme dynamically so as to avoid or respond to mistreatment
if and when it emerges. To achieve this goal we argue that the following three
requirements are necessary.

Detection Mechanism: This requirement is obvious but not trivially achiev-
able when operating in a dynamic environment. How can a node realize that it
is being mistreated? In our previous work on replication [3], a node compared
its access cost under a given replication scheme with the guaranteed maximal
access cost obtained through greedy local (GL) replication. This gave the node
a “reference point” for a mistreatment test. In that game theoretic framework,



A Feedback Control Approach 337

we considered nodes that had a priori knowledge of their demand patterns, thus
could easily compute their GL cost thresholds. In caching, however, demand
patterns (even local ones) are not known a priori, nor are they stationary. Thus
in our DSC setting, the nodes have to estimate and update their thresholds in
an on-line manner. We believe that a promising approach for this is emulation.
Figure 2 depicts a node equipped with an additional virtual cache, alongside
its “real” cache that holds its objects. The virtual cache does not hold actual
objects, but rather object identifiers. It is used for emulating the cache contents
and the access cost under a scheme different from the one being currently em-
ployed by the node to manage its “real” cache under the same request sequence
(notice that the input local request stream is copied to both caches). The basic
idea is that the virtual cache can be used for emulating the threshold cost that
the node can guarantee for itself by employing a greedy scheme.

Mitigation Mechanism: This requirement ensures that a node has a mecha-
nism that allows it to react to mistreatment—a mechanism via which it is able
to respond to the onset of mistreatment. In the context of the common scheme
problem, the outlier should adjust its caching behavior according to its distance
from the group. For this purpose, we introduce the LRU(q)-scheme, under which,
objects that are fetched from the group are cached locally only with probability
q; q will hereafter be referred to as the reliance parameter, capturing the amount
of reliance that the node puts into being able to fetch objects efficiently from
other nodes. In the context of the state interaction problem, one may define an
interaction parameter ps and the corresponding LRU(ps) scheme, in which a
remote hit is allowed to affect the local state with probability ps, whereas it is
denied such access with probability (1-ps). As it will be demonstrated later on,
nodes may avoid mistreatment by selecting appropriate values for these param-
eters according to the current operating conditions.

Control Scheme: In addition to the availability of a mistreatment mitigation
mechanism (e.g., LRU(q)), there needs to be a programmatic scheme for adapt-
ing the control variable(s) of that mechanism (e.g., how to set the value of q).
Since the optimal setting of these control variables depends heavily on a mul-
titude of other time-varying parameters of the DSC system (e.g., group size,
storage capacities, demand patterns, distances), it is clear that there cannot be
a simple (static) rule-of-thumb for optimally setting the control variables of the
mitigation mechanism. To that end, dynamic feedback-based control becomes
an attractive option.

To make the previous discussion more concrete, we now focus on the common
scheme problem and demonstrate a mistreatment-resilient solution based on the
previous three principle requirements. A similar solution can be developed for
the state interaction problem.

4.2 Resilience to Common-Scheme-Induced Mistreatments

We start with a simple “hard-switch” solution that allows a node to change
operating parameters by selecting between two alternative schemes. This can
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be achieved by using the virtual cache for emulating the LRU(q =1) scheme,
capturing the case that the outlier node does not put any trust on the remote
nodes for fetching objects and, thus, keeps copies of all incoming objects after
local misses. Equipped with such a device, the outlier can calculate a running
estimate of its threshold cost based on the objects it emulates as present in
the virtual cache.3 By comparing the access cost from sticking to the current
scheme to the access cost obtained through the emulated scheme, the outlier can
decide which one of the two schemes is more appropriate. For example, it may
transit between the two extreme LRU(q) schemes–the LRU(q = 0) scheme and
the LRU(q = 1) scheme. Figure 3 shows that the relative performance ranking
of the two schemes depends on the distance from the group t′r and that there is
a value of t′r for which the ranking changes.

A more efficient design can be obtained by manipulating the reliance parame-
ter q at a finer scale. Indeed, there are situations in which intermediate values of q,
0 < q < 1, are better than either q = 0 and q = 1 (see the LRU(0.1) and LRU(0.5)
curves in Fig. 4). Consider two different values of the reliance parameter q1 and
q2 such that q1 < q2. Figure 5 illustrates a typical behavior of the average object
access cost under q1 and q2 as a function of the distance t′r of the outlier node
from its cooperative cluster. As discussed in the previous section, q1 (q2) will per-
form better with small (large) t′r. In the remainder of this section, we present and
evaluate a Proportional-Integral-Differential (PID) controller for controlling the
value of q. This type of controller is known for its good convergence and stability
properties (converges to a target value with zero error) [17, 18].

A node equipped with the PID controller maintains an Exponential Weighted
Moving Average (EWMA) of the object access cost (costvirtual) for the emulated
greedy scheme. The virtual cache emulates an LRU(q = 1)-scheme in which no
remote fetches are considered, so as to avoid doubling the number of queries sent
to remote nodes. Let costq denote the EWMA of the object access cost of the
employed LRU(q)-scheme in the actual cache of the node. Let dist denote the
difference between the virtual access cost and the actual access cost, and let diff
be the difference between two consecutive values of dist.

The PID controller adapts q proportionally to the magnitude of diff; a pseudo-
code for this process is provided in Algorithm 1. In [19], we argue that the access
cost of a node equipped with this controller converges to a value which is lower
than that of any scheme that employs a fixed q. We also provide an estimation
of the converged value as a function controller parameters and other system
characteristics.

Performance Evaluation: In order to evaluate our adaptive scheme, we com-
pare its steady-state average access cost to the corresponding cost of one of the

3 The outlier can include in the emulation the cost of remote fetches that would result
from misses in the emulated cache contents; this would give it the exact access cost
under the emulated scheme. A simpler approach would be to replace the access cost of
remote fetches by that from the origin server and thus reduce the inter-node query
traffic; this would give it an upper bound on the access cost under the emulated
scheme.
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two extreme static schemes (LRU(q = 0) or LRU(q = 1)). Thus, we define the
following performance metric:

minimum cost reduction (%) = 100 · coststatic − costadaptive

coststatic
(1)

where costadaptive is the access cost of our adaptive mechanism, and coststatic is
the minimum cost of the two static schemes: coststatic = min( cost(LRU(q = 0)),
cost(LRU(q = 1)) ). This metric captures the minimum additional benefit
that our adaptive scheme has over the previous static schemes. To capture
the maximum additional benefit of our adaptive scheme (the optimistic case),
we similarly define maximum cost reduction as in Eq. (1), where coststatic =
max( cost(LRU(q = 0)), cost(LRU(q = 1)) ).

We evaluate the performance of our PID-style feedback controller experimen-
tally by considering a scenario in which the distance between the outlier node and
the cooperative group (t′r) changes according to the Modified Random
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Algorithm 1 . Mitigation of mistreatment
dist(t) = costvirtual(t) − costq(t)
dist(t − 1) = costvirtual(t − 1) − costq(t − 1)
diff(t) = dist(t) − dist(t − 1)
σ = sign(diff(t))
if q(t − 1) ≥ q(t − 2) then

q(t) ← q(t − 1) + σ · αc · |diff(t)| + σ · βc · | |diff(t)| − |diff(t − 1)| |
else

q(t) ← q(t − 1) − σ · αc · |diff(t)| − σ · βc · | |diff(t)| − |diff(t − 1)| |
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Waypoint Model4 [20]. The motivation for such a scenario comes from a wireless
caching application [21]. A detailed description of the design of this experiment
is provided in [19]. Figure 6 summarizes results we obtained under different cache
sizes, demand skewness, and movement speed Vmax = 1 distance units/time unit
(similar results are observed under higher speeds as well). All experiments were re-
peated 10 times and we include 95th-percentile confidence intervals in the graphs.

By employing our adaptive scheme, the outlier achieves a maximum cost
reduction that can be up to 60% under skewed demand. The depicted profile
of the maximum cost reduction curve can be explained as follows. The worst
performance of the static schemes appears at the two extremes of skewness.
Under uniform demand, α = 0, we get the worst performance of the LRU(1)
static scheme, whereas under highly skewed demand, α = 1, we get the worst
performance of the LRU(0) static scheme. In the intermediate region both static
schemes provide for some level of compromise, and thus the ratio of the cost
achieved by either scheme to the corresponding cost of the adaptive scheme
becomes smaller than in the two extremes.

Turning our attention to the minimum cost reduction, we observe that it can
be substantial under skewed demand, and disappears only under uniform demand

4 This recent version fixes the non-stationarity of the original model, and thus provides
better statistical confidence.
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(such demand, however, is not typically observed in measured workloads [11]).
The explanation of this behavior is as follows. At the two extreme cases of skew-
ness, one of the static scheme reaches its best performance—under low skewed
demand, the best static scheme is the LRU(0) and under high skewed demand
the best static scheme is the LRU(1). Thus, the ratio of the cost achieved by
the best static scheme and the corresponding cost of our adaptive scheme gets
maximized in the intermediate region, in which neither of the static schemes can
reach its best performance.

4.3 Resilience to State-Interaction-Induced Mistreatments

Immunizing a node against mistreatments that emerge from state interactions
could be similarly achieved. The interaction parameter ps can be controlled using
schemes similar to those we considered above for the reliance parameter q. It is
important to note that one may argue for isolationism (by permanently setting
ps = 0) as a simple approach to avoid state-interaction-induced mistreatments.
This is not a viable solution. Specifically, by adopting an LRU(ps = 0) approach,
a node is depriving itself from the opportunity of using miss streams from other
nodes to improve the accuracy of LRU-based cache/no-cache decisions (assuming
a uniform popularity profile for group members).

To conclude this section, we note that the approaches we presented above
for mistreatment resilience may be viewed as “passive” or “end-to-end” in the
sense that a node infers the onset of mistreatment implicitly by monitoring its
utility function. As we alluded at the outset of this paper, for the emerging
class of network applications for which grouping of nodes is “ad hoc” (i.e., not
dictated by organizational boundaries or strategic goals), this might be the only
realistic solution. In particular, to understand “exactly how and exactly why”
mistreatment is taking place would require the use of proactive measures (e.g.,
monitoring/policing group member behaviors, measuring distances with pings,
etc.), which would require group members to subscribe to some common services
or to trust some common authority—both of which are not consistent with the
autonomous nature (and the mutual distrust) of participating nodes.

5 Conclusions

We introduced a feedback control approach to mitigating mistreatment in dis-
tributed caching groups. Our approach controls the reliance and interaction
parameters (q and ps) by measuring the node’s current access cost under the
current scheme and comparing it to the node’s emulated selfish access cost. By
adapting q and ps in the direction of moving the current access cost below the
selfish cost, our PID-style controller reaps the benefits of cooperation whenever
possible under the current system conditions (group size, cache sizes, demand
skeweness, distances). Our simulation results confirm the premise of our adaptive
(feedback) controller—it effectively adapts to the minimal access cost and even
outperforms static controllers (where q and ps are statically set to zero or one for
no- or full-cooperation, respectively) under a wide range of system parameters.
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To the best of our knowledge, this is the first attempt to use feedback control
to ensure cooperation is always beneficial to users who are autonomous and
selfish. Although we considered distributed caching, we believe similar feedback
control can be successfully applied to other cooperative applications as well—we
intend to investigate this in our future work.
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