US006993587B1

a2 United States Patent

10y Patent No.: US 6,993,587 B1

Basani et al. 45) Date of Patent: Jan. 31, 2006
’

(54) METHOD AND APPARATUS FOR ELECTION 5,898,686 A 4/1999 Virgilecocceevrverennse 3707381
OF GROUP LEADERS IN A DISTRIBUTED 5,920,701 A * 7/1999 Miller et al. 709/228
NETWORK 5,938,732 A * 8/1999 Lim et al. 709/229

6,006,254 A 12/1999 Waters et al. 709/205

75 . Vit : . 6,092,214 A * 7/2000 Quoc et al.ceeeveeeeenen. 714/4

(75) Inventors: E‘gfgnﬁ ﬁiﬁi‘;};ﬂ??:;hﬁ? f\%s)’ 6.594.044 B1* 7/2003 Buchanan ct al. 398/58

(US); Lynne M. Murach, Methuen, FOREIGN PATENT DOCUMENTS
MA (US); Leroy R. Karge, Leominster,
MA (US); Vitaly S. Revsin, Andover, wo WO 99/55042 1011999
MA (US); Azer Bestavros, Wayland, OTHER PUBLICATIONS
MA (US); Mark E. C Ila, Scituat
MA EUng D(flnl;enic Jr(I)j;leR(?;a cuate, Singh, G., “Leader Election in the Presence of Link Fail-
Atkinson,NH (US)) ? ures,” Mar. 1996, IEEE Trans. on Parallel & Distributed
’ Systems, vol. No. 3, pp. 231-236.*
(73) Assignee: Network Appliance Inc., Sunnyvale, (Continued)
CA (US)
Primary Examiner—John Follansbee
(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner—Jungwon Chang
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Brown Rudnick Berlack
U.S.C. 154(b) by 0 days. Isracls LLP; Brian L. Michaelis, Esq.

(21) Appl. No.: 09/544,754 57 ABSTRACT

(22) Filed: Apr. 7, 2000 The present invention provides a system and apparatus for

efficient and reliable, control and distribution of data files in

(51) Int. CL large-scale distributed networks. The members of a group of
GOG6F 15/16 (2006.01) servers in a multicast network elect a group leader whenever

(52) US.Cl oo 709/229; 709/244 a new group leader is required, as when the prior group

(58) Field of Classification Search 709/228 leader become unavailable, as detected by absence of a

709/229, 242, 208, 244: 714/4; 398/58? periodic heartbeat message published by the leader. The

T T ey 359 118 58 election is carried out by a system of voting by each

See apolication file for complete search histor ? candidate whereby each candidate has a priority calculated

PP P ¥ from its configuration, and the server with the highest

(56) References Cited priority is configured to claim the leadership faster than the

U.S. PATENT DOCUMENTS

5355371 A 10/1994
5541927 A 7/1996
5553083 A 9/1996
5634011 A * 5/1997
5675802 A 10/1997
5,699,501 A * 12/1997
5727002 A 3/1998

Auerbach et al. 370/60
Kiristol et al. 370/94.2
Miller ...coooeveviriireneenns 371/32
Auerbach et al. 709/242
Allen et al.ooeeevenees 395/703
Badovinatz et al. 714/4
Miller et al.coeeeenennes 371/32
GROUP LEADER
1S UNKNOWN 703
S

other candidates. As part of the claim, each candidate
multicasts its priority. Each candidate that receives a mul-
ticast claim for leadership from another candidate compares
its own priority against the claimant and only votes for itself
if its own priority is higher. After a preconfigured period of
hearing no other claimants with higher priority, the candi-
date with the highest priority becomes the new leader.

18 Claims, 7 Drawing Sheets

| LC IS LEADER CLAIM MESSAGElﬁ

LLA IS LEADER ALIVE MESSAGE‘ﬁ

RECVED: ONE| RECVED:ONE OR MORE LC
ORMORELC| |genD:;
LC
A
705\(VOTING OPEN] @NCEDING | AM NOT GROUP LEADERJ
RECVED: LC

OR LA. SEND: LC

NOBODY
SENT LC
RECEIVED

—-\

SEND: LA

RECVED:LA ALIVE

[GROUP LEADER]V.IO 4

| KNOW WHO IS
GROUP LEADER

]/702

US 6,993,587 Bl
Page 2

OTHER PUBLICATIONS

Kim et al., “A Leader Election Algorithm in a Distributed
Computing System,” Aug. 1995, Proc. of the 5™ IEEE
Comp. Society Workshop on the Future Trends of Distrib-
uted Computing System, IEEE, pp 481-485.*

Chow et al, “An Optimal Distributed Algorithm for Failure
Driven Leader Election in Bounded-Degree Networks”, Apr.
1992, Proc. of the 3** Workshop on the Future Trends of
Distributed Computing Systems, IEEE, pp 136-141.*
Singh et al, “Electing Good Leaders”, Journal of Parallel and
Distributed Computing, May 1994, pp. 184-201.*
Frederickson Greg, Electing a Leader in a Synchronous
Ring, Journal of the Association for Computing Machinery,
vol. 34, N 1, Jan. 1987, pp. 98-115.*

Deering, S., “Host Extensions for IP Multicasting,” Web
Page Printout: http://www.es.net/pub/rfes/rfc1112.txt pp 1-
15, (Aug. 1989).

K. Miller et al., “StarBurst Multicast File Transfer Protocol
(MFTP) , Specification, "Web Page Printout: http://www.
kashpureff.org/nic/drafts/draft-miller-mftp-spec-02.txt.html,
pp. 1-7 (Aug. 2, 2000).

F5 Networks Inc., “F5 Products Deliver Support and
Enforcement of Internet Policy Management” Web Page
Printout: http://www.f5.com/solutions/whitepapers/
policymanage.html, pp. 1-5 (Feb. 12, 2000).

F5 Networks Inc., “Global Data Management” Web Page
Printout: http://www.f5.com/globalsite/index.html, pp. 1-5
(Feb. 10, 2000).

F5 Networks Inc., “F5 Networks Will Ship global/SITE
Controller for Data Management of Distributed Internet
Servers” Web Page Printout: http://www.f5.com/news/
releases/release 100499 .html, pp. 1-3 (Feb. 11, 2000).
Starburst Software, “Starburst Omnicast” Web Page
Printout: www.starburstsoftware.com.products/omnicast3.
pof pp. 1-4, (Mar. 2000).

Technology Brief, “One-to-Many Content Distribution in a
Campus Environment” Web Page Printout:
starburstsoftware.com (Feb. 12, 2000).

“Inktomi Content Delivery Suite,” Web page Printout of
Dec. 17, 1999: http://www.inktomi.com/products/network/
traffic/tech/cdswhitepaper (7 pages).

* cited by examiner

US 6,993,587 Bl

Sheet 1 of 7

Jan. 31, 2006

U.S. Patent

I Ol SYIAYIS aNIMOVE

SHIAY3S ANIHMOVE
NHJOML3IN VIHVY

g
)e SNLVLS
9 = _E0C
ave ¥3av3T|E BbZ R — EEl £
dNO¥o -7 A &= dNo¥o
a3Loan3 i Q310313
P
pZlL H3IAY3IS et
& NOILNg e :
S3OIAYTS "LWOW INIINOD s 00
403 NOILYNOIINOD- M~~~ ==—-—- M- --===--- =
ADI70d "LSIQLNILNOD * N = — = =
v/ rl N M= DN q
W_On* >W_O.:w0n_mw_ NN ////a M NNNNNNY NN m NN NNNNNN [
— Ny a//z.._ﬂ_ 5= 201
= < —
_m.w - TaNy3INT] s30IANES Ve go.w\r
T asiquajuon | ¢k 0}
_A S3IDINYIAS
S0z JFIOSNOD "¢} hwbpy Jusuod SNLVLS '? ANVINWOD “TOYLINOD <—
LIWOW AOI10d 7 MOT4 INIINOD <—-
Q3Svea HISMONE 81

US 6,993,587 Bl

Sheet 2 of 7

Jan. 31, 2006

U.S. Patent

¢ Old

S30INY3S "LWOW LN3JLNQOD
HO4 NOILVEHNOIANOD »
ADI0d "LSIALNILNQO«
H04 AYOLISOd3d

INIONT
0.-1 3svars | v@/
a 2z

'

20IAYTS LHOJSNYYL HIOVNYI T08LINOD INIIN0D [~ 08
HIOVNYI
) 3svaviva
89— »
g om gy~ NOISSTHANOD e .
: ALI-MNO3S 2y 297 3Svavivd
ONINOISHIA NogenmL | [vATEaLsn 34 . o
3DIAY3S
YIOVNYN/AHOLYIHD LINTWNDISSY DU - S
PY” 439VNVIN TOMLINOD INIINOD

0p”

H3IAY3S NOILLNgid1SId

991

J0INI3S | J o

439901

¥9

gL~

U.S. Patent Jan. 31, 2006 Sheet 3 of 7 US 6,993,587 B1

CCM RETRIEVES TASK - 301
DETAILS AND POLICIES FROM
DATABASE

CCM DETERMINES 303
NECESSARY CONTENT
CHANGES

CCM CREATES FILE OF - 305
NECESSARY ASSIGNMENTS

CCM RETRIEVES CURRENT |-307
GROUP LEADERS, GROUP
MEMBERSHIPS FROM D/B

CCM SENDS ASSIGNMENTS TO |-309
LISTED GROUP LEADERS USING
TREE DISTRIBUTION MECHANISM

GROUP LEADERS FORWARD |- 311
ASSIGNMENTS TO THEIR
MEMBERS

MEMBERS INTERPRET - 313
ASSIGNMENTS AND PERFORM
SERVER UPDATES

STATUS REPORTS COLLECTED |-315
FROM MEMBERS

FIG. 3

US 6,993,587 Bl

Sheet 4 of 7

Jan. 31, 2006

U.S. Patent

\—C8

Yy 9Old
INVYNI TS INYNTT4 | IWYNTTH
NOILYNILS3a NOILYNILSIA{ NOILYNILSIQ
SSIUANOONN| ‘HIONIT |SSIHAWOOINN| Tivadn | ‘HIONIT ‘HIONIT | 3Lvadn
ano ‘135440 ano ano ‘135440 ‘135440 ano
an3 INVYN 3714 NI93g an3 INYN U4 | IWVNTT4 | NID3g
HIawy HIawy Higaiessd |NOISSINYI| Migeiessn
ano ano ano “Y3INMO ano
an3 aweuy|q NIO3d an3 ‘JNVYN ¥Ia NI93g
6
\
a
HSVH N
ano 3 ano ano ano ano ano
JNYN | ¥
NIVHO HSVH ¥3IgNNN 31Is 3
ano vivad IdAL NOILD3S IN3ql QaLSOH | A
/ “
26 X
06

U.S. Patent Jan. 31, 2006 Sheet 5 of 7 US 6,993,587 B1

84
, A .
DATA DATA | COMPRESSED | COMPRESSED
FILEA.jpg | FILEB.pg FILE FILE
(BATCH 1) (BATCH 2)
7 7 7 7
96 98 100a 100b
FIG. 4B
LEADER
G,F;OUUJ’KN%WN 703 LC IS LEADER CLAIM MESSAGED
S

LA IS LEADER ALIVE MESSAGED

RECVED: ONE RECVED:ONE OR MORE LC
ORMORE LC| |geND:
LC 706
\
705\(VOTING OPEN] [CONCEDING | AM NOT GROUP LEADERJ
RECVED: LC‘ NO LAFOR 3

TIMES IN
A ROW

OR LA.SEND: LC
RECVED:LA ALIVE

NOBODY _
SENT LC RECL‘;\ED-
SEND: LA A RECEIVED:
(LA
GROUP LEADER) 70, [|KNOWWHOIS | .0,
IS ME GROUP LEADER

FIG. 5

US 6,993,587 Bl

Sheet 6 of 7

Jan. 31, 2006

U.S. Patent

9509

~n

H43ONVIvE
avon

pioguel]

19

avol

~

I:

-.-
A
Y

\
\

1
Ipiogsumoyy

¥3ONVIvE|

H3ONVYIva
/19 JHOVO |1 avOold
o~ =~ -~
TO00L0Yd JHONVIVE AVOT -
dLIH €+——-
100010¥d LSVILLTON <—

1IN31INOD

L7 o~ J¥3oNvve
. i _ avon
.... \\ - \.W.‘ /
100000 - \\ GlL9
i \ _

uopuo-y

U.S. Patent Jan. 31, 2006 Sheet 7 of 7 US 6,993,587 B1

FIG. 7

US 6,993,587 B1

1

METHOD AND APPARATUS FOR ELECTION
OF GROUP LEADERS IN A DISTRIBUTED
NETWORK

FIELD OF THE INVENTION

This invention is directed towards data communication,
and more particularly towards reliable and efficient distri-
bution of data to large numbers of network locations.

BACKGROUND OF THE INVENTION

Digital content creators are users who utilize workstations
or other computers to create or digitize information in
preparation for publication as “content.” When such content
is to be shared with or published to a number of other
computer users using a wide area network (WAN), such as
the World Wide Web (“the Web”), reliability, latency, secu-
rity, and efficiency become major issues. Reliability refers to
the ability to ensure that the data was received without
debilitating errors. Latency, the measure of how much time
it takes to deliver data, suffers when finite resources become
overloaded, whether in the respective processors, interme-
diate storage or a communications link. Inefficiency may
arise because multiple copies of data have to be retransmit-
ted between the same source(s) and destination(s) due to lost
or garbled messages. As the number of recipient sites grows,
issues of latency and efficiency complicate the architecture.

Inefficient communication protocols for reliable data
exchange amplify problems in real-time systems where
latency directly determines user satisfaction.

Historically, manual or customized operations were the
only solutions available for distributing new or modified
content, as networks expanded and data-distribution needs
changed.

However, such solutions have the disadvantage of not
being flexible enough to handle real-time load balancing.
Temporary outages of system components can also cause
havoc in a statically defined distribution method. Similarly,
manual or customized actions become increasingly labor-
intensive as data files proliferate and the number of servers
increases exponentially, as seen in the recent growth of the
Internet. In particular, the operation of the “Web” requires
massive data management and distribution. Many users
expect instantaneous access, worldwide, to the fastest source
of the best data available at any given moment. This puts a
heavy burden on service providers for better information
control and infrastructure management.

One well known solution to reduce access latency by large
numbers of users is to distribute content to file servers at
numerous remote sites, and then direct user access requests
to those servers. Multiple copies of content must then be
tracked and synchronized in order to provide uniformity and
consistency of data among all users. Many network content
publishers obtain network file server services from a variety
of geographically dispersed service providers. Manual coor-
dination with each service provider for content distribution
increases complexity and creates more room for error and
delay.

To manage the problem of rapid content distribution from
a master copy, several companies have experimented with or
proposed semi-automated systems for streamlining the dis-
tribution process. These solutions are typically targeted at
one of three critical points: “content management;” reliable
and efficient distribution across WANS; or the local replica-
tion and synchronization across multiple servers within a
Local Area Network (LAN). Content management refers to

10

15

20

25

30

35

40

45

50

55

60

65

2

the methods of ensuring that only the necessary data is sent,
that the remote copies are synchronized, and that file trans-
mission is properly compressed and encrypted, as necessary.

One example of a content management system is the
Content Delivery Suite (CDS) product distributed by Ink-
tomi Corporation of Foster City, Calif., as described at
www/inktomi.com/products/network/traffic/tech/cdswhite-
paper. According to the available documentation, CDS man-
agement components determine when data content changes
within file systems on a “staging server,” and then send
updated files to “CDS Agents” on distributed web-servers.
Once the updated files are received at the web servers, the
CDS triggers all web servers to take the updated files “live”
simultaneously. This particular solution suffers from numer-
ous disadvantages. Sending entire files for an update is
relatively inefficient, when only a small amount of data may
have actually changed out of millions of bytes in the file. File
transmission to each remote server originates from a single,
central point, and all remote servers must wait for the others
accessing the same central source to receive and acknowl-
edge the correct data before the new content goes “live.” The
referenced implementation lacks the ability to intelligently
schedule distribution or replication of pertinent content to
different parts of the network according to the user’s needs.

Another example of a system for managing content dis-
tribution is the global/SITE product of F5 Networks, Inc., of
Seattle, Wash., as described at http://www.f5.com/global-
site/index.html. The available documentation indicates that
global/SITE is an additional computer appliance that is
added to a LAN and a central site. The specialized hardware
and software at the central site automatically replicates and
transfers only those files that have changed (i.e., new,
updated, or deleted). Changes to updated files include only
the changed portions, thus reducing the wasted transmission
load. However, disadvantageously, the addition of separate
hardware and software at each site inherently reduces reli-
ability, since there are more components subject to mainte-
nance and potential failure. In fact, the global/SITE system
becomes a single point of failure which could cripple an
entire site if the unit is rendered inoperable, whether acci-
dentally or maliciously. Installation, configuration and main-
tenance of these additional units will also require on-site
support and customized spare parts.

One approach to schedule management is proposed in
U.S. Pat. No. 5,920,701 (“the *701 patent”), issued Jul. 6,
1999. The *701 patent teaches a system in which data
transfer requests and schedules from a content source are
prioritized by a network resource scheduler. Based upon the
available bandwidth and the content priority, a transmission
time and data rate is given to the content source to initiate
transmission. The scheduler system requires input that
includes information about the network bandwidth, or at
least the available bandwidth in the necessary content path.
This has the disadvantage of requiring additional complexity
for determination of network bandwidth at any given
moment. It also requires a method for predicting bandwidth
that will be available at some transmission time in the future.
Furthermore, a content distributor is required to provide a
“requested delivery time deadline,” which complicates con-
tent management by requiring each content distribution
requester to negotiate reasonable transmission times for each
piece of content. This approach is focused entirely on
bandwidth allocation, and fails to address issues of network
dynamics, such as regroupings of the target servers for
load-balancing. Whatever efficiency may have been derived
from the °701 is substantially completely lost when the
entire content must be retransmitted to an additional server,

US 6,993,587 B1

3

making a huge waste of bandwidth for every node in the
multicast path which already received the file.

Each of these alleged management and distribution solu-
tions relies upon file replication and transmission techniques
that remain closely tied to one-on-one file transfers to each
individual server. The problem grows geometrically as the
number of servers increases and multiple copies of selected
files are required at each remote web site.

The ubiquitous Internet Protocol (IP) breaks messages
into packets and transmits each one to a router computer that
forwards each packet toward the destination address in the
packet, according to the router’s present knowledge of the
network. Of course, if two communicating stations are
directly connected to the same network (e.g., a LAN or a
packet-switching network), no router is necessary and the
two stations can communicate directly using IP or any other
protocol recognized by the stations on the network. A “web
farm” or “cluster” is an example of a LAN on which
multiple servers are located. In a cluster, there is typically a
front-end connected to the Internet, and a set of back-end
servers that host content files.

LANS, by their nature, are limited in their ability to span
long distances without resorting to protocol bridges or
tunnels that work across a long-distance, point-to-point link.
Since most LAN protocols were not designed primarily for
Wide Area Networking, they have features that can reduce
reliability and efficiency of the LAN when spanning a WAN.
For example, a station on a LAN can send a multicast IP
packet simultaneously to all or selected other stations on its
LAN segment very efficiently. But when the LAN is con-
nected to an IP router through the Internet to another router
and other LAN segments, the multicast becomes difficult to
manage, and reliability suffers. In particular, most Internet
routers only handle point-to-point, store-and-forward packet
requests and not multicast packet addresses. This puts the
burden on the sender to laboriously transmit a separate copy
to each intended remote recipient, and to obtain a positive
acknowledgement of proper receipt.

One proposed solution, described in U.S. Pat. No. 5,727,
002, issued Mar. 10, 1998, and in U.S. Pat. No. 5,553,083,
issued Sep. 3, 1996, relies upon the limited multicast capa-
bilities of IP to reach large numbers of end-points with
simultaneous transmissions. Messages are broken into
blocks, and blocks into frames. Each frame is multicast and
recipients post rejections for frames not received, which are
then retransmitted to the multicast group until no further
rejections are heard. A disadvantage of the disclosed method
is that it relies upon either a network broadcast of data at the
application layer, or a multicast IP implementation based
upon the standardized RFC 1112 Internet specification.
Broadcast is an extremely inefficient protocol in all but very
limited circumstances, since it requires that each and every
recipient process an incoming message before the recipient
can determine whether or not the data is needed. Even
multicast IP has the disadvantage of being based upon the
unwarranted assumption that the Internet routers will sup-
port the standard multicast feature, which is actually very
rare.

Under limited condition, i.e., where the Internet routers
actually support the IP multicast feature, a packet can be sent
simultaneously to many receivers. Building upon IP multi-
cast, Starburst Software, Inc., of Concord, Mass. (the
assignee of the *002 and *083 patents mentioned above), has
created the Starburst OmniCast product, described at http://
www.starburstsoftware.com/products/omnicast3.pdf and in
a Starburst Technology Brief. As described, the OmniCast
product relies upon the router to replicate and forward the

10

15

20

25

30

35

40

45

50

55

60

65

4

data streams to multiple destinations simultaneously. This
has the disadvantage of not being applicable to most of the
present Internet, or in any private network that does not
implement multicast according to the standard. Alterna-
tively, using a so-called “FanOut” feature, the OmniCast
application itself replicates the packets and forwards them to
multiple FanOut sites which then use local multicast features
for further distribution. Each FanOut server is configured to
accept certain multicast addresses. The FanOut closest to the
source replicates the packets and sends them to a configured
list of addresses using a unicast protocol, and encapsulates
the multicast address for further use by downstream
FanOuts. This solution has the disadvantage of requiring
configuration and maintenance of static lists of servers in
each FanOut unit. It also does not provide any flexibility for
changing which back-end servers correspond to each mul-
ticast address. The central FanOut unit is also burdened with
sequential transmission of the first message to every remote
FanOut unit, using a unicast protocol.

Another disadvantage of existing implementations is that
they fail to deal with much of the dynamic nature of the
Internet, in which servers are reallocated from time to time,
or new servers are added for performance considerations.
Current implementations rely upon manual, error-prone
coordination between groups of personnel who create con-
tent and those who manage the network resources.

Some large-scale distributed networks use processor
group leaders to manage distribution and communication of
data. However, disadvantageously, group leaders can be lost,
such as when the system providing that service is taken
offiine or otherwise becomes unavailable. In one approach to
recovery of a group leader in a distributed computing
environment, described in U.S. Pat. No. 5,699,501, issued
Dec. 16, 1997, a system of servers has a group leader
recovery mechanism in which a new group leader can be
selected from a list of servers, in the order in which
processors join the group. The list is distributed via multicast
or held in a name server, and is accessed whenever a new
group leader is needed. The disadvantage of this approach is
that each server has the same chance of becoming the leader,
even though there may be numerous reasons to make a better
selection.

Another disadvantage of existing systems is that load-
balancing processes or service-level monitors, that may be
operating simultaneous with content distributors, typically
have no way to directly determine whether a particular
server has the most recent version of content. Similarly, in
situations where content is transparently cached in alternate
servers, someone has to remember to update (i.e., purge) the
cache when there are changes to the cache. Most cache
implementations also have no capability for making efficient
updates when changes are small in proportion to the size of
the file containing the changes.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus
for efficient and reliable control and distribution of data files
or portions of files, applications, or other data objects in
large-scale distributed networks. A unique content-manage-
ment front-end provides efficient controls for triggering
distribution of digitized data content to selected groups of a
large number of remote computer servers. Transport-layer
protocols interact with distribution controllers to automati-
cally determine an optimized tree-like distribution sequence
to group leaders selected by network devices at remote sites.
Reliable transfer to clusters is accomplished using a unicast

US 6,993,587 B1

5

protocol in the ordered tree sequence. Once packets arrive at
the remote cluster, local hybrid multicast protocols effi-
ciently and reliably distribute them to the back-end nodes for
interpretation and execution. Positive acknowledgement is
then sent back to the content manager from each cluster, and
the updated content in each remote device autonomously
goes “live” when the content change is locally completed.

According to the present invention content creators
deposit digitized data content on a staging server on the
network, for example via the Internet. The staging server and
distributions servers can be physically separate computers or
could both reside on the same computer. The staging server
is interrogated by a distribution server running a content
management service known as content control manager
(“CCM™), according to configurable policies (such as sched-
uled updates, events, backups). A browser-based policy
management system interacts with the distribution server to
establish content management service configurations and
content distribution policies. Scheduled content transactions
(such as updates, synchronization, replications, backups,
restorations, or rollback) are monitored by a scheduler to
avoid server conflicts and to minimize network congestion.
The scheduler detects scheduled job conflicts and notifies
the user to reschedule a job. When a content transaction (or
“job”) is initiated, a set of necessary directory and file
changes are determined, according to configurable policies,
along with the commensurate steps needed to carry out the
job, known as “assignments.”

The content control manager issues assignments to system
components for creating or deleting remote server directo-
ries and files, and for distributing changed content from the
staging server. Remote servers are administratively divided
into “content groups.” Content Groups are logical groupings
of remote servers that will participate in or receive the
content distribution, either within a LAN or across WANs.
Assignments, which comprise assignment commands and
the content data, are then forwarded to dynamically config-
ured cluster Group Leaders (“GLs”). The Group Leader is
responsible for overseeing the distribution of the assignment
to the remote or BackEnd Servers (“BESs”) that are in the
Content Group within the GLs network segment. A compo-
nent on the BES receives and processes the assignment,
reporting success or failure back to the Group Leader. The
Group Leaders each report the status of the assignment for
all of their corresponding BESs to the CCM. The CCM
reports the assignment status back to the database and
optionally logs the status to a log file. The status can be
viewed through the browser-based User Interface. Com-
pleted assignments are reported directly to the database,
along with the completion status. Failed assignments are
rescheduled (or cancelled) according to the current database
policies for the corresponding content.

In further accord with the invention, an assignment mes-
sage contains instructions for creating, moving/copying,
removing, or modifying directories or file content on remote
servers, including parameters for any required compression
and encryption. The assignment itself, or any of its compo-
nents, can be encrypted prior to transmission to provide for
enhanced security, including privacy or integrity, or both.
Assignments are dispatched according to a sorted list of
group leaders, based on factors such as nearness, processor
speed, reliability, or CPU Usage, and according to the
content groupings. For a small number of GLs, each GL can
be individually and directly addressed by the CCM. How-
ever, as the number of network segments grows, a store-
and-forward approach becomes much more -efficient.
According to a distribution mechanism for storing and

10

15

20

25

30

35

40

45

50

55

60

65

6

forwarding content among group leaders, the first selected
group leader receives the first assignment from the content
control manager (CCM). Before or while carrying out its
own assignment, the first group leader (GL) requests instruc-
tions for the next GL on the list from the CCM and forwards
that assignment to the next GL. Each GL in turn handles its
own assignment for its cluster, reports its status, requests the
next GL’s assignment from the CCM, and forwards the
assignment to the next GL. When all the GLs have received
the assignment, the GLs distribute the assignment to their
corresponding BESs. This mechanism permits highly effi-
cient and robust distribution of assignments and data content
from the CCM to each required GL using a store-and-
forward tree structure.

In further accord with a mechanism for distributing con-
tent to dynamically elected group leaders, a dynamic tree
structure is maintained by the system based upon real-time
nominations of GLs and their respective registration of
group members within each cluster, reported to and pro-
cessed by the CCM. The members of a group elect a group
leader according to real-time and administration selection
criteria. The elected GL then reports its registered group
membership and performance parameters to the CCM. The
CCM processes these reports and derives an optimally
sorted list of GLs for distribution of assignments. The list of
clusters for distribution of assignments is arranged in an
order according to dynamic network factors such as loca-
tion. There is a user interface mechanism to allow a system
administrator to override (or configure) this election and
arrangement behavior and to artificially define a static
behavior.

In further accord with the invention, once a GL has
received an assignment destined for its own members, and
no further GLs require distribution of the assignment, each
GL uses a reliable Multicast Content Transport Protocol
(MCTP) to distribute the assignment to each of the BESs in
the addressed group. Once the BES receives the assignment,
a Content Interpreter (CI) parses the assignment and carries
out the distribution commands within each BES. The GL
then obtains individual status reports from each group
member and sends a group distribution report back to the
CCM. The GL is also responsible for notifying the CCM
when a member joins or leaves the group.

Advantages of the present invention include provision of
a system and method for efficient transmission of data files.
The automated system is highly scalable and avoids the
unreliability, latency and inefficiencies of implementations
heretofore known. Single points of failure are largely elimi-
nated in the method and apparatus according to the invention
in which a plurality of group leaders are elected for distrib-
uting content to a plurality of back-end content servers.
Assignments are created and undertaken in a manner that
facilitates optimal and intelligent distribution or replication
of content to different parts of a network, without unneces-
sarily sending unchanged data.

Similarly, the directed assignment distribution mecha-
nism decreases network load and wasted bandwidth caused
by multicasting messages to uninvolved servers. A dynamic
tree structure alleviates the administrative costs of manually
detecting network server allocations in order to properly
address updates.

The content distribution mechanism according to the
invention permits highly efficient and robust distribution of
assignments and data content from the CCM to each
required GL using the store-and-forward tree structure.
Dynamic reconfiguration of the content distribution mecha-
nism improves overall system performance by automatically

US 6,993,587 B1

7

selecting the best available resources to carry out the nec-
essary content distribution tasks. The inventive mechanism
is freed from reliance upon any features of IP multicast in
Internet routers without sacrificing scalability. The inventive
method and apparatus using standard point-to-point com-
munication protocols also avoids potential problems with
non-uniform multicast implementations in the WAN. Con-
tent distribution via store-and-forward through a dynamic
tree structure according to the invention has the advantage of
separating the time-critical process of directed content dis-
tribution from the bulk of the network overhead generated
by dynamic reconfiguration. Grouping remote servers as
content targets according to content-type and administrative
inputs provides the advantage of eliminating manual con-
figuration and reconfiguration efforts and the occurrence of
configuration-related errors in a dynamic network. The
ability to carry out the content distribution on standard
server hardware, using standard network interface software,
permits substantial savings in capital costs, configuration,
and maintenance that would be required of specialized
hardware.

Furthermore, content distribution management is freed of
much of the overhead related to reconfiguration of firewalls
at each remote site. Selected message encryption and auto-
mated content compression further increase distribution
security and efficiency. Scheduler software implemented in
the apparatus and method according to the invention reduces
unnecessary conflicts in distribution timing. The scheduler
also provides significant improvements in synchronization
of content received by groups of remote servers. Use of a
light-weight, yet robust multicast protocol in the final LAN
segment maximizes the efficiency in a web farm where
multiple servers can simultaneously receive the same con-
tent updates without having to individually transmit a sepa-
rate copy to each one sequentially. Back-end reporting to the
central content control manager ensures a high degree of
synchronization among all targeted servers, network-wide,
without requiring that any individual back-end server wait
for signals from any other back-end server. Graphical user
interface to the content distribution manager simplifies
operations by reducing repetitive and error-prone manual
steps. The automatic discovery feature of the invention also
serves to minimize configuration and management efforts by
performing periodic updates to the lists of network segments
and their corresponding BESs through communication
between the GLs and the CCM. The invention also dovetails
with existing performance-oriented products so that service-
level reporting can be generated. The content mover can
interface with other load-balancing products to provide
information about new or removed resources without requir-
ing labor-intensive and error-prone manual reconfigurations.
Similarly, the Content Mover can interface with the load-
balancing products to instruct the load balancers to remove
a BES or a cache from their rotation lists when a BES failed
to receive or successfully process and assignment. This
allows re-direction of load-balanced requests to only those
servers that have the most valid and up-to-date content.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the
present invention will be more fully understood from the
following detailed description of illustrative embodiments,
taken in conjunction with the accompanying drawings in
which:

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 1 is a block diagrammatic overview of a system
architecture according to the invention, in an Internet con-
text;

FIG. 2 is a block diagram of modules that comprise a
distribution server in the architecture of FIG. 1;

FIG. 3 is a flow diagrammatic overview of the method of
distributing content according to the invention;

FIGS. 4A and 4B are diagrams of an illustrative embodi-
ment of a distribution assignment data structure according to
the invention;

FIG. § is a diagram of an illustrative finite state machine
for group leader elections according to the invention; and

FIG. 6 is a system overview of a tree distribution system
in an illustrative embodiment of the invention;

FIG. 7 is a diagram for illustration of a store-and-forward
distribution tree according to the invention.

DETAILED DESCRIPTION

The architecture of the present invention, an illustrative
embodiment of which is diagramed in FIG. 1, addresses the
need for reliable and efficient distribution of digitized data
from a single source to large numbers of dynamically
networked recipients. Remote customers or content creators
of the distribution method and apparatus use their computers
10 to submit their final content changes to a specified staging
server 14. A distribution server 16, having content mover
and management functions 18, interacts with servers 26, 28
constituting elected group leaders 30 for distributing content
or content changes to distribution agents 32, 34 in each
cluster 24. Once the content or change distribution is com-
plete, users can begin to access the updated content from any
of the servers 26, 28. User access to content on a given
server can be efficiently managed, according to service level
agreements, by a completely independent load-balancing
method and apparatus, such as are known in the art.

Different types and sizes of digitized information files
such as text, photos, videos, voice, or interactive games can
be more efficiently managed and more efficiently accessed
by content users of the Internet if the content is intelligently
placed on a large number of distributed sites. Two distrib-
uted sites 24 A, 24B are illustrated, each containing a number
of file servers 26, 28.

Digital content creators use workstations or other com-
puters 10 to create or digitize information in preparation for
publication as “content,” such as on the World Wide Web.
Content creators may be for example publishers of volumi-
nous periodicals, or real-time information feeds such as
stock quotations or auction catalog offerings. The final
content, generally in the form of completely new content or
changed content, is moved to the staging server 14 by any
known and convenient information transfer means, whether
automatic or manual, but preferably over a network, such as
the Internet 12. The content creators may then test and verify
that the content is complete and works properly on the
staging server 14 prior to initiating live access by other users
in the Internet. Content is then turned over to the centralized
Content Control Manager (CCM) 18, running on the distri-
bution server 16.

The Content Manager according to the invention has a
distributed architecture. The major components of the archi-
tecture are a front-end administrator interface 20, the Con-
tent Control Manager 18, a database 22 for storing policies
and configuration information, group leaders 30 for each
network segment 24 of recipient backend servers 26, 28, and
a distribution agent 32, 34 on each backend server. The
front-end administrator interface 20 is a browser based

US 6,993,587 B1

9

interface effecting the functionality described in detail here-
inafter, and accessible to an administrator over the Internet,
or directly on a LAN 12c¢.

The Content Control Manager 18 in this illustrative
embodiment is resident on the same physical machine as the
staging server 14, however it should be appreciated that it
may operate on a separate server (not shown) connected via
a network such as a LAN or the Internet 12. It should also
be appreciated that any number of machines on the network
can be designated as “staging servers” as may be necessary
(for example) to service different types of requests, or for
different customers, or from different geographic areas.

Administrative inputs for the content mover 18 are
obtained from system administrators at the policy manage-
ment consoles using the administrative interface 20 and
stored in the database 22 accessible to the distribution server.
Using the management consoles, the system administrators
can configure, schedule and monitor various content update
jobs and define content groups. The Content Update job is
defined as the collection of information that defines what
content is to be updated, where it is to be distributed to, when
and how often it is distributed, and what policies/rules apply.
Content groups are logical groupings of BESs that are
serving the same content that will participate in a content
update, and are assigned according to file types, ownership,
locations, or service levels being offered to subscribers or to
users. A content mover assignment comprises all of the
necessary instructions to carry out one of the following
actions for every relevant backend server: publish, replicate,
restore, synchronize, rollback, switch, remove content or
publish “hot” content. Designation of “Hot” content is
determined through a load-balancer interface whereby the
Content Mover is instructed to distribute “flash” (heavily
demanded content) to a specified number of BESs. The
externally defined load-balancing rules can also be used to
trigger content updates, using the content mover, depending
upon other externally defined rules determined by the needs
of load balancing. In addition, the content mover will handle
aborts, file checkpoints, restorations and reconfiguration of
content groups of backend servers. The file checkpoints
provide a mechanism to create and manage the version of a
complete content roll-out. The invention allows the check-
points to be saved and restored, as further described below.

The database 22 is a centralized repository for storing
configuration information, policies, job information, status
logs, snapshots and checkpoints. Examples of information
that would be stored in the database include what jobs need
to be run, what servers will receive the content update, what
options have been selected for encryption and compression
and what time a job normally runs. To simplify content
synchronization, the database also keeps a history log of
each assignment run.

The content control manager (CCM) 40, as illustrated in
FIG. 2, is the heart of the content mover system. The CCM
in this illustrative embodiment resides on the same machine
as the distribution server 16. The CCM oversees the com-
plete process of distributing content from the distribution
server to the specified group leaders and monitors further
distribution to the BESs. A scheduler 60 notifies the CCM
when a job is ready to be run. Scheduled content transactions
(such as updates, synchronization, replications, backups,
restorations, or rollback) are monitored by the scheduler to
avoid server conflicts and to minimize network congestion.
Conflicting jobs are queued or cancelled according to
administrative inputs to the control database and the console
is notified of schedule conflicts. The scheduler is triggered
according to events that are stored in the database. The

10

15

20

25

30

35

40

45

50

55

60

65

10

scheduler will, for example, determine whether or not to
reschedule the job, if it fails, based on the policy settings in
the database.

The Scheduler queries the database looking for assign-
ments that are ready to run. It detects a job that is ready to
run by comparing the start time of the assignment to the
current time. If the start time is greater than or equal to the
current time and has a status of “idle”, which means that it
is waiting to run, the Scheduler checks to see if any conflicts
exists which would preclude the assignment from running
properly. If there are no conflicts, the Scheduler sends the
assignment to the CCM which, in turn, runs the assignment.

A runtime conflict occurs when a job in progress is
distributing to a hosted site on a backend server and a newly
detected job needs to distribute to the same hosted site on the
same backend server. The Scheduler can detect these con-
flicts by exploiting the relationship it maintains between
content groups, hosted sites, and jobs. A job distributes
content to a content group, for example. A content group is
comprised of a set of BESs that belong to the same hosted
site. Therefore, there is a relationship between a job, a hosted
site, and all the BESs participating in a job.

To detect a runtime conflict, the Scheduler first determines
all the hosted sites to which all running jobs are presently
distributing. If the hosted site of the pending job is different
from those currently listed as busy, there is no conflict. If the
hosted site is the same as a busy site, the Scheduler builds
a list of all the BESs participating in each running job and
compares this list to the list of BESs to which the pending
job will distribute. If there are any similar BESs, then the
Scheduler has successfully found a conflict. As mentioned
earlier, if there are no conflicts, the Scheduler sends the
assignment to the CCM which, in turn, runs the assignment.

The CCM then communicates with other management
services to obtain information about the task details and
policy settings of the job. Job information can be repeated on
a scheduled basis without having to modify the task details
and policies for each instance of the job. The information
will include which servers are to be updated (i.e., “content
groups”), the source location of the content to be updated,
and the rules, policies and options to be enforced. The source
location comprises the directory names to include or
exclude, and file types to include in the update. The CCM
then determines what files have been changed, how much
disk space is required, and the exact commands that each
server must execute to perform the changes. The CCM also
determines if there are enough backend servers 26, 28
capable of doing the update (a “quorum”) and will defer or
cancel the update if the required quorum is not met.

Similarly, the CCM handles job requests for content
synchronization and replication, and enforces the adminis-
trative policies for file compression 46, encryption for
transport security 50, and version control 48. Security
includes, for example, features necessary to encrypt and
compute hash checksums for a block of data. Encryption
provides data privacy and hash provides for delivery integ-
rity. The entire assignment file, or an updated file component
of an assignment can be hashed and encrypted according to
user policies and implemented in the CCM, GLs, and BESs,
by means that are known in the art, such as MD5 or SHA1
hash and a symmetric key cipher such as Data Encryption
Standard (DES). File compression can be applied to the
entire assignment or selected file components, according to
user policies, and implemented by standard means.

Version control 48 in the CCM has three aspects: check-
point, snapshot, and shadow. A snapshot is made of the
assignment details during a content update and is used for

US 6,993,587 B1

11

synchronizing BESs that did not receive the assignment. The
“shadow” copy is a complete, exact replica of the content
that exists on the live web-server.

A checkpoint copy is defined as a complete ‘safe’ copy of
a site’s content at a particular point in time. The creation of
a checkpoint copy will be initiated from the management
console. Typically, the system administrator will create a
checkpoint copy after a major content update has been
distributed and verified. The number of checkpoint copies
that are maintained by the content distributor services will
be a configurable option. The checkpoint copy will be used
to restore a site’s content back to a previous ‘safe’ version.
The process of restoring the site to a checkpoint copy will be
initiated from the management console. For example, the
system administrator will select a checkpoint copy to restore
and press a button to initiate the restoration. In addition to
the checkpoint(s), the Content Control Manager will main-
tain a snapshot of all the content update assignments that
occur after a checkpoint copy is created. The Content
Control Manager will automatically create the SnapShot and
update the shadow copy at the end of every successful
Content update task. A snapshot consists of: content assign-
ment number (assigned by the Content Control Manager),
the content job identification number, a time stamp, and the
assignment details. A snapshot does not contain the actual
file content.

Generally, the method of distributing content according to
the invention is illustrated in FIG. 3 which describe a typical
“publish” job. After the scheduler awakens the CCM to
initiate a task, the CCM retrieves task details 301 and
policies from the database. As a further step in content
distribution, the CCM determines which content has
changed 303, using a delta function described in further
detail below. Alternatively, the CCM can automatically
detect changes on the designated staging server and distrib-
ute the changed content. Depending upon the file changes or
other distribution actions necessary, the CCM creates a file
305 of the necessary assignments, as further described
below. The CCM then retrieves a current list of Group
Leaders 307, and distributes the assignments 309 to the
Group Leaders, and from one Group Leader to the next, as
determined by the method detailed herein. Group Leaders
each ultimately receive assignments destined for members
of their own group, and they forward the assignments 311 to
the members of their group participating in the update. Each
group member receiving an assignment then interprets the
assignment 313 and carries out the actions in the assignment
updating its host server. Each group leader then collects the
completion status reports 315 from each of the members and
relays a consolidated report to the CCM. Each of these steps
is discussed in further detail below.

The sequence of events described above and shown in
FIG. 3 is for a typical Publish-type assignment. Other
assignment types such as Synchronize, Replicate, Restore,
and Remove content perform the same sequence of events
with certain operational details varying primarily in step
303. For example, a Replicate-type assignment retrieves the
task details, policies, name of the host site and the location
of the shadow copy from the database 301. As the next step
in the replicate process, the CCM invokes the compression
module 46 to compress the entire shadow copy contents. The
remaining steps for a Replicate-type assignment are the
same as shown in FIG. 3.

The CCM will also be awakened by the scheduler to
perform jobs such as CreateCheckPoint that do not result in
the CCM creating and distributing an assignment file. When
the CCM is awakened to perform a CreateCheckPoint job,

10

15

20

25

30

35

40

45

50

55

60

65

12

the CCM retrieves the task details and policies, name of the
host site and the location of the shadow copy from the
database 301. As the next step in this process, the CCM
invokes the compression module 46 to compress the entire
shadow copy contents. The CCM then completes this pro-
cess by invoking the Database API 62 to store the name and
location of the CheckPoint file.

The ability to compress files prior to distributing the
content will be a configurable option. The Ul will provide
the ability for the system administrator to indicate what
types of files should be compressed. For example, all
.HTML file are to be compressed, and all .GIF files will not
be compressed. The de-compression of the file content will
occur on every backend server during the process of execut-
ing the content assignment.

As part of a content update job, the CCM invokes a file
list/delta function 42 that determines the files that have
changed on the staging server 14 and that need to be pushed
out to the appropriate backend servers. Lists of files at a
specified directory path on the staging server will be col-
lected and compared against lists of files/directories at a path
known as the shadow copy on the distribution server 16. The
CCM invokes a versioning function 48 that maintains the
shadow copy for every hosted site as described above.
Continuing with the delta function, the two lists of files and
directories are compared for differences such as new or
deleted file or directory names. Files that are in both lists are
then checked to determine when the files were last changed,
and a list of changed files is created. The list of changed files
is then fed to a delta table builder which identifies the actual
bytes changed in the changed file. Any number of file
comparison utilities can be used to produce the list of
changes to a file, including the standard Unix commands diff
and cmp, or WinDiff, or Rsync. Ultimately, a file list/delta
table is built, containing a list of changed bytes and their
offset locations within the corresponding changed file. This
feature results in transmission and distribution of only the
changed bytes of data, and offset values. The advantage is a
large reduction in transmission time, making the network
more efficient.

The CCM contains an assignment creator and manager 44
which responds to scheduler job requests to initiate a dis-
tribution job. An “assignment™ is a sequence of steps which,
when executed, will result in a content transaction being
applied on the addressed backend servers. The number of
assignments necessary to carry out a job is determined by the
size of the content update. An assignment is delivered to a
set of GLs and then to a distribution agent or process 32
(FIG. 1) on a backend server where it is parsed to determine
what actions to take in furtherance of the job at hand.

To create an assignment, a set of primitives defined by the
content mover must be compiled as necessary to carry out
the job. For example, to publish a new directory full of files,
each destination server’s operating system will need to be
instructed to create a directory, create each new file name,
set the access permissions, and store the contents of each
new file from a designated source file. In addition, each file
may be compressed or encrypted, or both, either before or
after transmission. Similarly, for a content update, a named
file must be opened and rewritten with the delta file content,
at a specified offset from a specified source file. All data to
be written at a server is attached to the assignment in a data
file. An assignment thus comprises a set of command
primitives, parameters, and an associated data file.

A sample assignment command buffer structure 82 is
illustrated in FIG. 4A. The assignment data structure gen-
erally includes a header 90, a body 92, and a trailer 94. This

US 6,993,587 B1

13

is generally the case however an Assignment may consist of
just a header, for example a “commit” assignment. An
assignment may also just consist of a header and a body. The
header 90 contains administrative data such as the assign-
ment serial number, size, type, and hash (checksum) of the
corresponding data file, if any. The body 92 of the assign-
ment command buffer contains the set of commands (zero or
more) that will be executed in the server, along with the
necessary parameters, in the order in which the commands
should be executed on the server. The trailer 96 contains a
hash of the assignment command sequence.

An assignment data file 84, associated with each assign-
ment command buffer 82 having commands requiring addi-
tional data, is shown in FIG. 4B. The assignment data file
contains the file content corresponding to each assignment
command in the command buffer having a data input argu-
ment. As illustrated, the sample data file may contain
uncompressed data 96, 98 for multiple destination files, or
compressed data 100A, 100B.

As an example of creating an assignment to carry out a
content update, the CCM first generates a unique sequence
number for the new assignment, and opens a new buffer (or
file) to hold the commands and data. The basic commands
are largely dictated by the available functionality of the
Content Mover. The CCM obtains the file list/delta table and
adds commands to create any new directories as necessary.
The content itself is then assessed to determine which
portions may be non-compressible, compressible, compress-
ible deltas, or non-compressible deltas, and appropriate
commands and corresponding data files are added to the
buffer. The types of files that are deemed non-compressible
are specified by the administrator at the policy management
console 20. The CCM then calculates the space that will be
required on the server to carry out the assignment. In an
illustrative embodiment, an assignment can be up to 4
Gbytes of commands and data. The assignment is then
marked as “ready” and queued for delivery by the CCM
transport service 80.

The transport service 80 operates in four phases: discov-
ery, global distribution, local distribution, and status report-
ing. During discovery mode, information is collected from
the network elements regarding the connectivity and abili-
ties of the group leaders and their corresponding backend
servers. Discovery mode is a continuous process and a given
content move is based upon the latest network “discovered”.
Discovery begins at the network segment level whereby a
group leader is elected by the servers in each cluster. The
group leaders are then arranged into an appropriate tree
structure by the CCM, and all of the backend servers are
arranged into their administratively determined content
groups. A content group is a set of backend servers that
receives the same content, e.g., by file types, ownership,
locations or service level being offered to the subscribers or
to the users.

Dynamic system discovery of the content mover system at
the remote segment level provides the ability to automati-
cally handle server outages or network reconfigurations. For
example, if there are five backend servers in a cluster at a
site, one or more could be out of service or occupied for
functions unrelated to outward content distribution (e.g.
dedicated intranet offline testing). As load-balancing and
service level imperatives are periodically addressed (per-
haps automatically), the number of available servers at a
given site can increase or decrease. The content mover
system requires a designation of a group leader at each
network segment (i.e., cluster) to handle the store-and-
forward to other sites, to handle local distribution of content

10

15

20

25

30

35

40

45

50

55

60

65

14

to the other backend servers, and to provide site reports back
to the CCM. A group leader may be pre-assigned for
administrative purposes, or it may be dynamically chosen.
Such a dynamic designation is carried out automatically
through a constantly running process known as “election,”
detailed as follows.

Each server within a local cluster that is configured to be
capable of being a group leader participates in a continuous
voting scheme. There may be a list of pre-assigned leaders,
or each configured server can be allowed to participate in the
voting. The current GL notifies each member in the group
with a periodic, non-connection, multicast, User Datagram
Protocol (UDP) message, “Leader Alive” (LA), on an agreed
“Control Channel,” which is distinct from transactions using
the agreed “Data Channel.” The Control Channel is a
Multicast IP and port number combination that all Network
segment members listen to. The GL can instruct all members
to change their control channel. The Data Channel is a
Multicast IP address and port combination that members of
Content Group are instructed to listen to. Each GL keeps a
list of “Content Group™ members, as configured in the CCM.
Each Content Group member joins a specific Data Channel
(ie., transmits and receives controls on the Channel). The
GL sends assignments to the Data Channel corresponding to
its list of Data Channels for a Content Group.

If any server fails to observe the LA messages for a
configurable period, then such a server initiates a new
election. In its simplest form, the first server to correctly
notice the leader is dead and to claim leadership, via an
issued “Leader claim” message, becomes the new leader. If
no other server sends a Leader claim message (LC) to the
group within a preset time, then the vote is over, and the new
leader sends its own LA messages to the group. However,
each GL candidate may have different priorities, i.c., one
may be administratively deemed preferable over another.
Where multiple servers determine that the LA messages
have stopped, each may attempt to send a Leader claim (LC)
message before receiving an LC message from any other
candidate, and a finite state mechanism is required for
resolving these conditions deterministically.

This general process can be diagramed as shown in FIG.
5 for the operations defining the five separate states of each
participating server: GL known, GL unknown, GL is me,
voting open, or conceding to another candidate. Voting is
done by sending an L.C message, with a priority claim, and
at an interval determined by how strong a claim the candi-
date has on becoming the GL. For example, a recently
deposed GL may have the best claim and send the LC
message faster than any other candidate could possibly send.
This might be the case where a GL was only temporarily too
busy to send an LA message, or a server missed three LAs,
or the LAN was too busy to allow transmission. An illus-
trative embodiment uses 5 seconds as the minimum time.
Other useful selection criteria include: the number of mem-
bers the former GL. knows about, the candidate’s computing,
storage, and network resources available at the server, how
reliable the server has been, and the amount of recent
content a server has acquired (i.e., a newcomer may need to
reserve resources for getting its content updated). An initial
LC period can also be arbitrarily assigned to be any number
larger than the minimum time for the current GL to reclaim
an inadvertently lost GL status. In an illustrative embodi-
ment, this value is set to 10 seconds.

As shown in FIG. 5, the normal state of GL known 702
terminates when no LA is heard, and leads to the GL
unknown state 703. If an LC is heard before sending an L.C,
then the concession state 706 is entered, pending an LA from

US 6,993,587 B1

15
the new leader, at which point GL is known 702. On the
other hand, if GL is unknown 703, and the server is first to
send an LC, then the state is voting open 705, including a
configurable timeout period, for example, in the range of 10
to 15 seconds. Transition from this state depends only on
whether another LC is received or not during the timeout. If
not, then GL is me 704, and an LA is sent. But if another LC
is heard during voting open 705 period, then GL is again
unknown 703. Even if the server sends LA, another server
could also send LA or LC. Rather than have a battle of LA,
the server in GL is me 704 sends an L.C and moves back into
voting is open 705 and again waits to hear another LC.
Again, if another L.C is heard, then GL is unknown 703, and
if no LC is heard in the open 705 timeout period, then the
machine enters the GL is me state 704 again, and begin
sending periodic LA messages.

Once the GL is elected, i.e., there are no more LC
messages in the cluster, the new GL expects a new regis-
tration message from each member of the group. A server
registration message includes a server’s IP address, name,
and other information. However, given the possible trans-
mission collisions in the LAN segment, some registration
messages may not be initially received by the GL. The GL
resolves this by multicasting a report on the control channel
of all the servers it believes are registered. This report is sent
after an initial delay of approximately 3—5 seconds after the
last received report. Any server wanting to register but
failing to find its name on the multicast GL report, waits a
short, randomly determined period and again sends a reg-
istration request. In an illustrative embodiment, the interval
is comprised of a random element of up to 1 second. This
registration message could also have been lost by collision,
so after a configurable time out period, the GL retransmits
the (updated) report and again waits to hear more registra-
tions. The registration process eventually stabilizes with no
new registrations omitted.

The GL now has a complete list of all servers participating
in content distribution within that network segment or
cluster. The GL reports this information, along with its own
IP address, location (e.g., time zone) and other information,
such as Network Segment name/id to the CCM. The CCM
updates the database used for tracking network status, and
updates the list of members that are available to participate
in the content groups. The list of GLs and their constituent
backend servers is now ready for global distribution of
content.

Given a large list of GLs, having different numbers of
servers, and located in different places, an essential element
for efficient distribution is to create an ordered list of GLs
necessary for service to each content group. Thus, one list
might quickly move current U.S. stock market data updates,
where another list might be used for moving daily wholesale
availability updates to catalog servers. Jobs using each type
of list can overlap and assignment conflicts can be resolved
in the distribution scheduler.

The content mover system adopts a basic tree-structure
for global distribution, where a first set of GLs is expected
to propagate information to a number of other GLs. Of
course, a simple star is a “tree” in which all GLs are served
directly from the CCM, and this may be appropriate where
only a small number of GLs are needed for the job. The more
interesting problem is where there are literally thousands of
servers, spread over hundreds of different far-flung sites, all
needing the same instantaneous updates. During the global
distribution phase, the CCM delivers the assignments to the
group leaders using a reliable point-to-point protocol such as
FTP, or Hypertext Transport Protocol (HTTP). Because the

10

15

20

25

30

35

40

45

50

55

60

65

16

TCP/IP protocol stack is part of nearly all popular operating
systems, initial development is simplified by using protocols
based upon TCP/IP. The group leaders then further distribute
the assignments to other group leaders using the store-and-
forward method described below.

The CCM will construct a list of the GLs that have
reported in the most recent phase of discovery. The GLs will
report information to the CCM such as their specific IP
address, number of members registered in the group IP
addresses of the BESs, free disk space, CPU power, and
number of network connections. The list of GLs will be
sorted and ordered according to location, performance and
distance parameters, as well as speed and reliability of the
network connection to the GL. In an illustrative embodi-
ment, the GL list is sorted according to the CPU power
(fastest first) and the location, such as time-zone or other
physical location indicator. There is a GUI mechanism to
allow a system administrator to override (or configure) this
behavior and artificially define a static behavior for organi-
zation of the distribution sequence. It should be apparent that
GLs can be identified by their IP addresses or by another
naming convention which maps to the corresponding IP
address of the GL, such as “Boston,” “London”. The system
administrator will be able to enter and modify the name of
the network segment that the GL is in. If the GL in the
network segment changes, the network segment name
remains the same.

Store-and-forward requires that GLs share the work in
distributing assignments (commands and data) to the more
“remote” sites, i.e., further down the tree. As shown in FIG.
6, the CCM is at the root 601 of a distribution tree comprised
of a plurality of GLs 603, 605, at varying distances from the
root 601. “Distance” is measured as the number of store and
forward steps it takes to move an assignment from the CCM
to a GL. Each GL at a first defined tree distance from the
root, e.g., 603A, 603B, 603C, are required to forward
assignments further along the tree to each GL at a further
tree distance from the root, e.g., 605A, 605B, 605C. In a
larger tree, additional limbs are added as necessary to reach
each GL efflciently.

Since the nature of IP is to send independent packets for
routing to their destinations by the best available route, as
determined by the routers, certain assumptions can be made
regarding the average “distance” at any given time. A viable
distance-spanning tree can be derived for efficiently distrib-
uting assignments to any combination of remote GLs that
supervise the distribution to the targeted backend servers.

The CCM constructs a tree using the sorted list of GLs.
Each GL is responsible for distributing an assignment to
other GLs first and later to its own members. Assignments
are sent from the CCM to a GL or from one GL to another
using a reliable point-to-point protocol 609, such as HTTP.

To initiate a distribution, the CCM sends a notification
message to the first GL in the list that an assignment is to be
obtained from the CCM. A notification message includes the
address of a server from which the GL is to obtain a copy of
the assignment and the address of the GL to which the
notification should be forwarded. Each GL receives notifi-
cation from the CCM, or from another GL. The GL then gets
a copy of the assignment from the specified location (GL or
CCM) and contacts the CCM for the notification to forward
to the next GL. The GL then sends the notification to the next
GL. Once a GL has stored a copy of the assignment (i.e., it
was earlier in the CCM list of GLs), the GL can forward
copies to other GLs occurring later in the distribution list.

When the CCM transmits a notification, it contains an
indication whether the GL is the last on the list. If not the last

US 6,993,587 B1

17

on the list, the GL requests another GL address from the
CCM for forwarding the assignment. The CCM will con-
tinue handing out the GL addresses from its sorted list of
GLs until all GLs have received the assignment. All GLs that
have not already done so will then distribute the assignments
to their group members. Communications between each GL
and the members of its group is carried out using a combi-
nation of a point-to-point protocol 613 and a reliable mul-
ticast protocol 611 described below.

FIG. 7 illustrates one example of store-and-forward dis-
tribution using a tree, the operation of which will now be
explained. In the example, every GL must receive the same
assignment, and it would be inefficient to rely upon the CCM
to individually contact each GL in seriatim. The transmis-
sion power of all available GLs can be used to dramatically
amplify the replication of the assignment issued by the CCM
if each GL is given a copy and access to the dynamic list of
other GLs to send it to. First, the CCM selects GL1 as the
first recipient, and transmits a notification and an assignment
to GL1 with an address for GL3. In an illustrative embodi-
ment, the assignment is “requested” by the GL1 after it
receives the notification. GL1 forwards the assignment to
GL3 and GL1 requests the next GL address from the CCM.
While GL.1 was busy sending the assignment to GL3, the
CCM also sent a copy to GL2, requesting that it be for-
warded to GL6. When ready, GL1 requests the next address
from the CCM and is told GL4 needs the assignment. GL4
receives the notification from GL1 and requests the copy of
the assignment. GL1 copies its assignment to GL4. GL3 has
also finished storing the assignment it received from GL1
and also requests the next GL. from the CCM. During the
creation of the distribution tree, the CCM can quickly
determine whether it would be better to have GL2 or GL3
service GL7, and, in the case of this example, decides that
GL3 should next forward a copy to GL5 instead. The
distribution process continues until all necessary GLs have
received a copy of the assignment and each GL has received
notice from CCM that no more GLs require a copy (e.g., a
null address in the forwarding address of the notification
message). Each GL then forwards the assignment to at least
some of its servers which make the necessary content
interpretations according to the instructions in the assign-
ments.

The mechanism for distribution of assignments from a GL
to the back end servers is implemented with a lightweight
and reliable multicast protocol. This is referred to as “local
distribution” from the GL to the servers. Content assign-
ments are administratively divided into different types of
transactions based upon distribution content. The GL uses
the Data Channel for distributing assignments and for
receiving acknowledgements and reports from the servers.
An optional encryption algorithm, as known in the art, can
be used in this protocol. It could be used to further increase
information security, and to prevent unauthorized systems
from participation in the leader election process previously
described herein.

A GL determines whether the assignment can be for-
warded in one block (e.g., 8 Kbytes), and establishes a
temporary “session” for larger assignments. To establish a
session, the GL announces to a group that a session is
starting, including information about the ID, size, and name
of the assignment being sent, as well as the transfer rate and
frame size used. Each member that receives the announce-
ment determines if it needs the assignment and either replies
with a completion signal or silently participates in the
referenced session. If the GL receives completion signals
from all participants, then it knows that all servers have

10

15

20

25

30

35

40

45

50

55

60

65

18

already received the assignment, otherwise it assumes that at
least one server needs the assignment. The session informa-
tion sent by the GL can also be sent in the same message as
the periodic “LeaderAlive” messages to the group, in order
to further conserve LAN bandwidth.

A group member that has been assigned to participate in
a data transfer session will begin to listen for data packets
from the GL on the Data Channel. The GL breaks the data
into frames of a predetermined size (e.g., 4 Kbytes), in
accordance with the frame size in the session announcement.
Each packet sent by the GL through the multicast UDP
contains at least the following information: the Content
Assignment ID, a retransmission count, a frame sequence
number, and data size. Each receiver checks the frame
sequence numbers as each packet is received, and collects a
list of missing frame numbers in the received sequence.

After transmission of an entire session, each member
participating in the distribution generates and unicasts a
status report. The report comprises a list of lost packet
numbers, i.e., a Negative Acknowledgement, or NACK. If
no packets were lost, then the report contains an empty list,
and is interpreted as being a positive acknowledgement for
that member. In an illustrative embodiment, the time after
transmission for generation of a status report is up to
approximately one second. The GL receives the status
reports and retransmits the missing frames.

During retransmission of the requested frames, the GL
(sender) may retransmit missing frames as each subsequent
NACK is received, or it may continue sending data and
accumulate a new list of lost frames. The number of NACK
messages may be considered as a factor in adjustment of the
GL transmission rate. When the GL reaches the end of the
data (e.g., a session), it reviews the blocks in the list of
NACKSs and retransmits only the missing blocks. This delay
of retransmission further reduces network traffic and is
called NACK aggregation. Alternatively, a NACK can be
sent after a predetermined time, rather than waiting for
transmission of an entire session.

Each block transmission includes a retransmission count
generated by the GL, initially set to one, and incremented for
each retransmission in response to further NACKs. The
retransmission or pass number is used by a Group Member
to find lost frames. The GL continues to retransmit blocks in
response to NACKSs until it gets the status reports from all
or a quorum number of all participating BESs. This signifies
that each participant has received each block, up to and
including the final block. Once a group member has received
a complete session of data, i.e., an assignment, the assign-
ment is passed to the local content interpreter.

The content interpreter running in each back-end server,
parses the received assignment and interacts with the BES
operating system to carry out the instructions of each
assignment on each addressed backend server. The content
interpreter converts the assignment instructions into com-
mands and corresponding parameters and sends them to the
operating system of the server. Examples of standard com-
mands are “create a directory with the following path name
and permissions,” and “create a file with the following
compressed contents.” The content interpreter then inter-
prets the response codes from the operating system and
creates reports of assignment completion. Once an assign-
ment is completed, the content interpreter sends its report to
the Group Leader.

Each registered group member participating in a content
move must send a job status report for each assignment it
receives. The report may be sent either using user Datagram
Protocol UDP or Transmission Control Protocol TCP. The

US 6,993,587 B1

19

Group Leader sends a unicast request to any participating
group member who did not report or whose response was
lost. If the number of missing reports exceeds a configurable
number such as half the number of group members, then the
GL sends a multicast request on the LAN, including a list of
group members. If there are fewer servers that have not
reported than have reported, the GL sends the list of those
whose reports are missing. Otherwise, it sends the list of
those whose reports were received. In either case, each
server interprets the request and the list and retransmits its
own report, if necessary. The GL retransmits its request and
corresponding list until each participant has reported or a
configurable maximum number of transmission has been
reached. Each member transmits its report at a time deter-
mined as a random multiple of a predetermined interval on
the order of a few seconds. This avoids “report implosion”
in which all servers would attempt to reply at the same
instant, causing massive transmission collisions and retrans-
mission timeout delays, in which case the reporting process
would take much longer to be completed.

When the number of lost frames does not decrease after
a configurable number of tries (e.g., ten tries), and the GL
does not have a quorum number of reports, then the GL
reports a problem to the CCM. Otherwise, the GL forwards
a comprehensive assignment completion report to the CCM.
The report contains the complete list of servers that have
reported successful completion of the assignment. In either
case, transmission from GL to CCM is accomplished by
using HTTP protocol. The CCM processes each GL report
for each assignment, updates its database with assignment
status, and optionally logs the reports.

As a final step in carrying out a content distribution job,
the CCM synchronize content switchover in all back end
servers by sending out another assignment after the content
has been successfully distributed. This “commit™ assign-
ment is distributed to the GLs and the servers by the same
mechanism as any other assignment. Upon receipt, each
content interpreter performs the necessary steps as triggered
in the commit assignment, such as by swapping directory
pointers between the current “live” content and the newly
updated content. In an illustrative embodiment, switchover
is accommodated in the following way. The directory struc-
ture in the “live” directory is replicated in a “temp” direc-
tory. Each command in a received assignment causes cor-
responding directories to be added or removed in the temp
directory, and new or modified files added. For any com-
mands to remove a file, an empty file with the deleted
filename is added to temp. Upon receipt of the “commit”
assignment, a “diff” function copies each file from “live” to
“temp” that was not already in “temp” and a list of moved
files is saved. The web server is then reconfigured to point
to the “temp” directory (e.g., using ISAPI redirection,
NSAPI or Apache re-run config), the “live” directory is
renamed as “backup”, and the “temp” directory is renamed
as “live.”

Similarly, for a “rollback™ assignment, for each file in the
list saved during the previous live directory creation, move
the file from “temp™ to “backup”, switch the server to point
to “backup” directory, and remove the “live” directory by
renaming “backup”=directory to “live.”

Each server then sends its report to the GL, the GLs send
their own reports to the CCM, and the commit status reports
are processed and logged by the CCM. The GL Assignment
Status Report includes the list of servers that have reported
successful completion of the assignment. Another type of
reports that the GL sends to the CCM. A Network Segment
(NS) Report is sent whenever the GL detects a change to a

10

15

20

25

30

35

40

45

50

55

60

65

20
BES, e.g., when a BES went offline. The CCM updates the
database for every report received. The GUI will periodi-
cally poll the database and refresh its screens with updated
status information.

When a new BES is added to a network segment, the GL.
will send CCM report. CCM will update the database list of
computers. The browser-based User Interface will show the
new computer by displaying a new computer icon for this
entry. The administrator then needs to add this computer to
one or more content groups. The scheduler will note the
change, and trigger a Replicate job to be sent to the CCM.

The interface between the Content Mover and external
load-balancing systems can be beneficially exploited for
reducing distribution overhead, while keeping content
“fresh” at essential sites. As illustrated in FIG. 6, the CCM
601 and/or GL 603 will notify any load balancer 615 or
virtual resource management (VRM) device when it needs
to reduce the load on the group leader for a content assign-
ment. The load balancer or VRM may also be notified to add
or remove any of its network resources (603, 605, 607) from
rotation while an update is in progress. The network
resources may be added or removed in groups or one at a
time. Some examples of why this may occur include the case
wherein the CCM or GL determined that content on a
particular network device is stale, response time for a
particular network device is slower than others, or a new
device is being added to the content group.

The CCM and/or GL will maintain a list of files currently
contained in each network cache 617 on each network
segment (e.g., LA, London, Paris, Boston). When a content
update occurs, the list of files contained in the cache will be
compared, and new content will be automatically distributed
to the network cache. This guarantees that content being
served from network caches is always up to date and fresh.
The update to the cache can be a scheduled update or it can
happen automatically. In addition, the CCM and/or GL will
send invalidation messages to the cache on each network
segment. For third-party compatibility, these messages need
not be in the form of a proprietary assignment command,
and would be created to conform with third-party specifi-
cations.

As a further example of an external interface with Content
Mover, the CCM and/or GL will contain replicated infor-
mation of a search engine and will automatically update the
search engine with fresh content, i.e., according to a sched-
ule or when content changes.

Although a distribution server and CCM have been
described as being co-resident in a server host, the archi-
tecture of the content mover does not preclude one from
having multiple CCMs and multiple Distribution Servers
operating simultaneously. One application of this alternative
embodiment would be for geographical partitioning of man-
agement whereby each CCM/distribution server would man-
age its own GL distribution list. Furthermore, most (if not
all) of the individual components illustrated as being imple-
mented within the distribution server 18, in FIG. 2, such as
the GUI 64, logger 66, scheduler 60, database manager 68,
and database 22, can each be implemented in a distributed
fashion across multiple computers connected via a commu-
nication network.

Similarly, although the invention describes distribution of
content to a BES in a distributed network, it should be noted
that the Content Mover can distribute data of any type to
caches or any other network device on any distributed
network or wireless network, including, but not limited to
satellite.

US 6,993,587 B1

21

Although the group leader has been described in an
illustrative embodiment as a remote element in the system
such as a separate computer server 26A, it will be appreci-
ated that in an alternative embodiment, a group leader may
also be hosted on the same computer hosting the distribution
server 16. This alternative arrangement facilitates use of a
GL to serve a local cluster of servers 24A. It should be
apparent that this alternative will also require corresponding
changes to simplify the protocols used to exchange data
between the distribution server and the GL. Similarly, a
group leader may share hosting with a backend server’s
distribution agent (and its content interpreter). This would be
convenient where the host server is well adapted to be a
content server as well as a group leader, and also permits
better dynamic load balancing among all hosts in the web
farm cluster, regardless of which server is currently operat-
ing as the GL.

While automated processes are described herein for con-
figuration of clusters, it should be appreciated that in an
alternative embodiment, the selection of a Group Leader,
identification of live servers, and allocation of live servers to
content groups can all be done manually, or using a com-
bination of existing tools and network utilities known in the
art. For example, a single Internet Control Message Proto-
col, ICMP “ping” (echo) message and response may be
sufficient to determine which servers are live, and a CCM
script with a list of IP addresses of every possible server
could slavishly ping each server, resulting in a list of live
servers. Similarly, network distances can be roughly mea-
sured using ping, or more sophisticated performance mea-
surement tools for end-to-end delay.

It will be appreciated by one skilled in the art that a
content interpreter (CI) can be customized to interpret
assignment commands into compatible commands for the
particular operating system running on any BES. Thi’s offers
enhanced portability as the content mover can handle dis-
tribution to any kind of host computer for which an appro-
priate CI has been crafted.

It will be appreciated by one skilled in the art that
although the content mover has been described for distribu-
tion of passive file contents, it will also be useful in mass
distribution of application files (executables), configuration
information, or registry settings necessary to install new
executables onto a BES, a cache, or any other network or
wireless device on a distributed network. Similarly, the
invention can be adapted for distribution of configuration
updates for existing applications. The Assignment Creator
and content interpreters would be modified as necessary to
implement such additional commands to the BES, and to
obtain the requisite status reports and log them appropri-
ately.

Although the invention has been shown and described
with respect to illustrative embodiments thereof, various
other changes, omissions and additions in the form and
detail thereof may be made therein without departing from
the spirit and scope of the invention.

What is claimed is:
1. A method for selecting a group leader among servers in
a multicast network segment comprising the steps of:
configuring a set of said servers to participate in electing
a leader, each said server having a corresponding
voting priority;
determining when a new leader is needed by config-
uring each server that is not currently the group
leader to listen for periodic messages from said
group leader;
adapting each server to send said periodic messages only
if said server is currently the group leader;

10

15

20

25

30

35

40

45

50

55

60

65

22

waiting a configurable period after no periodic messages
are heard; and multicasting said voting priority to each
participant;

said set of servers electing one server of said set to
become said new leader by voting wherein voting is
performed by sending a leadership claim message
including a priority claim at an interval determined by
strength of a claim a candidate has on becoming the
group leader.

2. The method of claim 1 in which said step of configuring

a set of servers further comprises the steps of:

measuring a set of leader selection parameters in each
participant in said set; and

calculating the corresponding voting priority according to
said measurements.

3. The method of claim 1 in which said periodic messages
are multicast on a predetermined network channel com-
prised of an IP multicast address and a port number.

4. The method of claim 1 in which said multicasting is
addressed to a preconfigured IP multicast IP address and port
combination for each server of said set of participating
servers.

5. The method of claim 1 in which said step of electing
further comprises the steps of:

sending a claim of leadership containing a sent voting
priority;

listening for other servers to claim leadership;

comparing a received priority in any other claims to
leadership with said sent voting priority; and

determining said new leader according to the server
having claimed leadership with the highest voting
priority.

6. The method of claim 5 in which said step of sending a
claim of leadership is implemented using a multicast mes-
sage on said multicast network segment.

7. A system for determining a group leader among a group
of servers comprising:

a set of participant servers including at least some servers

capable of participating in electing a group leader;

a communication channel from each participant to each
other participant;

a monitor process in each participant to determine which
server is the current group leader;

an election process in each participant to calculate a
voting priority of said participant and to select a new
group leader according to said voting priority, said
election process triggered by said monitor process;

wherein voting is performed by sending a leadership
claim message including a priority claim at an interval
determined by strength of a claim a candidate has on
becoming the group leader;

configuring each server that is not currently the group
leader to listen for periodic messages from said group
leader;

adapting each server to send said periodic messages only
if said server is currently the group leader;

waiting a configurable period after no periodic messages
are heard; and

multicasting said voting priority to each participant.

8. The system of claim 7 in which said monitor process
further comprises:

a listener in each participant for determining how long
since a group leader alive message has been heard on
said communication channel,

a transmitter in each participant, operable in an elected
group leader, that periodically signals each other par-
ticipant who the current group leader is; and

US 6,993,587 B1

23

a trigger adapted to detect that a group leader has not been
heard from for a time longer than a threshold time,
according to the period of said periodic signal.

9. The system of claim 8 in which said threshold time is
configured such that a trigger will occur no less than five
seconds after the last group leader alive message was
received by said monitor process.

10. The system of claim 8 in which said predetermined
voting time interval is no greater than 15 seconds.

11. The system of claim 7 in which said voting priority for
each participant is determined dynamically according to at
least one parameter selected from the set of: how recently
was said participant the group leader, the number of servers
known to said participant, the amount of resources available
to such participant, reliability of the participant, the amount
of recent information content the participant has acquired,
and a user-specified priority factor.

12. A system for determining a group leader among a
group of servers comprising:

a set of participant servers including at least some servers

capable of participating in electing a group leader;
a communication channel from each participant to each
other participant;
a monitor process in each participant to determine which
server is the current group leader; and
an election process in each participant to calculate a
voting priority of said participant and to select a new
group leader according to said voting priority, said
election process triggered by said monitor process,
wherein said election process further comprises a state
machine adapted to transition from a temporary state
of group leader unknown to a stable state of either
group leader known or group leader is me, according
to the following steps:

in said state of group leader unknown, if one or more
group leader claim messages (LC) are received in
which a received voting priority is greater than said
calculated voting priority, then transition to a con-
cession state and wait for a group leader alive
message (LA); and if no LC is received before a
period determined by said calculated voting priority,
or no received voting priority is greater than said
calculated voting priority, then transmit an LC
including said calculated voting priority, and transi-
tion to a voting open state;

in said concession state, when an LA is received,
transition to said group leader known state;

in said voting open state, if no LC or LA is received for
a predetermined time interval, then transition to said
group leader is me state and transmit an LA; and if
one or more L.C is received prior to said predeter-
mined voting time interval, then transition to said
group leader unknown state and transmit an LC; and
if an LA is received, then transition to said group
leader known state;

in said group leader is me state, periodically send an LA
until an LC or LA is received, and then transition to
said voting open state and send an LC; and

in said group leader known state, upon a trigger from
said monitor process, transition to said group leader
unknown state and transmit an LC;

whereby a participant having the highest calculated
voting priority is elected group leader.

10

15

20

25

30

35

40

45

50

55

60

24

13. A method for determining registration of members of
a cluster of servers on a network segment comprising the
steps of:

(A) designating a group leader on said network segment;

(B) each member sending a registration message to said
group leader;

(C) said group leader multicasting a registration report
including an identifier corresponding to each registered
member;

(D) sending another registration message from any mem-
ber receiving said registration report in which said
member’s corresponding identifier is missing;

(E) repeating steps (C) and (D) until each said member
receives a registration report including its own corre-
sponding identifier as a registered member;

in which said step of designating said group leader is
carried out among a set of servers of said cluster
according to a voting priority determined by at least
some of said members from a set of dynamic param-
eters measured within themselves;

wherein voting is performed by sending a leadership
claim message including a priority claim at an interval
determined by strength of a claim a candidate has on
becoming the group leader;

configuring each server that is not currently the group
leader to listen for periodic messages from said group
leader;

adapting each server to send said periodic messages only
if said server is currently the group leader;

waiting a configurable period after no periodic messages
are heard; and

multicasting said voting priority to each participant.

14. The method of claim 13 in which said step of
multicasting said registration report occurs after a config-
urable interval has expired since the most recent registration
request was received by said group leader.

15. The method of claim 13 in which said step (D) of
sending another registration message occurs after a precon-
figured interval, after receipt of a registration report or a
registration request, comprised of a fixed interval and a
random interval, said random interval being up to one
second.

16. The method of claim 13 in which said registration
requests include at least some identification information
selected from the set of: a server’s IP address, a server’s
name, a server’s port number, and a secret key.

17. The method of claim 13 further comprising the steps
of:

processing said registration reports in said group leader to
create a cluster report; and

transmitting said cluster report to a network distribution
server, whereby said cluster reports are dynamically
collected from all clusters in said network.

18. The method of claim 17 in which said cluster report
further includes at least some group leader information
selected from the set of: a list of registered members,
identification information from at least some of said regis-
tered members, a network segment identifier, an IP address
of said group leader, and a location parameter for said group
leader.

