
PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 1

PeriScope

An Active Measurement API

Khaled Harfoush Azer Bestavros John Byers
harfoush@cs.bu.edu best@cs.bu.edu byers@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

Abstract|Growing interest in inference and pre-
diction of network characteristics is justi�ed by its
importance for a variety of network-aware appli-
cations. One widely adopted strategy to charac-
terize network conditions relies on active, end-to-end

probing of the network. Active end-to-end probing
techniques di�er in (1) the structural composition
of the probes they use (e.g., number and size of
packets, the destination of various packets, the pro-
tocols used, etc.), (2) the entity making the mea-
surements (e.g. sender vs. receiver), and (3) the
techniques used to combine measurements in or-
der to infer speci�c metrics of interest. In this
paper, we present Periscope: a Linux API that
enables the de�nition of new probing structures
and inference techniques from user space through
a 
exible interface. PeriScope requires no sup-
port from clients beyond the ability to respond to
ICMP ECHO REQUESTs and is designed to minimize
user/kernel crossings and to ensure various con-
straints (e.g., back-to-back packet transmissions,
�ne-grained timing measurements) We show how
to use Periscope for two di�erent probing purposes,
namely the measurement of shared packet losses
between pairs of endpoints and for the measure-
ment of subpath bandwidth. Results from Internet
experiments for both of these goals are also pre-
sented.

Keywords| End-to-end measurement; loss rate;
bottleneck bandwidth; Bayesian probing; Car-
touche probing; network-aware applications.

I. Introduction

Measurement of various network characteristics (e.g.
loss, delay, bandwidth) is crucial for many Internet
applications and protocols, especially those involv-
ing the transfer of large �les and those involving the
delivery of content with real-time QoS constraints,

This work was partially supported by NSF research grants
ANI-9986397, ANI-0095988 and CAREER ANI-0093296.

such as streaming media. Examples of the impor-
tance of bandwidth estimation include request routing
protocols in Content Distribution Networks (CDNs)
[1] or in Peer-to-Peer (P2P) networks [33], network-
aware cache/replica placement and maintenance poli-
cies [20], [31], 
ow scheduling and admission control
policies at massively-accessed content servers [9], end-
system multicast and overlay network recon�guration
protocols [8], [19], [2], among many others.

Current network characteristics inference strategies
can be classi�ed into two broad categories: The �rst
strategy is to mine the data collected by network in-
ternal resources, such as BGP routing tables, to gen-
erate performance reports [16], [25], [7], [17]. This ap-
proach is best applied over long-time scales to produce
aggregated analyses such as Internet weather reports,
but does not lend itself well to providing the timely
requirements of network-aware applications. The sec-
ond strategy is statistical inference of network internal
characteristics based on measurements obtained from
probing network resources (routers and/or endhosts)
[5], [6], [34], [21], [32], [29], [26]. Using this strategy,
information is gathered at the appropriate time scale
to address timely network-aware application require-
ments. A probing approach can be further classi�ed
as active, i.e. it introduces additional probe traÆc
into the network, and passive, i.e. it makes inferences
only from existing network traÆc. The bene�t of the
former is 
exibility: one can make measurements at
those locations and times which are most valuable;
while the bene�t of the latter approach is that no
additional bandwidth and network resources are con-
sumed just for the purpose of data collection.

Paper Contributions: In this paper, we adopt the
active probing strategy. Speci�cally, we present a
Linux API (called Periscope1) that implements the

1
Probing Engine for the Recovery of Internet Subgraphs



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 2

functionality necessary to de�ne, activate and col-
lect measurements for arbitrary probing structures.
To the best of our knowledge, there is no publicly
available framework that has Periscope 
exibility
in de�ning arbitrary probing structures. For exam-
ple, by de�ning a probing structure consisting of a
pair of probe packets of the the same size destined
to the same endpoint, Periscope can infer the bot-
tleneck bandwidth along a path [7], [27], [29], [28].
By directing the probe packets to di�erent endpoints,
Periscope can infer the loss rate along the shared
path, induced through IP routing, connecting the
probing server to the endpoints [14]. By de�ning
a probing structure consisting of a pair of di�erent
size probe packets, Periscope can infer the capac-
ity bandwidth of every physical link along the path
[22], [23]. Also, by de�ning a probing structure con-
sisting of a sequence of di�erent size and destination
packet-pairs, Periscope can eÆciently infer the bot-
tleneck bandwidth along arbitrary path segments and
along the shared paths between di�erent endpoints
[15]. Periscope can also easily be extended to pro-
vide additional functionality.

Using the Periscope API, we have developed a
tool to infer and label the loss, delay and band-
width topologies connecting a server to a set of
clients. These topologies are instantiations of the
Metric-Induced Network Topologies (MINT) frame-
work, which aims at providing compact and ef-
�cient respresentations of network resources. A
metric-induced topology is a labelled logical topology,
parametrized with a sensitivity parameter c which is
the minimum value of a label which can be applied
to an internal link in the topology. For more details
about the MINT framework refer to [4].

Ideally, Periscope functionality should be in-
stalled at both the server and the client sides. Client-
side Periscope installation is only intended to in-
tercept sever probe packets and record their relevant
characteristics. However, acquiring control over all
potential clients is not always possible. It is thus de-
sirable to communicate probe packets characteristics
from the clients back to the server side which could
be done through replies to ICMP ECHO REQUEST
probe packets. The problem with this approach is
that the expected characteristics of the probe packets
that are delivered to the clients may be altered either
at the client itself or over the back channel, on the
way back to the server. This may result in inaccurate
estimates which is the price one has to pay if we are
to deploy Periscope only at the server side.

In this paper we describe the details of the server-
side Periscope architecture which, as discussed
above, is a superset of the client-side architecture.

Paper Overview: The rest of this paper is organized
as follows: In sections II and III, we review existing
probing literature and provide the probing terminol-
ogy that we use throughout the paper. In section
IV, we discuss the rationale behind Periscope design
and in sections V and VI, we describe Periscope ar-
chitecture and its user level API. In section VII, we
describe some of our experiences with Internet valida-
tion of Periscope, drawing on examples taken from
a large set of experiments that are aimed at inferring
from end-to-end measurements both the loss rate and
the bottleneck bandwidth along the shared path con-
necting a server to a set of clients.

II. Related Work

As noted in the introduction, Periscope relies on
actively probing network resources in order to esti-
mate network properties. In general, there are two
approaches to implement probing; we can do it (1) in
user space [24], [11], [23] or (2) in the kernel [12].

Kernel support is desirable because probing tech-
niques require quality of service guarantees from the
probing host which cannot be provided from user
space. For example, the uniform packet-pair prob-
ing technique requires that packets of each pair be
injected back-to-back in the network, and we discuss
why this cannot be done easily from user-space.

Acquiring probing functionalities in the kernel can
be achieved using two possible approaches: (a) hand-
code kernel functionality [12], or (b) deploy kernel
functionality from user space using Operating System
abstractions (e.g. QLinux [30] or Dionisys [10]).

Hand-coding the kernel su�ers from lack of 
exibil-
ity. The obtained functionality is usually not reusable
for di�erent probing techniques. Also, using system
abstractions in an environment running an operating
system with quality of service guarantees is costly.
These systems are also inherently complex.

While Periscope is implemented in the kernel, it is
not intended to be a tool to estimate a speci�c prop-
erty. Instead, it is designed to be a programmable
probing framework suitable for any inference tech-
nique that relies on active probing. By implement-
ing a rich set of basic probing functions in the kernel,
Periscope can provide the necessary quality of ser-
vice guarantees while avoiding the complexity of gen-



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 3

eral purpose frameworks. By providing a generic user
space API, Periscope provides users with the 
exi-
bility to de�ne and activate arbitrary probing struc-
tures.

III. Probing Terminology

In this section, we describe the basic terminology
for the various probing sequences implemented in
Periscope, and which we use throughout the rest
of the paper.

For the purposes of this paper, a probe is a sequence
of one or more packets transmitted from a common
origin. We say that any contiguous subsequence of
packets within a probe are transmitted back-to-back
if there is no time separation between transmission
of the individual packets within the subsequence. A
multi-destination probe is one in which the constituent
packets of the probe do not all target the same des-
tination IP address. Multi-destination probes have
begun to see wider use as emulations of notional mul-
ticast packets|many of the same end-to-end infer-
ences that can be made with multicast packets can
be made with multi-destination unicast probes (albeit
with added complexity) [13], [14]. A uniform probe
is one in which all of the constituent packets are of
the same size; likewise, a non-uniform probe consists
of packets of di�erent sizes. Finally, we say that an
individual packet is hop-limited if its TTL is set to an
arti�cially small value so as not to reach the ostensible
destination. Hop-limited packets can be used to trig-
ger an ICMP response from an intermediate router.

Throughout the paper we use various probing tech-
niques that rely on sending sequences of probes. The
probing techniques di�er in the number of packets
constituting a probe, the size, and the path traversed
by each probe packet. They also di�er in the host col-
lecting the probing responses and the function used by
this host to perform the required estimation.

In many instances, the process of probing may in-
volve sending a multitude of probe structures to var-
ious destinations. For example, consider a multi-
destination probe which targets two clients (from a
single source). Given a set of clients, it may be nec-
essary to send such a probe to every possible pair of
clients in the set. We call such a set of probes a prob-
ing round.

Each packet p transmitted within a probe is param-
eterized by its size s(p) in bytes and its �nal destina-
tion,D(p). In the event that a packet is hop-limited, it
has a third parameter, its maximum hop-count, h(p).

To denote a probe, we refer to each probe packet with
a distinct lowercase letter, and represent the sequen-
tial order in which they are transmitted from the prob-
ing host by writing them from left to right. We denote
interpacket spacing with square braces. As an exam-
ple, [pq][pq][r] would denote transmission of a pair of
identical two-packet probes followed by a single packet
probe which has di�erent characteristics.

Finally, we use the term interarrival time of packets
p and q at a link to denote the time elapsed between
the arrival of the last byte of p and the arrival of the
last byte of q at that link.

IV. Design Rationale

The design of Periscope was driven by a number of
objectives aiming to: (1) Minimize user/kernel bound-
ary crossings. (2) Provide enough primitives to en-
able the de�nition of arbitrary probing structures and
probing techniques. (3) Provide a structured and well-
de�ned interface for applications. (4) Ensure kernel
code modularity and restrict changes to the network-
ing stack.

By implementing the scheduling and monitoring
functionalities in the kernel, Periscope minimizes
user/kernel boundary crossings. The user/kernel
boundary is crossed only during initialization oper-
ations2 and during periodic application callbacks to
report inference results. This optimization is valuable
for busy servers.

Periscope is designed to be general and friendly
enough in the sense that users can de�ne from user
space the structure of their intended probes and
various probing characteristics (e.g. probe packets
inter-departure times, the characteristics of a prob-
ing round, the number of rounds needed, etc.). Also,
although some versions of inference and labeling algo-
rithms such as Bayesian Probing [14] and Cartouche
Probing [15] are provided inside the kernel, a user can
choose to get from the kernel some native results (e.g.
arrival times of the responses of all probe packets in
a round of probing) and implement its own inference
algorithm in user space.

The interface between applications and Periscope
is done through the use of control sockets. System
calls are translated through ioctl calls to perform
appropriate actions in the kernel. An application uses
the select() system call to receive Periscope call-
backs. This approach (control socket + select + ioctl)

2As we will detail later, this includes group setup and 
ow
registration.



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 4

API

M A N A G E R

D EFINITIONS LOGIC

S C H E D U L E RM ONITOR

User
Space

Per iScope

Kernel
Space

IP Layer

Appl icat ion Cal lbacksAPI Cal ls

Fig. 1. Periscope Architecture

restricts code changes caused by Periscope to the
networking stack and provides a well-de�ned and 
ex-
ible interface for applications.

V. Periscope Architecture

Periscope server-side functionality allows for: (1)
the maintenance of the de�nitions of probing struc-
tures, (2) the orchestration of probe transmissions,
(3) the collection of relevant probe packet responses
(e.g., accurate arrival times, loss rates), and (4) the
execution of the inference processes.

Figure 1 depicts the main components of the
Periscope architecture.

The Manager keeps record of all endpoints (i.e.,
clients) under consideration. Endpoints are par-
titioned into application-de�ned groups|groups of
clients speci�ed by applications through an API call.
The inference procedures are applied on 
ows destined
to endpoints belonging to a single group. This par-
titioning of 
ows into groups is designed mainly to
give the 
exibility of running more than one probing
structure or running the same probing structure be-
tween di�erent set of endpoints simultaneously. This
may be useful for probing techniques that use more
than one probing structure [14] or to diagnose shared
congestion between di�erent sets of endpoints pos-
sibly for aggregate congestion control purposes [3].
The Manager associates with each group a probing
structure de�nition that contains the number of probe
packets, the size and the destination (or the number
of hops) of each probe packet. It also associates with

each group a set of probing parameters (e.g., the num-
ber of probes to send and the probing rate). These
de�nitions and parameters are provided by the appli-
cations in a generic way through API calls.

The Scheduler uses a timer for each group3.
Whenever a timer associated with a group of end-
points expires, a new probe for this group is inserted
into the IP stack for transmission. The inserted probe
structure conforms to the probe de�nition associated
with the group. The Scheduler ensures that the
probe packets are inserted back-to-back on the top
of the IP stack. In order to send packets back-to-back
we extended the kernel library with a function that
sends packets back-to-back with a single system call.

The Monitor keeps track of the relevant character-
istics (e.g., losses and arrival times) of the probe pack-
ets responses. These statistics are updated as a result
of the receipt of an ECHO REPLY or an ICMP TIME

EXCEEDED message. A user may elect to receive the
replies in user space by itself and store the response
characteristics on its own.

VI. Periscope API

In this section, we present some details of
Periscope's API4.

As we explained earlier, the Periscope API frees

3Note that the timer expiration time depends on the probing
rate parameter associated with the group's probing structure
de�nition

4For more details about Periscope functionality refer to
http://cs-people.bu.edu/harfoush/periscope



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 5

an application from having to manage the probing
processes it requires, moreover it guarantees speci�c
properties that are not possible to ensure from user
space concerning the transmission of probe packets
from an end-host (e.g., guarranteeing that probe pack-
ets are transmitted back-to-back or with a speci�c in-
terdeparture time).

Using the Periscope API, an application can de-
�ne and activate a probing sequence by following the
steps below:

1. Create a new group and provide the parameters as-
sociated with the group (e.g., the length of the probing
sequence, probing rate, frequency of callbacks, sensi-
tivity constant to be used for inference, etc.),

2. Register the endpoints (i.e., set of clients) to be
considered as part of this group,

3. De�ne the probing structure (e.g. the number of
probe packets in a probe and for each probe packet
the 
ow that it belongs to, its TTL �eld value5 and
its size),

4. Activate the group, and

5. Wait for feedback.

Figure 2 shows the user level data structures and
API used by Periscope. We discuss these next.

Data Structures: The group param t structure
contains the di�erent parameters that de�ne the set-
tings for a speci�c group. A phase is de�ned as a
transmission of one round of probes. The max phase

and the probing rate �elds of the param t struc-
ture de�ne the total number of probes and the prob-
ing rate that the application wants Periscope to
use. Based on the feedback type value the user
may elect to either receive probe packet replies by
itself (feedback type=0) or use the Periscope feed-
back mechanism (feedback type=1) and in this case
the user can �x the feedback frequency through the
feedback rate �eld. The group param t structure
include other group settings. The flow param t

structure contains parameters relevant to a speci�c

ow within a group. These include an identi�er of the
group to which the 
ow belongs and structures that
de�ne the 
ow destination.

Periscope probe packets are transmitted as ECHO
REQUESTs with a Periscope header in its payload.
The payload t structure de�nes the sructure of the

5We set the TTL �eld value to 255 for probe packets that we
want delivered to an endpoint.

typedef struct group_param {
int max_phase;
int probing_rate;
int feedback_type;
int feedback_rate;
int cartouche_dimension;
.
.
.

} group_param_t;

typedef struct payload {
int group_id;
int phase_no;
int probe_packet_no;
struct timeval probing_time;
struct timeval feedback_time;

} payload_t;

typedef struct probe_packet {
int flow_id;
int size;
int TTL;

} probe_packet_t;

typedef struct probe_structure {
int n_probe_packets;
probe_packet_t *probe_packets;

} probe_structure_t;

int PS_open(void);
int PS_new_group(int ctrl_fd,param_t params);
int PS_register_flow(int ctrl_fd,

int group_id,u_char *host);
int PS_register_probe_structure(int ctrl_fd,

int group_id,probe_structure_t p_structure);
int PS_activate_group(int ctrl_fd,int group_id);

Fig. 2. Periscope Data Structures and User Level API

header to be included. A packet payload is times-
tamped by the kernel when it is posted in the IP
stack for transmission (probing time) and ECHO RE-

PLY messages are timestamped when they reach the
server (feedback time). Periscope manages two se-
quence numbers that are also included in the payload
of the probe packets. These sequence numbers re
ect
the phase number that this probe packet belongs to
(phase no) and the probe packet position within the
probe (probe packet no). The sequence numbers are
mandatory for the application to compile probe packet
replies.

In order to specify a probing construct, Periscope
de�nes two structures: probe packet t and probe

structure t. The former de�nes the attributes of a
probe packet (the group and 
ow to which it belongs,
the size and the TTL �eld value to be assigned to this
probe packet). The second structure has a list of all
the probe packet de�nitions.

API: PS open() creates a new socket of type
SOCK PS (a Periscope-de�ned type used for the
transmission and receipt of probes) and of protocol IP-
PROTO ICMP (the ICMP protocol). The return value
is socket �le descriptor ctrl fd. PS new group() allo-



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 6

cates a new group under ctrl fd. The parameters of
this group are passed along as arguments. The return
value from this function is a group identi�er group id.
PS register flow() registers a new endpoint with
group group id associated with the ctrl fd socket.
The user should call PS register flow() as many
times as there are 
ows to be associated with the
group. PS register probe structure() is used
to pass a probe structure de�nition to Periscope

manager in the kernel and PS activate group() ac-
tivates group id's probing timer, thus starting the
periodic probe transmission and statistics collection
procedures for the group.

Probing Feedback: After activating a group, the
user waits to receive probe responses. The responses
can be either ECHO REPLY packets or ICMP TIME

EXCEEDED packets. The former response is received
from an endhost replying to ECHO REQUEST probe
packet and the latter is received from a router on
the way to the endhost after realizing that a packet
TTL value reached 0 (as a result of a hop-limited
probe packet). The user knows in advance, based
on the TTL �eld value that he/she de�ned in the
probe packet t structure whether a probe packet
will trigger an ECHO REPLY or an ICMP TIME EX-

CEEDED message. The most appropriate way for
a user to wait for all probe responses is to use a
select() statement with its reading set of socket
�le descriptors containing only the ctrl fd value re-
turned by the PS open() API call. After receiving a
response packet, the user should classify it based on
the phase no and probe packet no �elds in its pay-
load to associate the response with the correct probe
packet.

Sample Periscope Code: Figure 3 shows a sam-
ple routine, Packet Pair(), detailing how we can
program the uniform packet-pair (PP) technique
to infer the end-to-end bottleneck bandwidth using
Periscope API. The PP technique has, using the
terminology of section III, the [pp] probing structure.
The parameters to the Packet Pair() routine are the
endpointD(p), the probing parameters to be used, the
size of the probe packets and the timeout value to be
waited before assuming that no more responses will
be received.

Subtleties: When the response packet is ICMP TIME

EXCEEDED, the received packet payload does not
contain the payload t structure as de�ned by the user
and thus does not contain the expected phase no and
probe packet no �elds. This might cause spurious

Packet_Pair(
u_char *host,
group_param_t params,
int size
struct timeval timeout;

)
{

int ctrl_fd;
int group_id;
int flow_id;
probe_packet_t p_packet;
probe_structure_t p_structure;
int fd;
fd_set rset;
ssize_t r;

ctrl_fd=PS_open();
group_id=PS_new_group(ctrl_fd,params);
flow_id=PS_register_flow(ctrl_fd,

group_id,
host);

p_packet.flow_id=flow_id;
p_packet.size=size;
p_packet.TTL=255;
p_structure.n_probe_packets=2;
p_structure.probe_packets

=malloc(2*sizeof(probe_packet_t));
p_structure.probe_packets[0]=p_packet;
p_structure.probe_packets[1]=p_packet;
PS_register_probe_structure(ctrl_fd,

group_id,
p_structure);

PS_activate_group(ctrl_fd,group_id);

/* Wait for ECHO REPLY messages */
FD_ZERO(&rset);
FD_SET(ctrl_fd,&rset);
for (;;) {
if (

(r=select(fd+1,&rset,NULL,NULL,&timeout))
==0
)
// timeout expired, so exit

else
// read payload details

}
}

Fig. 3. Programming [pp] probing sequence of the packet-
pair Probing technique using Periscope API.

measurements due to mixing the responses especially
when probes are lost or when packets can be reordered
over the investigated path. To protect against this
case, Periscope provides two mechanisms:

1. Reordering Test: This test allows the determina-
tion of whether probe packets are prone to a change in
their order over a path. This reordering can happen
due to routers policies along the path. For example,
in some probing experiments we conducted, we no-
ticed that some routers give preference to mall pack-
ets over large packets. The test is based on sending
all the probe packets to the end host (using a TTL
value of 255 for all the packets) for a speci�c num-
ber of phases and checking that for each phase the
returned ECHO REPLY messages have their assigned
probe packet no �eld value in the same transmission



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 7

order. If probe packets are prone to reordering the
user is informed and has the decision as to whether to
probe this path or to abort the probing process.

2. Synchronization Procedure: This procedure makes
it simpler, in case that reordering does not happen,
to identify the phase to which an ICMP TIME EX-

CEEDED reply belongs. Note that this procedure is
useful if the �rst and last probe packet replies are ex-
pected to be ICMP TIME EXCEEDED messages. The
test relies on sending a synchronization packet of small
size and a TTL value of 255 after the transmission
of each probe and using the ECHO REPLY messages
triggered by these packets to separate the responses
of di�erent probe packets.

User Level Libraries: Periscope is equipped with
a set of user space libraries that implement the func-
tionalities necessary to build and label metric-induced
network topologies instantiated for the loss rate met-
ric.

Recap: In this section, we have described the data
structures and the user level API routines that can
be used to program, activate and capture responses
to generic probing structures using Periscope. We
have also pointed out some of the problems that might
face an active probing tool in terms of packets reorder-
ing and packet loss and proposed precautions against
these problems. In the next section, we turn our at-
tention to validating Periscope applicability in an
Internet setting.

VII. Internet Measurement Experiments

In this section, we describe some of our experiments
with Internet validation of Periscope, drawing on
examples taken from a large set of experiments that
are aimed at using the Periscope API to eÆciently:
(1) estimate the shared loss rate between a server and
a set of clients and then infer and label loss topologies,
and (2) estimate the bottleneck bandwidth along an
arbitrary segment of a path.

The presented techniques are eÆcient in the sense
that they do not need to probe every physical link
along the shared path to determine the shared met-
ric value as compared to the less eÆcient technique
involving the use of traceroute [18] and pchar [24].

A. Loss Topology Inference

In this section, we describe an illustrative example
demonstrating Periscope's ability to correctly infer
and label loss topologies in an Internet setting. In
[4], a network topology connecting di�erent endpoints

Bayesian_Probing(
u_char *host_A,
u_char *host_B,
group_param_t params,
int size
struct timeval timeout;

)
{

int ctrl_fd;
int group_id;
int flow_id_A;
int flow_id_B;
probe_packet_t p_packet_A;
probe_packet_t p_packet_B;
probe_structure_t p_structure;
int fd;
fd_set rset;
ssize_t r;

ctrl_fd=PS_open();
group_id=PS_new_group(ctrl_fd,params);
flow_id_A=PS_register_flow(ctrl_fd,

group_id,
host_A);

flow_id_B=PS_register_flow(ctrl_fd,
group_id,
host_B);

p_packet_A.flow_id=flow_id_A;
p_packet_A.size=size;
p_packet_A.TTL=255;
p_packet_B.flow_id=flow_id_B;
p_packet_B.size=size;
p_packet_B.TTL=255;
p_structure.n_probe_packets=2;
p_structure.probe_packets

=malloc(2*sizeof(probe_packet_t));
p_structure.probe_packets[0]=p_packet_A;
p_structure.probe_packets[1]=p_packet_B;
PS_register_probe_structure(ctrl_fd,

group_id,
p_structure);

PS_activate_group(ctrl_fd,group_id);

/* Wait for ECHO REPLY messages */
FD_ZERO(&rset);
FD_SET(ctrl_fd,&rset);
for (;;) {
if (

(r=select(fd+1,&rset,NULL,NULL,&timeout))
==0
)
// timeout expired, so exit

else
// read payload details

}
}

Fig. 4. Programming [pq] probing sequence of the Bayesian
Probing technique using the Periscope API.

through IP routing can be represented in one of the
following ways.

1. Physical topology, which has all routers connect-
ing the endpoints represented as internal nodes of the
topology,

2. Logical topology, in which all internal nodes with
only one child have been collapsed into their parent
recursively. As a result all internal nodes in a logical
topology have at least two downstream endpoints,



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 8

202.112.1.62

202.112.128.55

A B
D E

F G

S

C

209.247.10.38

212.1.200.26

193.204.250.4193.204.49.37

163.121.43.3163.121.43.2

202.198.8.5

202.112.128.5
A B

D E

F G

S

C

A B
D E

F G

S

C

202.112.42.3

Fig. 5. Periscope Validation: Logical tree used as a test case (left), most frequent inferred loss tree (middle) and
minimal loss tree spanning all inferred trees (right).

3. Metric-Induced topology which is parametrized by a
sensitivity parameter c and a metric of interest (e.g.,
loss rate), and is formed from the logical topology
when all internal nodes with parent links of a metric
value less than c have been collapsed into their parent.
The larger the sensitivity constant the less links will
appear in the tree as links with metric values less than
the sensitivity constant are combined with other high
metric value links. That is, the sensitivity constant
is used to vary the resolution of the metric-induced
topologies.

The technique used to infer the loss topologies relies
on inferring the shared loss rate between each pair of
clients and then using this information to build and
label the loss topologies. In order to estimate the
shared loss value Periscope uses the BP technique
[14] which we summarize next.

Bayesian Probing: Let S be a server connected
through IP routing to two clients A and B. In order to
estimate the loss rate over the shared path en route
to clients A and B, the Bayesian probing technique
requires that server S sends, using the terminology of
section III, the following probing sequence: [pq] where
s(p) = s(q), D(p) = A and D(q) = B. Then by col-
lecting probe responses and correlating their losses,
the shared loss rate can be estimated. For more de-
tails about the bayesian probing technique refer to
[14].

Periscope Code for BP Technique: Figure 4
shows a sample routine, Bayesian Probing(), de-
tailing how we can program the BP technique us-
ing the Periscope API. The parameters to the
Bayesian Probing() routine are the endpoints A and
B, the probing parameters to be used, the packet size
s(p) and the timeout value.

Experimental Setup: The topology used for the
illustration connects a local server (Pentium II pro-
cessor running RedHat Linux version 2.2.14) to a set
of seven hand-picked hosts. The seven endpoints were
selected to ensure the existence of di�erent lossy paths
that are shared between the server and various sub-
sets of endpoints. In addition, by placing the server
below a slow uplink, we ensured the existence of a
(possibly) lossy path between the server and all end-
points. These choices were all made with the goal of
stress-testing the inference and labeling techniques in
mind.6

Figure 5 depicts the logical topology between the
server and the seven hosts. Intermediate router IP
addresses were obtained through the use of traceroute.
The server is in the continental U.S. Hosts A,B and
C are in China with hosts A and B on the same LAN
of Beijing University of Aeronautics and Astronautics
and host C in Northeast China Institute of Electric
Power Engineering. Hosts D and E are in Egypt, on
the same LAN of the Arab Academy for Science and
Technology (AAST). Hosts F and G are in Italy at two
di�erent universities: Politecnico di Bari and Univer-
sita Degli-Studi di Bergano.

In order to study whether the results con�rm to
what the analysis and simulation in [4] expected, we
need to establish a reference against which we could

6Speci�cally, validating our tool requires observing loss-
topologies of appreciable structure|hence our choice of an
inter-continental set of endpoints. Internet loss topology
characterizations to small sets of random endpoints (from
CAIDA/NLANR logs) rarely yielded rich/interesting struc-
tures. The depicted topology is meant to be illustrative, not
representative. Also, experiments to the selected set of end-
points didn't consistently reveal high losses. Figure 5(right)
was constructed only after integrating consistent inferred loss
topologies viewed at di�erent times.



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 9

compare the inferred and labeled loss trees we obtain
for a given sensitivity parameter c. The logical tree
(shown in Figure 5) is such a reference for c = 0.
Obtaining such a reference for a non-zero sensitivity
parameter is impossible since it requires knowledge of
loss rates on all links of the logical tree. Moreover, loss
rates cannot be assumed stationary for the duration
of a Periscope experiment and may not always be
above the speci�ed sensitivity parameter.

While the logical tree in Figure 5 cannot be used to
directly validate loss trees inferred by Periscope, it
can be used to check whether the loss trees generated
by Periscope are mutually consistent. By mutually
consistent, we mean that it is possible to construct
the logical tree from the inferred loss tree by adding
zero or more links.

We performed 20 experiments using Periscope to
infer and label the loss topology to the seven end-
points of the logical topology in Figure 5. These 20
experiments were conducted at di�erent times. Each
experiment consisted of 100 probing phases with 64-
byte probes. At a probing rate of 5 probes/sec, it
takes Periscope about 4 minutes to complete 100
phases of probing. Notice that this time could be
decreased by reducing the number of phases or by
increasing the probing rate. Indeed, in most exper-
iments, the loss topology tree stabilized within less
than 10 phases|i.e. less than 24 seconds. However,
increasing the probing rate is not desirable because it
can lead to correlated probe packets behavior. This
violates the BP approach assumptions.

Results: The non-stationarity of losses on the various
links in a logical topology makes it unlikely that all of
the potentially lossy links will be observable in a given
experiment at a given time. Thus, one would expect
that the loss topologies inferred by Periscope will be
di�erent when run on the tree in Figure 5 (left). In-
deed, Periscope inferred six di�erent loss topologies.
Over the 20 experiments we conducted, the most fre-
quently inferred loss topology tree is shown in Figure
5 (middle). This tree was inferred 11 times at times
ranging between 3am and 7am EST (consistent with
the fact that the lossy paths were the ones connecting
our server to the hosts in China).

We also constructed the minimal loss tree [4]
spanning all six of the loss topologies inferred by
Periscope when c = 0:01. The resulting tree (which
itself is not one of the trees inferred by Periscope) is
shown in Figure 5 (right). Clearly, that tree is consis-
tent with the logical tree depicted in Figure 5 (left).

B. Bottleneck Bandwidth of Arbitrary Path Segments

We use the term bottleneck bandwidth of a path to re-
fer to the maximum transmission rate that could be
achieved between two hosts at the endpoints of that
path in the absence of any competing traÆc. The
bottleneck bandwidth of a path is limited by the min-
imum link speed along that path. In this section, we
program Periscope to infer the bootlenck bandwidth
along an arbitrary path segment. In particular, given
a path consisting of a sequence of links L1; : : : ; Ln with
base bandwidths b1; : : : ; bn, our goal is to estimate
the bottleneck bandwidth of an arbitrary sequence of
links along that path, i.e. estimate mini�k�j bk, for
arbitrary i and j such that i � j � n. We use the
shorthand bi;j to denote the bottleneck bandwidth in
the interval between links i and j inclusive. The tech-
nique we use to do this inference is called cartouche
probing [15] which we summarize next.

Cartouche Probing: Let L be a path consisting
of a sequence of links L1; : : : ; Ln with base band-
widths b1; : : : ; bn. In order to estimate bi;j , the Car-
touche probing technique requires injecting at L1 ,
using the terminology of section III, the following
probing sequences: (1) [pmfpqgr�1pm] where s(m) =
s(q) � s(p), D(m) = n and h(p) = h(q) = i, (2)
[pi�1mfpi�1qi�1g

r�1pimfpiqig
r�1pi+1m: : : pj�1mfpj

qjg
r�1pjm] where s(pw) and s(qw) are the same for

all w = i � 1; : : : j, s(m) = s(qw) and s(pw) � s(m),
h(pw) = w, h(qw) = w, h(m) = n. The technique
then measure the inter-arrival times of the m probe
packets and use it to infer bi; j. For more details about
the cartouche probing technique refer to [15].

Periscope Code for CP Technique: Figure 6
shows a sample routine, Cartouche Probing(), de-
tailing how we can program the [pmfpqgr�1pm] prob-
ing sequence of the CP technique using Periscope
API. where s(m) = s(q) � s(p), D(m) = n. The
parameters to the Cartouche Probing() routine are
the probed endhost, the value i of h(p) = h(q), the
cartouche size r, the probing parameters to be used,
the probe packet sizes s(p) = s(q) (large size) and
s(m) (small size) and the timeout value.

Experimental Setup: We installed Periscope on
a laptop with a Pentium III processor running Red-
Hat Linux 2.2.14. Four Internet paths connecting
the laboratory to four di�erent universities have been
handpicked for the experiments. These universities
are Georgia Tech in the US, University of British
Columbia in Canada, Ecole Normale Superieure in
France and Hirosaki University in Japan.



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 10

Cartouche_Probing(
u_char *host,
int i,
int r,
group_param_t params,
int large_size,
int small_size,
struct timeval timeout;

)

{

int ctrl_fd;
int group_id;
int flow_id;
probe_packet_t p_packet_p;
probe_packet_t p_packet_q;
probe_packet_t p_packet_m;
probe_structure_t p_structure;
int fd;
fd_set rset;
ssize_t r;

ctrl_fd=PS_open();
group_id=PS_new_group(ctrl_fd,params);
flow_id=PS_register_flow(ctrl_fd,

group_id,
host);

p_packet_p.flow_id=flow_id;
p_packet_p.size=large_size;
p_packet_p.TTL=i;
p_packet_q.flow_id=flow_id;
p_packet_q.size=small_size;
p_packet_q.TTL=i;
p_packet_m.flow_id=flow_id;
p_packet_m.size=small_size;
p_packet_m.TTL=255;
p_structure.probe_packets

=malloc((2*r+2)*sizeof(probe_packet_t));
p_structure.probe_packets[0]=p_packet_p;
p_structure.probe_packets[1]=p_packet_m;
for (int index=1;index<r;index++) {

p_structure.probe_packets[2*index]
=p_packet_p;

p_structure.probe_packets[2*index+1]
=p_packet_q;

}
p_structure.probe_packets[2*r]=p_packet_p;
p_structure.probe_packets[2*r+1]=p_packet_m;
p_structure.n_probe_packets=2*r+2;
PS_register_probe_structure(ctrl_fd,

group_id,
p_structure);

PS_activate_group(ctrl_fd,group_id);

/* Wait for ECHO REPLY messages */
FD_ZERO(&rset);
FD_SET(ctrl_fd,&rset);
for (;;) {
if (

(r=select(fd+1,&rset,NULL,NULL,&timeout))
==0
)
// timeout expired, so exit

else
// read payload details

}
}

Fig. 6. Programming the [pmfpqgr�1pm] probing
sequence of the Cartouche Probing technique using
Periscope API.

In order to provide a preliminary study whether the
results con�rm what the analysis and simulation in
[15] expected, we connected Periscope to the Inter-
net in two distinct locations: once through a 10Mbps
LAN in Boston University Computer Science labora-
tory over and another time over a 56Kbps modem.
Then by using the cartouche probing technique to es-
timate the bottleneck bandwidth over the �rst link,
we know that the correct bandwidth estimates should
be around 10Mbps and 56Kbps respectively.

In all experiments, we use s(p) = 1500 bytes and
s(m) = 60 bytes. Experiments were conducted once
per second until we obtain 100 valid results for a given
path, recalling that packet reordering or packet losses
invalidate an experiment.

Results: Figure 7 shows the histograms we obtained
when using Periscope to estimate the bandwidth es-
timate over the �rst link for the path connecting the
laptop to the four universities both when connected
over the 10Mbps with histogram bin width of 1Mbps
(top) and over the 56Kbps modem with histogram bin
width of 1Kbps (bottom row). In both cases the car-
touche dimension r is 4 and the histogram used has a
bin width of 1Mbps. These preliminary results are in
keeping with our expectations.

VIII. Conclusion

We have presented a Linux API called Periscope

that implements the functionality necessary to de-
�ne, activate and collect measurements for arbitrary
probing structures. Periscope optimizes user/kernel
boundary crossings while providing a 
exible and well
established interface to applications.

By presenting sample code that implements a va-
riety of di�erent probing techniques from the liter-
ature; namely the packet-pair technique, bayesian
probing and cartouche probing; we have shown that
Periscope is easily programmable and is capable of
generating di�erent probing structures.

Periscope has proven to be applicable in real In-
ternet settings. We gave evidence of this applicability
through two di�erent sets of experiments to infer and
label loss topologies and to infer the bottleneck band-
width along arbitrary path segments.

Software Availability: Periscope software is
available for downloading at: http://cs-people.bu.edu/
harfoush/periscope. The web page also includes more
technical details, as well as a Periscope tutorial.



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

%

BW(Mbps)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

%

BW(Mbps)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

%

BW(Mbps)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

%

BW(Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

%

BW(Kbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

%

BW(Kbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

%

BW(Kbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

%

BW(Kbps)

Georgia Tech University of British Columbia Ecole Normale Superieure Hirosaki University

Fig. 7. Histograms of bandwidth estimates over the �rst link connecting Periscope to four universities over a 10Mbps
with histogram bin width of 1Mbps (top) and over a 56Kbps modem with histogram bin width of 1Kbps (bottom).
Cartouche dimension r =4.

References

[1] A. Barbir et al. Known CDN Request-Routing
Mechanisms. http://www.globecom.net/ietf/draft/draft-
cain-cdnp-known-request-routing-01.html, February
2001.

[2] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proceedings of
SOSP 2001, Ban�, Canada, October 2001.

[3] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated
Congestion Management Architecture For Internet Hosts.
In SIGCOMM '99, Cambridge, MA, September 1999.

[4] A. Bestavros, J. Byers, and K. Harfoush. Inference and
Labeling of Metric-Induced Network Topologies. In
INFOCOM'02, New York, NY, June 2002.

[5] J. C. Bolot. End-to-end Packet Delay and Loss Behavior
in the Internet. In SIGCOMM '93, pages 289{298,
September 1993.

[6] R. C�aceres, N. G. DuÆeld, S. B. Moon, and D. Towsley.
Inference of Internal Loss Rates in the MBone. In IEEE
Global Internet (Globecom), Rio de Janeiro, Brazil, 1999.

[7] Robert L. Carter and Mark E. Crovella. Measuring
bottleneck link speed in packet switched networks. In
PERFORMANCE '96, the International Conference on
Performance Theory, Measurement and Evaluation of
Computer and Communication Systems, October 1996.

[8] Y.-H. Chu, S. Rao, and H. Zhang. A Case for
End-System Multicast. In ACM SIGMETRICS '00,
Santa Clara, CA, June 2000.

[9] M. E. Crovella, R. Frangioso, and M. Harchol-Balter.
Connection Scheduling in Web Servers. In Proceedings of
1999 USENIX Symposium on Internet Technologies and
Systems (USITS '99), Boulder, CO, October 1999.

[10] Dionisys: End-System QoS Support for Distributed
Applications.
http://cs-www.bu.edu/fac/richwest/research.html.

[11] Constantinos Dovrolis. Pathrate: Measurement tool for
the capacity and load of internet paths.
http://www.cis.udel.edu/~dovrolis/bwmeter.html.

[12] Allen B. Downey. Clink: a tool for estimating internet
link characteristics.
http://rocky.wellesley.edu/downey/clink/.

[13] N. DuÆeld, F. Lo Presti, V. Paxson, and D. Towsley.
Inferring Link Loss Using Striped Unicast Probes. In
IEEE INFOCOM 2001, April 2001.

[14] K. Harfoush, A. Bestavros, and J. Byers. Robust
Identi�cation of Shared Losses Using End-to-End Unicast
Probes. In 8th International Conference on Network
Protocols (ICNP), Osaka, Japan, November 2000.

[15] Khaled Harfoush, Azer Bestavros, and John Byers.
Measurement of Shared Bottleneck Bandwidth Using
End-to-End Cartouche Probing. Technical Report
BUCS-TR-2000-016, Boston University, Computer
Science Department, July 2001.

[16] IPMA : Internet Performance Measurement and Analysis.
http://www.merit.edu/ipma.

[17] V. Jacobson. Pathchar: A Tool to Infer Characteristics of
Internet Paths. ftp://ftp.ee.lbl.gov/pathchar.

[18] V. Jacobson. traceroute.
ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989.

[19] J. Jannotti, D. Gi�ord, K. Johnson, M. F. Kaashoek, and
Jr. J. O'Toole. Overcast: Reliable Multicasting with an
Overlay Network. In Proceedings of OSDI 2000, San
Diego, CA, October 2000.

[20] J. Kangasharju, J. Roberts, and K. W. Ross. Object
Replication Strategies in Content Distribution Networks.
In Proceedings of WCW'01: Web Caching and Content
Distribution Workshop, Boston, MA, June 2001.

[21] S. Keshav. Congestion Control in Computer Networks.
PhD thesis, University of California at Berkeley,
September 1991.

[22] K. Lai and M. Baker. Measuring Link Bandwidths Using
a Deterministic Model of Packet Delay. In SIGCOMM
'00, Stockholm, August 2000.

[23] K. Lai and M. Baker. Nettimer: A tool for Measuring
Bottleneck Link Bandwidth. In Proceedings of USITS '01,
March 2001.

[24] B. Mah. pchar.



PAM 2002: Harfoush, Bestavros, and Byers, Periscope: An Active Measurement API 12

http://www.employees.org/~bmah/Software/pchar/,
2000.

[25] Mtrace: Tracing multicast path between a source and a
receiver. http://www-itg.lbl.gov/mbone/mtrace.tips.html.

[26] V. Padmanabhan. Optimizing Data Dissemination and
Transport in the Internet. Slides presented at the
BU/NSF Workshop on Internet Measurement,
Instrumentation and Characterization, September 1999.

[27] V. Paxson. End-to-end Routing Behavior in the Internet.
In SIGCOMM '96, Stanford, California, August 1996.

[28] V. Paxson. End-to-end Internet Packet Dynamics. In
SIGCOMM, 1997.

[29] V. Paxson. Measurements and Analysis of End-to-end
Internet Dynamics. PhD thesis, U.C. Berkeley and
Lawrence Berkeley Laboratory, 1997.

[30] QLinux: A QoS enhanced Linux Kernel for Multimedia
Computing. http://lass.cs.umass.edu/software/qlinux/.

[31] P. Radoslavov, R. Govindan, and D. Estrin.
Topology-Informed Internet Replica Placement. In
Proceedings of WCW'01: Web Caching and Content
Distribution Workshop, Boston, MA, June 2001.

[32] S. Ratnasamy and S. McCanne. Inference of multicast
routing trees and bottleneck bandwidths using end-to-end
measurements. In Proceedings of IEEE INFOCOM '99,
pages 353{60, March 1999.

[33] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM'01, San Diego, CA, August 2001.

[34] Maya Yajnik, Sue Moon, Jim Kurose, and Don Towsley.
Measurement and modelling of the temporal dependence
in packet loss. In Proceedings of IEEE INFOCOM '99,
pages 345{52, March 1999.


