Context-Aware Real Time Scheduling

Kanishka Gupta

Azer Bestavros

Ibrahim Matta

Computer Science Department
Boston University
Boston, MA 02215
{kanishka, best, matta}@cs.bu.edu

1. Introduction

Motivation: The main thrust of traditional approaches
to real-time scheduling is the satisfaction of timing con-
straints. As such, most of these approaches pay little at-
tention to the optimization of other characteristics of the
resulting schedules. Two schedules which may be equiva-
lent in terms of timing constraint satisfaction might have
different qualities with respect to other metrics of impor-
tance. As an example, consider a wireless sensor node
with a directional and/or adjustable power antenna. Be-
sides meeting the deadlines of all the tasks executing on
that node, it is also important that the antenna be sched-
uled in a way that minimizes antenna redirection, power
readjustment, and/or maximizes the period of time the an-
tenna is not in use (allowing it to be turned off, for
example). Such considerations would result in poten-
tially large power savings. A similar example along
these lines is a moving camera tracking a number of ob-
jects in a room. Another example that highlights the im-
portance of schedule “quality” is the impact of schedules
on locality of reference (with implications on cache effi-
ciency). Other examples are abound.

As the above examples suggest, many emerging applica-

tions suggest that real-time scheduling be “context-aware”.
In other words, the decision of which job to schedule next
should be based on the deadline of the job as well as the
context of resources being managed.
Model: Consider aset T" of NV periodic tasks. I’ = {r;| i =
1...N'} where each task is independent and fully preemp-
tive. A task r; = (c;, T3, D;) is characterized by its worst
case execution time ¢;, its period 7; and a relative dead-
line D; equal to or shorter than the period. Jobs are released
at the beginning of the period and are eligible for execu-
tion immediately after they are released. Let H denote the
hyper-period of T". Assuming all tasks are released at time
0, a feasible schedule would repeat itself after time H.

For the purposes of this paper, we use the term “con-
text” to refer to the state of one or more resources in the
system. The resources of the system can be in n differ-

ent states (contexts). Tasks belonging to the same class ex-
ecute in the same context (e.g., with antenna pointing in
the same direction). Define € to be the context function i.e
Q(r;) = 4, i« = 1.N, 7 = l.n if task ¢ requires the
resources to be in context 5 during its execution. We as-
sume the task to context mapping of the system to be fixed.
Furthermore, each task can be in exactly one context. In
other words, the contexts partition the task set into n subsets
Fj, j=1l.n where Fj = {Tz| Q(Tl) :]) &T; € F}
Consider discrete time domain, where time could be nor-
malized by any practical value, be it the time-slice for a
CPU, maximum length packet transmission time for a link
etc. With a slight abuse of notation, let Q(¢) denote the con-
text of execution at time ¢.
Problem Statement: Our aim in this paper is to min-
imize the number of context switches. If we identify
contexts with colors, our problem would be akin to gen-
erating a feasible schedule such that the number of color
changes in the schedule is minimized Figure 1(a) shows a
set of 3 periodic tasks, each belonging to a different con-
texts. The EDF schedule for this set produces 8 context
switches in the hyper-period.The challenge lies in meeting
the conflicting requirements of reducing changes in con-
texts while meeting the deadlines of all the jobs. For a hard
real time systems, the problem can be stated as an opti-
mization problem as follows:

Schedule the workload such that all jobs meet their dead-
lines and cost(H) is minimized where the cost function
cost(t) at timet is defined as follows:
0 ift=0
cost(t — 1) if Q) =Q(t—-1)
cost(t—1)+1 ifQ(¢) #Q(t —1)
Since the optimization metric is context-dependent, stan-
dard optimization techniques cannot be used to solve the
problem. Making all the jobs non-preemptive does not solve
the problem either. If all the jobs are non-preemptive, there
could still be J — 1 switches in the worst case where J de-
notes the number of jobs of I in H. One can imagine a pre-
emptive schedule having a lot of preemption between jobs

cost(t) =

Task 1=(1,33)] Tesk2=(144) [] Task3=(212.12) Il
a) tmﬂ

EDF Schedule; H=12; Cost(H)=8

|
b) |
Lower Bound; Cost(H) >=2 |
c)
Upper Bound; Cost(H) <=8

Figure 1. A set of 3 periodic tasks

of the same context but very few context switches. A non-
preemptive schedule minimizes the number of preemption
in a schedule while a context-aware schedule seeks to min-
imize the number of times the scheduler changes context.

2. Performance Bounds

In this section, we present bounds on the maximum and
minimum number of switches produced by any feasible
scheduling algorithm.

Lemmal There will be at least n — 1 switches every

jmax. T9 . unitsofimewhere T/ . = min{T;| = € I';}
Proof Sketch: Each context j has to execute at least once
every non-overlapping window of time of size T . . Oth-
erwise the minimum-period task of I'; will miss its dead-
line. Therefore, all n contexts will execute at least once ev-

ery non-overlapping window of size max (T2...)- Given
1<j<n

m

this fact, there has to be at least n — 1 switches in each of

these windows.
Lemma 2 Themaximumnumber of switchesS}: . that can

occur in the hyper-period of a scheduleis given as follows:

Soxi—1 ifz, < Yz
j<n i<n
Stae =94 2> ; ife, > > x;
j<n j<n
0 ifn=1

where x; denotes the time jobs of I'; execute in H and the
contexts are ordered suchthat z; < z2 < <z,
Proof Sketch: The above equation corresponds to the patho-
logical case when a different context starts executing at the
beginning of each time unit as long as some different con-
text job is available to preempt It can be proved inductively.
The base case is obvious. There will be no switches if there
is only one context. Assume S¢. L is correctly calculated
by the formula. Since context : executes for x; time in the
hyper-period, it can be thought of as having z; blocks of the
same color where one time unit is a block. What we have
to basically do is to place the z; blocks among the existing
> ;<ix;j blocks in such a way that the switchings are max-
imized. The proof is omitted here due to space constraints.
Figure 1(b) shows the performance bound of the task set.
Since there are three contexts and each context has only one
job, maz(T? ..) = maz(T7) = 12. This means there will
definitely be at least 2 context switches every 12 units of
time. For the upper bound, we have 4 blocks of context 1,

3 blocks of context 2 and 2 blocks of context 3. The max-
imum number of switches for such a configuration is 8 as
shown in the figure. Once can see from the example is that
EDF scheduler is not very context-friendly.

The lower bound of Lemma 1 does not consider the fact
that jobs cannot execute at any point in time but only during
the interval between their release time and deadline. Incor-
porating this constraint would make the bound even tighter.
This is part of on-going research.

3. Offline Solution

Cyclic Schedule:Constructing a feasible off-line schedule
for a task set is a well-studied problem [4]. A cyclic struc-
ture is used and scheduling decisions are made periodically.
The scheduling decision times partition the time line into in-
tervals called frames. Every frame has length f; the frame
size. F' denotes the number of frames in the hyper-period.

Given the task set and the frame size, the cyclic sched-
ule (if one exists) can be constructed using the well-known
network formulation of the preemptive scheduling problem
[3]. All the (J) jobs and (F') frames within the hyper-period
of the schedule are represented as nodes of a graph, along
with two special nodes called source and sink. Edges ex-
ist between the source and all the job nodes and between all
the frame nodes and the sink. The capacity of edges join-
ing the source node to the Job nodes is equal to the exe-
cution time of the job whereas the capacity of all the other
edges is equal to the frame size. The edges from the source
to the job nodes can be thought of as the demand (compu-
tation time) of the system while the edges from the frames
can be thought of as the supply (time). The constraint is ex-
pressed as follows. An edge exists between a Job node and
a Frame node if and only if the interval of the frame is fully
contained within the feasible interval of the job.

Many algorithms exist for finding maximum flow of a
network-flow graph [1]. The maximum flow of the network-
flow graph defined above can be at most equal to the sum of
the execution times of all the J jobs. If the maximum flow is
indeed equal to the sum of execution times, then the flow of
the graph tells one how to decompose the tasks into subtasks
and which subtask to schedule in which frame. If the maxi-
mum flow of a graph is less, then no feasible cyclic sched-
ule exists with the frame size used to generate the graph.
In this case, a smaller frame size is chosen and the network
flow algorithm repeated till a feasible schedule is found. In
the worst case, the frame size could become 1 in which case
this would reduce to brute force.

Some schedulability is lost as the jobs are not eligible
for execution for their entire feasible interval but only in the
set of frames which are fully contained within the job. If
the task set is such that the release time and deadlines of all
jobs coincide with the frame boundaries, then no schedula-
bility is lost. For instance, this would be the case when the
frame size divides all the periods and the release time and

Feasible Cyclic Schedule

|

ﬁq \ t_ \ #
[

Context—Aware Schedule; Cost(H)=4

Figure 2. Fiddling with the intra-frame jobs.

deadlines of all the jobs are at the beginning and end of the
period respectively. For a general frame size however, some
schedulability might be lost. However, for task sets with rea-
sonable amount of slack (which is the focus of this paper),
this approach would work reasonably well.
Context-Aware Schedule:The key point of the network-
flow algorithm which makes it so appealing from a context-
aware scheduling point of view is that the schedule gener-
ated consists of jobs whose deadlines are always after the
end of the frame within which they are being scheduled.
Therefore, the order of execution of jobs within a frame
can be freely changed to produce a resource-friendly sched-
ule, without the fear of any job missing its deadline. Figure
2 shows a cyclic schedule for the same example produced
by the network-flow algorithm. After fiddling with the or-
der, there are only 4 switches in the hyper-period.

Clearly, a bigger frame size allows for more possible
clustering opportunities and is thus better in terms of per-
formance(cost(H)). Unfortunately, as discussed before, the
bigger is the frame size, the more are the chances of the
task set not being schedulable. The set of constraints gov-
erning the frame size have been well studied in [4]. To en-
sue that there exists at least one eligible frame for each job,
we need

2f — ged(T;, f) < D; Vi &

In the special case when release time of all the jobs co-
incide with the frame boundaries, (for instance, this would
be the case when the minimum period divides all the other
periods) it suffices to choose a frame size that is equal to
or smaller than D; for all 7. Furthermore, if the minimum
deadline D,,;, divides all the larger deadlines, there would
be no schedulability loss.

To keep the length of the cyclic schedule as short as pos-
sible, the frame size f should be chosen so that it divides
H. This condition is met when

T/ f1-Ti/f =0 O]

holds for at least one ¢ i.e when the frame size divides the
period of at least one task.

Performance: From the constraints described above, one
can see that the maximum possible frame size for any task
set is at most the minimum deadline D,,,;,. Using a similar
logic that we applied for the window of time in Lemma 1,
once can see that there can be at most n — 1 switches inside
each frame. Which means that for task sets which are feasi-
ble with the maximum frame size, there will be at most n—1
switchesevery D, units of time. For task sets in which all

the jobs have deadlines at the end of the period (D; = T3),
there will be a a maximum of n — 1 switches every T},
units of time The actual number of context switches could
be less, depending on the how many jobs of each context are
present in each frame. Lemma 1 however, tells us that there
could never be less than n — 1 switches every max. T,

n

units of time.
4. Online Solution

On-line solution is difficult: The model described in sec-
tion 1 is restrictive in the sense that precise knowledge of all
the task parameters is generally not known beforehand. The
number of tasks is also assumed to be fixed. A more realis-
tic scenario would be for the scheduler to have bounds of the
minimum inter-arrival time with new tasks entering and ex-
isting tasks leaving the system at arbitrary time instants. An
on-line scheduler, therefore, typically makes scheduling de-
cisions based on the current state of the system and does
not on the possible release times of future jobs. This makes

on-line context aware scheduling quite difficult.
Lemma 3 Itisimpossiblefor a scheduler to produce an op-

timal schedule without knowing release times of future jobs.
Proof Sketch: This can be seen by an adversarial ar-

gument as follows: Consider 2 contexts for simplic-
ity. At any time ¢, suppose that a color 0 job (by a color
7 job, we mean a job belonging to context ¢) has fin-
ished but there are color 1 jobs with considerable slack in
the ready queue. If the processor switches to a color 1 job
at time ¢, at time ¢ + 6, a color 0 job with no slack could ar-
rive making the processor switch back and thus making the
switch at time ¢ useless. On the other hand, if the proces-
sor does not switch at time ¢ and stays idle, there could be a
case when a huge number of jobs arrive at time ¢ + § mak-
ing the old color 1 jobs at time ¢ miss their deadline.
Heuristic: Let us consider only two contexts for simplic-
ity. Since the deadlines of all the jobs have to be met any-
way, a reasonable approach could be to build the context-
aware scheduler over existing optimal (in terms of dead-
lines) algorithms like EDF [2]. The EDF (or some other op-
timal algorithm) scheduler could be run as usual as long as
it schedules jobs of the same context. The time instant when
EDF switches contexts is the time when a decision needs to
be made i.e should the context-aware scheduler switch as
well or should it continue with jobs of the currently exe-
cuting context. Consider the following qualitative argument
(translating the qualitative argument into equations is part
of on-going work). Here X denotes the context of the cur-
rently executing job belongs to and Y is the other context.
If the existing context X has a lot of slack and the Y job
has very little slack, clearly, it makes sense to switch imme-
diately to the Y job (The X jobs can wait while Y jobs can-
not. Moreover, the Y jobs can run for a while without being
bothered by the X jobs). By a similar argument, if the exist-
ing context X jobs have very little slack and the Y job has

a lot of slack, then it makes sense to block the Y job. them
for a while and continue running the X context jobs.

If both context X and Y jobs have a low slack, then the
slack information is not enough to make a decision. It might
make more sense, however, to chose a context whose sum
of remaining execution times of the current jobs is lower.
This is based on the reasoning that since one cannot ignore
low-slack jobs for a long time anyway, it might be best to
finish them off as quickly as possible.

If both context X and Y jobs have a lot of slack, then
choosing the context with the longer remaining execution
time might be a better option. The reasoning behind this is
that since both applications have a lot of slack, deadlines
are not an issue (in the near future). Thus choosing the con-
text with the longer remaining execution time would make
the processor run on one color for a longer time.

There are a lot of technical details to be filled in the
above qualitative argument. This is part of on-going work.

5. On-Going Research

In this section, we outline ongoing work for solving the
online approach. There are many questions that needs to
be answered for example what constitutes a high or a low
slack? What is a safe time to admit a new task? If the
context-aware scheduler makes a scheduling decision that
is different from EDF, how long can it block the Y context
job without compromising any deadline constraints? Since
the scheduler makes a different decision, there is no longer
any guarantee that all future deadlines will surely be met.

For the last question, there has been a lot of work in the
real-time community in solving similar problems. We can
adapt them to solve our problem as follows.

Critical sections: Effectively, what we are doing is delay-
ing the execution of higher priority jobs with earlier dead-
lines in favor of jobs of the same context. This situation is
analogous to a higher priority job getting blocked by a lower
priority job which is executing in its non-preemptive criti-
cal section. In this case, the higher priority job is never al-
lowed to preempt the lower priority job while in our case,
the higher priority job can preempt but at a cost which we
would like to minimize. A lot of work has been done in ana-
lyzing the schedulability of a task set with critical sections.
We can use this analysis in the reverse direction, i.e. given
the task set, compute the longest possible critical sections
for each task which still ensures schedulability of the sys-
tem. When the context-aware scheduler decides to block a
job, we could then pretend that the currently executing job
hasjust entered itscritical section and thus block the Y con-
text job for the length of its critical section.

Aperiodic jobs: Another way to solve this problem could
be to use the analysis of aperiodic jobs. Normally, aperi-
odic jobs are executed ahead of periodic jobs in the system
as long as they don’t cause any real time task to miss its
deadline. This is similar in spirit to what we want to do i.e

schedule jobs of the same context in clusters aslong as they
don't cause the other jobs to miss their deadline. There-
fore, one way to solve our problem would be the following:
When EDF switches context, pretend an aperiodic job has
entered the system at that time. Block the higher priority job
for aslong as the aperiodic job would have been executed
by the scheduler. The higher priority job would not miss its
deadline since the aperiodic scheduler never causes any job
to miss its deadline. Many such aperiodic schedulers exist
with varying performance and complexity. Sack-Sealing
algorithms [9] can tell you exactly how long one can block
a higher-priority job without missing its deadline but has
a very high overhead. Period Servers[5] [8] offer simplic-
ity but their performance is not as good while dual priority
[6] lies somewhere in the middle.

6. Related Work

To the best of our knowledge, no work has yet been
done on context-aware real-time scheduling, as we define
it in this paper. On a more basic level, however, our prob-
lem amounts to exploiting the slack of the system so as to
achieve ancillary goals (in addition to meeting deadlines).
There has been much work along these lines; space con-
straints prevent us from adequately portraying this body of
work. Representative examples include the use of slack-
stealing for improving precision [10], and more recently
for minimizing power consumption (by trading off slack for
processor speed).

Perhaps the closest piece of work to ours is the concept
of preemption threshold proposed by Saksena and Wang [7]
to minimize the number of thread preemption and CPU con-
text switches. The problem we consider in this paper differs
in the sense that what constitutes a change in context is ex-
plicitly spelled out as opposed to being implicitly assumed
for every job preemption.

References

[1] A.V.Goldberg. Processor efficient implementation of a max-
imum flow problem. 38:179-185, May 1991.

[2] C.L.Liu and Layland. Scheduling algorithms for multipro-
gramming in a hard real-time enviroment. 20:46-61, 1973.

[3] J.Blaswicz. Selected topics in scheduling theory. 31, 1987.

[4] J.W.S.Liu. Real Time Systems. 2000.

[5] M.Spuri and G. Buttazo. Scheduling aperiodic jobs in dy-
namic priority systems. 10:179-210, 1996.

[6] R.Davis and A.Wellings. Dual priority scheduling. Decem-
ber 1995.

[7] M. Saksena and Y.Wang. Scalable Real-Time System De-
sign using Preemption Thresholds . 2000.

[8] T.M.Ghazalie and T.P.Baker. Aperiodic servers in deadline
scheduling enviroments. 9:31-68, 1995.

[9] T.S.Tia. Utilizing slack time for periodic and sporadic re-
quests in real time systems. (UIUCDCS-R-95), April 1995.

[10] W.K.Shih and J.W.S.Liu. Minimization of the maximum er-

ror of imprecise computations. March 1995.

