
In Proceedings of RTAS’96: The 1996 IEEE Real-Time Technology and Applications Symposium, Boston, MA, May 1996.

AIDA-based Real-Time Fault-Tolerant Broadcast Disks�

AZER BESTAVROS

best@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

Abstract

The proliferation of mobile computers and wireless net-
works requires the design of future distributed real-time ap-
plications to recognize and deal with the significant asym-
metry between downstream and upstream communication
capacities, and the significant disparity between server and
client storage capacities. Recent work proposed the use
of Broadcast Disks as a scalable mechanism to deal with
this problem. In this paper, we propose a new broadcast
disks protocol, based on our Adaptive Information Disper-
sal Algorithm (AIDA). Our protocol is different from pre-
vious ones in that it improves both timeliness and fault-
tolerance, while allowing for a finer control of multiplexing
of prioritized data. We start with a general introduction of
broadcast disks. Next, we propose broadcast disk organiza-
tions that are suitable for real-time applications. Next, we
present AIDA and show its fault-tolerance properties. We
conclude with the description and analysis of AIDA-based
broadcast disks organizations that achieve both timeliness
and fault-tolerance, while preserving downstream commu-
nication capacity.

1. Introduction

Mobile computers are likely to play an important role at the
extremities of future large-scale distributed real-time sys-
tems. Examples include automotive on-board navigational
systems, wearable computers for soldiers in the battlefield,
and computerized cable boxes for future interactive TV net-
works and video-on-demand. Such systems are character-
ized by the significant discrepancy between the downstream
communication capacity from servers to clients and the
upstream communication capacity from clients to servers.
This discrepancy may result from the huge disparity be-
tween the transmission capabilities of clients and servers
(e.g., broadcasting via satellite from servers to clients as

�This work has been partially supported by NSF (grant CCR-9308344).

opposed to cellular modem communication from clients to
servers), or may be due simply to the scale of information
flow (e.g., thousands of clients may be connecting to a sin-
gle computer for service).

The notion of Broadcast Disks (BDisks) was introduced
by Zdonik et al. in [21] as a mechanism that uses commu-
nication bandwidth to emulate a storage device (or a mem-
ory hierarchy in general). The basic idea is to exploit the
abundant bandwidth capacity available from a server to its
clients by continuously and repeatedly broadcasting data to
clients, thus in effect making the broadcast channel act as a
set of disks (hence the term “Broadcast Disks”) from which
clients could fetch data “as it goes by.” Work on BDisks
is different from previous work in both wired and wire-
less networks [12, 14] in that several sources of data are
multiplexed and broadcast to clients, thus creating a hier-
archy of BDisks with different sizes and speeds. On the
server side, this hierarchy gives rise to memory manage-
ment issues (e.g., allocation of data to BDisks based on pri-
ority/urgency). On the client side, this hierarchy gives rise
to cache management and prefetching issues (e.g., cache
replacement strategies to improve the hit ratio or reduce
miss penalty). In [3], Acharya, Franklin and Zdonik discuss
BDisks organization issues, including client cache manage-
ment [1], and client-initiated prefetching to improve the
communication latency for database access systems [2].

Previous work in BDisks technology was driven by wire-
less applications and has concentrated on solving the prob-
lems associated with the limited number of uplink channels
shared amongst a multitude of clients, or the problems as-
sociated with elective disconnection (as an extreme case of
asymmetric communication), when a remote (e.g., mobile)
client computer system must pre-load its cache before dis-
connecting. Problems that arise when timing and reliabil-
ity/security constraints are imposed on the system were not
considered.

Current BDisks protocols assume that the rate at which
a data item (say a page) is broadcast is dependent on the

demand for that data item. Thus, hot data items would
be placed on fast-spinning disks (i.e. broadcast at a higher
rate), whereas cold data items would be placed on slow-
spinning disks (i.e. broadcast at a lower rate). Such a strat-
egy is optimal in the sense that it minimizes the average la-
tency amongst all clients over all data items.� In a real-time
environment, minimizing the average latency seizes to be
the main performance criterion. Rather, guaranteeing (ei-
ther deterministically or probabilistically) that timing con-
straints will be met becomes the overriding concern. In this
paper, we show how to allocate data items to BDisks so as
to ensure the satisfaction of timing constraints imposed on
client tasks that may rely on this data.

Current BDisks protocols assume that the broadcast in-
frastructure is not prone to failure. Therefore, when data is
broadcast from servers to clients, it is assumed that clients
will succeed in fetching that data as soon “as it goes by.”
The result of an error in fetching data from a BDisks is that
clients have to wait until this data is re-broadcast by the
server. For non-real-time applications, such a mishap is tol-
erable and is translated to a longer-than-usual latency, and
thus deserves little consideration. However, in a real-time
environment, waiting for a complete retransmission may
imply missing a critical deadline, and subjecting clients to
possibly severe consequences. In this paper, we show how
to allocate data items to BDisks so as to mask (or other-
wise minimize) the impact of intermittent failures. In that
respect, we use the Adaptive Information Dispersal Algo-
rithm (AIDA) [6], which allows for a controllable and effi-
cient tradeoff of bandwidth for reliability.

This paper is organized as follows. In section 2, we
present three different BDisks organizations—namely flat,
rate monotonic, and slotted rate monotonic—that are suit-
able for use with real-time applications. In section 3, we
present our AIDA-based approach to improving the fault-
tolerance and security of BDisks. In particular, we intro-
duce the basics of AIDA and demonstrate its efficient use
of redundancy to tolerate failures. In section 4, we show
how both timeliness and fault-tolerance properties could be
guaranteed through the use AIDA to mask failures in flat,
rate monotonic, and slotted rate monotonic organizations.
We conclude our paper with a summary and a discussion of
future work.

2. Organization of BDisks for Timeliness

We model a BDisks system as comprising of a set of data
items (or files) that must be transmitted continuously and

�Current research work in BDisks technology has singled out the ex-
pected latency (i.e. how long does a client have to wait on the average to
retrieve a data item) as the main performance measure to be tuned. In a
real-time environment, the worst case latency is a more appropriate mea-
sure that will be used throughout this paper.

periodically to the client population. Each data item con-
sists of a number of blocks. A block is the basic, indivisible
unit of broadcast (e.g., page). Let Bd denote the down-
stream bandwidth (number of blocks per second) avail-
able from the server to its client population. Let Si de-
note the size of (number of blocks in) data item Di, where
i � �� � � � k. We assume that the retrieval of a data item
by a client is subject to a time constraint imposed by the
real-time process that needs that data item. Let Ti denote
the tightest time constraint associated with the retrieval of
data item Di. In effect, Ti establishes an upper bound on
the tolerable latency for data item Di.

2.1. Flat Organization

The simplest transmission method in a broadcast-based sys-
tem is for the server to send the union of all data items that
may be needed by its clients in a periodic fashion. This
regimen has been termed as the flat broadcast program [3].
With a flat broadcast, the worst-case latency is the same for
all data and is equal to the broadcast period. This leads to
the following lemma about downstream bandwidth require-
ment.

Lemma 1 If Si is the size of data item Di and Ti is the
worst-case latency tolerable for the retrieval of Di, where
i � �� � � � k, then the downstream bandwidth Bd for a flat
broadcast is bounded by the following inequality.

Bd �

Pk

i�� Si

minki���Ti�
(1)

Notice that in a flat BDisks organization, the broadcast
period ��at is constrained by two quantities. In particular,
it has an upper bound equal to the tightest timing constraint
over all data items, and a lower bound that depends on the
available downstream bandwidth. These bounds are given
below.

k

min
i��

�Ti� � ��at �

Pk

i�� Si

Bd

(2)

If inequality 1 is satisfied, then the server can choose any
broadcast period as long as it satisfies inequality 2. Setting
��at to its minimum possible value results in minimizing
the expected latency of retrieval, whereas setting ��at to its
maximum possible value leaves the server with extra band-
width that could be used to broadcast data items that are not
associated with any time constraints (e.g., clock synchro-
nization messages, or other control information).

The flat organization of BDisks makes the process of
adding new data items to the broadcast program very sim-
ple. In particular, to add a new data item Dnew, the server

must first establish whether or not there is enough down-
stream bandwidth to accomodate Dnew. This is done by
using inequality 1. If successful, Dnew is simply added to
the broadcast program and the broadcast period is adjusted
according to inequality 2, if need be.

2.2. Rate Monotonic Organization

The flat organization of BDisks is wasteful of bandwidth
because it does not take into consideration the timing con-
straints imposed on the various data items. To achieve the
most utilization of the available downstream bandwidth, the
worst-case latency for each data item must be equal to the
timing constraint associated with that data item. In other
words, data item i must be broadcast periodically at a rate
equal to �

Ti
. This leads to the following lemma about down-

stream bandwidth requirement.

Lemma 2 If Si is the size of data item Di and Ti is the
worst-case latency tolerable for the retrieval of Di, where
i � �� � � � k, then the downstream bandwidth Bd for a rate
monotonic broadcast is bounded by the following inequal-
ity.

Bd �

kX

i��

Si

Ti
(3)

Furthermore, the above inequality establishes a lower
bound on the downstream bandwidth Bd for any broad-
cast program that satisfies the timing constraints of all data
items.

In a rate monotonic organization of BDisks, each data
item represents an independent disk “spinning” at a rate
reciprocal to the timing constraint associated with it. To
obtain a broadcast program, the server must determine the
length of that program, which is set to be the least common
multiple of all timing constraints, Tlcm � LCMk

i���Ti�.
Next, the data items are sorted in an ascending order based
on their timing constraints. Next, the broadcast program is
constructed by stepping through the sorted list of data items,
and allocating time slots for each block inDi within each Ti
minor cycle of Tlcm. This process is not guaranteed to yield
a broadcast program unless

Pk

i��
Si
Ti
� kBd��

�

k � ��—a
condition similar to that necessary for CPU Rate Monotonic
Scheduling algorithms [16].

Despite the fact that it achieves an optimal utilization of
downstream bandwidth, the rate monotonic organization of
BDisks is not practical in a large system with thousands
of data items, each with a different timing constraint. In
such systems, broadcasting each data item at a rate recip-
rocal to its timing constraint would result in a very compli-
cated broadcast program. More importantly, the process of
adding new data items or changing the timing constraints of

existing data items may require a complete overhaul of the
broadcast program, thus rendering dynamic reprogramming
an impossibility.

2.3. Slotted Rate Monotonic Organization

Flat and rate monotonic organizations of BDisks under-
line two extreme trade-offs. Flat organization trades off
bandwidth utilization for ease of broadcast programming,
whereas rate monotonic organization trades off ease of
broadcast programming for bandwidth utilization. The slot-
ted rate monotonic organization of BDisks strikes a balance
between these two extremes. The basic idea is to coalesce
data items together so that they could be used as part of the
same broadcast disk. The effect of such coalescence is to
create a partition on the data items to be broadcast to the
client population. Data items in the same partition share the
same broadcast disk and, thus, have identical worst-case la-
tencies.

Let Cu� u � �� � � � � q denote the set of broadcast disks
to be used, and let �u, denote the broadcast period of disk
Cu. According to the slotted rate monotonic organiza-
tion of BDisks, a data item Di with a time constraint Ti
is assigned to the broadcast disk with the largest broad-
cast period smaller than Ti. In other words, Di is as-
signed a broadcast disk Cv if and only if Ti � �v and
�Ti � �v� � �Ti � �u�, where u �� v. This leads to the fol-
lowing lemma about downstream bandwidth requirement.

Lemma 3 If Si is the size of data item Di and Ti is the
worst-case latency tolerable for the retrieval of Di, where
i � �� � � � k, then the downstream bandwidth Bd for a slot-
ted rate monotonic broadcast consisting of disks Cu� u �
�� � � � � q with broadcast periods �u is bounded by the fol-
lowing inequalities.

Bd �

qX

u��

P
�Di�Cu

Si

�u
(4)

�Di � Cu � Ti � �u (5)

Notice that in a slotted rate monotonic organization, each
broadcast period �v is constrained by two quantities. In par-
ticular, it has an upper bound equal to the tightest timing
constraint over all data items in Cv , and a lower bound that
depends on the available downstream bandwidth. These
bounds are shown below.

min
�Di�Cv

�Ti� � �v �

P
�Di�Cv

�Si�

Bd �
P

�u�Di�Cu�u��v
�Si
�u
�

(6)

If inequality 4 is satisfied, then the server can choose any
broadcast periods as long as they satisfy inequality 6. For a

broadcast disk Cv , setting �v to its minimum possible value
results in minimizing the expected latency of retrieval from
that disk, whereas setting �v to its maximum possible value
leaves the server with extra bandwidth that could be used to
broadcast control information, or alternately to be used to
broadcast data items added to that disk at a later time.

The slotted rate monotonic organization of BDisks
makes the process of adding new data items to the broad-
cast programs much simpler than that of rate monotonic or-
ganization. In particular, to add a new data item Dnew, the
server must first establish whether or not there is enough
downstream bandwidth to accomodate Dnew. This is done
by using inequality 4. If successful, Dnew is simply added
to the broadcast program of the appropriate broadcast disk
and the broadcast periods are adjusted, if need be, to satisfy
inequality 6.

In the above discussion, we have assumed that the num-
ber of broadcast disks q as well as the broadcast periods
of these disks �u, for u � �� � � � � q are known quantities.
In a typical system, this is not likely to be the case. In
particular, these quantities must be computed by the server
given the set of data items to be broadcasted and their tim-
ing constraints. This can be achieved through an iterative
process, whereby the server starts with an initial assignment
of one data item per broadcast disk.� In each iteration, the
server proceeds by coalescing two broadcast disks by de-
creasing the broadcast period of the slower disk to match
the faster one. The two broadcast disks to be coalesced are
chosen in a way that minimizes the bandwidth wasted by
this “speeding-up” process, while satisfying inequality 6.
The process is completed when no coalescing is possible—
namely when it is not possible to coalesce any two disks
without violating inequality 6.�

3. Organization of BDisks for Fault-tolerance

Current techniques for organizing BDisks do not accomo-
date for transmission failures. In particular, when an error�

occurs in the retrieval of one (or more) blocks from a data
item (or file), then the client must wait for a full broadcast
period before being able to retrieve the erroneous block.
This broadcast period may be very long since the broad-
cast disk may include thousands of other blocks, which the
server must transmit before getting back to the block in
question. For real-time systems, such a delay may result
in missing critical timing constraints. In this section we

�This is always possible as long as inequality 3 holds, which is a neces-
sity as established in lemma 2.

�We are currently investigating other algorithms for identifying the
“best” set of broadcast disks for a slotted rate monotonic organization un-
der various assumptions.

�In this paper we assume that all transmission failures are manifested as
erasures—communication errors that are detected by clients (e.g., through
the generation of a checksum/parity error).

show how to use AIDA to add fault-tolerance properties to
BDisks.

AIDA is a novel technique for dynamic bandwidth allo-
cation, which makes use of minimal, controlled redundancy
to guarantee timeliness and fault-tolerance up to any degree
of confidence. AIDA is an elaboration on the Information
Dispersal Algorithm of Michael O. Rabin [19], which we
have previously shown to be a sound mechanism that con-
siderably improves the performance of I/O systems and par-
allel/distributed storage devices [4, 9]. The use of IDA for
efficient routing in parallel architectures has also been in-
vestigated [18].

3.1. Information Dispersal and Retrieval

Let F represent the original data object (hereinafter referred
to as the file) to be communicated (or retrieved). Further-
more, assume that file F is to be communicated by sending
N independent messages (orN independent transmissions).
Using Rabin's IDA algorithm, the file F can be processed
to obtain N distinct blocks in such a way that recombining
any m of these blocks, m � N , is sufficient to retrieve F .
The process of processing F and distributing it overN sites
is called the dispersal of F , whereas the process of retriev-
ing F by collecting m of its pieces is called the reconstruc-
tion of F . Figure 1 illustrates the dispersal, communication,
and reconstruction of an object using IDA. Both the disper-
sal and reconstruction operations can be performed in real-
time. This was demonstrated in [5], where we presented an
architecture and a CMOS implementation of a VLSI chip�

that implements IDA.
The dispersal and reconstruction operations are sim-

ple linear transformations using irreducible polynomial
arithmetic.� The dispersal operation shown in figure 2
amounts to a matrix multiplication (performed in the do-
main of a particular irreducible polynomial) that transforms
data from m blocks of the original file into the N blocks
to be dispersed. The N rows of the transformation matrix
�xij �N�m are chosen so that any m of these rows are mu-
tually independent, which implies that the matrix consisting
of any suchm rows is not singular, and thus inversible. This
guarantees that reconstructing the original file from any m
of its dispersed blocks is feasible. Indeed, upon receiving
any m of the dispersed blocks, it is possible to reconstruct
the original data through another matrix multiplication as
shown in figure 2. The transformation matrix �yij �m�m is
the inverse of a matrix �x�ij �m�m, which is obtained by re-
moving N � m rows from �xij �N�m. The removed rows

�The chip (called SETH) has been fabricated by MOSIS and tested in
the VLSI lab of Harvard University, Cambridge, MA. The performance
of the chip was measured to be about 1 megabyte per second. By using
proper pipelining and more elaborate designs, this figure can be boosted
significantly.

�For more details, we refer the reader to Rabin's paper [19] on IDA and
our paper on a VLSI implementation of IDA [5].

D
is

p
er

se

 Original
Data Object

R
ec

o
n

st
ru

ct

Unavailable
Data Blocks

Available
Data Blocks

 Retrieved
Data Object

 C
o

m
m

u
n

ic
at

io
n

N
et

w
o

rk
/P

ro
to

co
l

Dispersed
 Object

memory page,
video frame,
D.B. record.

Figure 1. Dispersal and reconstruction of information using IDA.

X11

X21

XN1

X12

X22

XN2

X1m

X2m

XNm

A1

A2

Am

A’1

A’2

A’N

 Blocks of
Original File

 Blocks of
Dispersed File

 Dispersal
Transformation Matrix

Dispersal Operation

Y11

Y21

Ym1

Y12

Y22

Ym2

Y1m

Y2m

Ymm

A’1

A’2

A’m

A1

A2

Am

 Blocks of
Received File

 Blocks of
Reconstructed File

 Reconstruction
Transformation Matrix

Reconstruction Operation

Figure 2. The Dispersal and Reconstruction operations of IDA.

correspond to dispersed blocks that were not used in the
reconstruction process. To reduce the overhead of the al-
gorithm, the inverse transformation �yij �m�m could be pre-
computed for some or even all possible subsets of m rows.

In this paper, we assume that broadcasted blocks are self-
identifying.� In particular, each block has two identifiers.
The first specifies the data item to which the block belongs
(e.g., this is page 3 of object Z). The second specifies the se-
quence number of the block relative to all blocks that make-
up the data item (e.g., this is block 4 out of 5). This is
necessary so that clients could relate blocks to objects, and
more importantly, to allow clients to correctly choose the
inverse transformation �yij �m�m when using IDA.

3.2. Adaptive Information Dispersal and Retrieval

Several fault-tolerant redundancy-injecting protocols (simi-
lar to IDA) have been suggested in the literature. In most of
these protocols, redundancy is injected in the form of parity
blocks, which are only used for error detection and/or cor-
rection purposes [11]. The IDA approach is radically differ-
ent in that redundancy is added uniformly; there is simply

�Another alternative is to broadcast a directory (or index [15]) at the be-
ginning of each broadcast period. This approach is less desirable because
it does not lend itself to a clean fault-tolerant organization.

no distinction between data and parity. It is this feature that
makes it possible to scale the amount of redundancy used in
IDA. Indeed, this is the basis for the adaptive IDA (AIDA)
[6].

Using AIDA, a bandwidth allocation operation is in-
serted after the dispersal operation but prior to transmission
as shown in figure 3. This bandwidth allocation step al-
lows the system to scale the amount of redundancy used in
the transmission. In particular, the number of blocks to be
transmitted, namely n, is allowed to vary from m (i.e. no
redundancy) to N (i.e. maximum redundancy).

The reliability and accessibility requirements of various
data objects in a distributed real-time application depend
on the system mode of operation. For example, while the
fault-tolerant timely access of a data object (e.g., “location
of nearby aircrafts”) could be critical in a given mode of
operation (e.g., “combat”), but less critical in a different
mode (e.g., “landing”), and even completely unimportant
in others. Using the proposed AIDA, it is possible to dy-
namically adjust the profiles of reliability and accessibility
requirements for the various objects (files) in the system by
controlling the levels of distribution and dispersal for these
objects. In other words, given the requirements of a particu-
lar mode of operation, servers could use the bandwidth allo-
cation step of AIDA to scale down the redundancy used with

unimportant (e.g., non-real-time) data items, while boosting
it for critical data items.

A1

A2

Am

A’1

A’2

A’N

A’1

A’2

A’n

A’1

A’2

A’r

A1

A2

Am

Dispersal Bandwidth
 Allocation Transmission Reconstruction

(only if r >= m)

Figure 3. AIDA dispersal and reconstruction

3.3. AIDA-based Broadcast Programs

Figure 4 illustrates a simple example of a flat broadcast pro-
gram in which two files A and B are transmitted periodi-
cally by scanning through their respective blocks. In partic-
ular, file A consists of 5 blocks A�� � � � � A� and file B con-
sists of 3 blocks B�� � � � � B�. The broadcast period for this
broadcast disk is 8 (assuming one unit of time per block). A
single error encountered when retrieving a block results in a
delay of 8 units of time, until the erroneous block is retrans-
mitted. This leads to the following eay-to-prove lemma.

Lemma 4 If the broadcast period of a flat broadcast pro-
gram is � , then an upper bound on the worst-case delay
incurred when retrieving that file is r� units of time, where
r is the number of block transmission errors.

A1 A2 B1 A3 B2 A4 B3 A5 A1 A2 B1 A3 B2 A4 B3 A5

Program Broadcast Period

Figure 4. A flat broadcast program

Now, consider the same scenario if files A and B were
dispersed using AIDA such that file A is dispersed into 10
blocks, of which any 5 blocks are enough to reconstruct it,
and file B is dispersed into 6 blocks, of which any 3 blocks
are enough to reconstruct it. Figure 5 shows a broadcast
program in which files A and B are transmitted periodi-
cally by scanning through their respective blocks. Notice
that there are two “periods” in that transmission. The first is
the broadcast period, which (as before) extends for 8 units
of time. The length of the broadcast period for a broad-
cast disk is set so as to accomodate enough blocks from ev-
ery file on that disk—enough to allow clients to reconstruct
these files. In the example of figure 5, at least 5 different
blocks and 3 different blocks are needed from files A and
B, respectively. While the broadcast period for the broad-
cast disk is still 8, the server transmits different blocks from
A and B in subsequent broadcast periods. This leads to the

second “period” in the broadcast program, which we call
the program data cycle. The length of the program data cy-
cle for a broadcast disk is set to accomodate all blocks from
all the dispersed files on that disk. In the example of figure
5, all 10 blocks and all 6 blocks from dispersed files A and
B exist in the program. resulting in a program data cycle of
16.

B1 A2 A3 B2 A4 B3 A5 A6 B4 A7 A8 B5 A9 B6 A10

Program Broadcast Period

’ ’ ’ ’ ’ ’ ’ ’

Program Data Cycle

A1
’ ’ ’ ’ ’ ’ ’ ’

A1

A2

A3

A4

A5

A1
’

A2
’

A3
’

A10
’

IDA

File A

Before Dispersal
 (5 blocks)

After Dispersal
 (10 blocks)

B1

B2

B3

B1
’

B2
’

B3
’

6B’

IDA

File B

Before Dispersal
 (3 blocks)

After Dispersal
 (6 blocks)

Figure 5. A flat broadcast program using IDA

Unlike the example of figure 4, a single error encoun-
tered when retrieving a block (say from file A) results in a
delay of at most 2 units of time, until any additional block
from file A is transmitted. For example, assume that a client
received the first 4 blocks, A�� A�� A�� A� from file A cor-
rectly, but failed to receive the fifth block. In the regime of
figure 4, the client must wait for 8 cycles until A� is trans-
mitted again. In the regime of figure 5, the client has to wait
only until A�

� is transmitted, which implies a delay of only
1 unit of time.

The value of AIDA-based broadcast programs is further
appreciated by comparing the delays that a client may ex-
perience if errors clobber more than one block during the
retrieval of a particular file. Using the broadcast programs
of figures 4 and 5, one can easily establish estimates for the
worst-case delays as a function of the number of transmis-
sion failures. These are shown in figure 6. This observation
could be easily generalized to yield the following lemma.

Lemma 5 If the maximum time between any two blocks of
a dispersed file in an AIDA-based flat broadcast program
is �, then an upper bound on the worst-case delay incurred
when retrieving that file is r� units of time, where r is the
number of block transmission errors.

The comparison in figure 6 is for a toy example, with
only two files in a broadcast period. In a typical broad-
cast disk, the difference between the two regimes is much
more accentuated. From lemmas 4 and 5, an AIDA-based
flat broadcast program yields error recovery delays �

�
times

Number of Worst-Case Delay
Errors With IDA Without IDA

0 0 0
1 3 8
2 4 16
3 6 24
4 7 32
5 8 40

Figure 6. Worst-case delays versus errors

shorter than those of a simple flat broadcast program. To
maximize the benefit of AIDA-based organization in re-
ducing error recovery delays, the various blocks of a given
file should be uniformly distributed throughout the broad-
cast period. For example, if the broadcast program con-
sists of 200 blocks from 10 different files, each consisting
of 20 blocks, then it is possible to spread the blocks in such
a way that blocks from the same file are located at most
� � �		

�	
� �� blocks away from each other. This results in

a 20-fold speedup in error recovery.
Generally speaking, the value of �

�
depends on many pa-

rameters, including the granurality of the blocks, the length
of the broadcast program, and the relative sizes of the files
included in the broadcast program.

3.4. Security and Privacy Properties

The broadcasting of data in a distributed system raises sig-
nificant security and privacy issues. In particular, data in-
tended to a particular client community (e.g., subscribers to
a particular stock market service) may be accidentally or
deliberately read and interpreted by unauthorized clients.

A common technique to ensure communication security
is to store and communicate information using some form
of encryption, where only authorized clients are enabled to
decrypt the information through the use of appropriate se-
cret keys [20]. The proven difficulty of decrypting the in-
formation without knowing the secret key guarantees a high
level of security. The main disadvantage of this technique
is that the information (although encrypted) is available as
a whole to unauthorized clients. This may make it possible
(albeit hard) for adversaries to break the secret encryption
key. The AIDA-based protocol we are proposing in this
paper adds another level of protection against unauthorized
access to broadcast data. This level of protection could be
use in addition to, or in lieu of encryption.

The AIDA dispersal and reconstruction operations re-
quire the server and clients to agree on the �xij �N�m trans-
formation matrix. Such an agreement could be accom-
plished a priori by coding these transformations into the
communication protocol. Alternately, these transformations

could be dynamically broadcast to clients. This could be
useful in enhancing security, by changing periodically the
�xij �N�m transformation matrix, thus making unauthorized
clients incapable of “listening in” on the broadcasted infor-
mation. The security properties of AIDA are attractive be-
cause they do not add any complexity to the communication
process. In other words, communication privacy is boosted
simply by using (and dynamically changing) the secret IDA
transformation matrices, at no additional cost.

4. Adding Timeliness to Fault-tolerant BDisks

In the previous sections, we discussed techniques that could
be used to improve the timeliness and fault-tolerance prop-
erties of broadcast disk systems. In this section, we discuss
how to compose these properties.

4.1. Shadowed Organization

Using a shadowed broadcast disk organization, each file on
a broadcast disk must be transmitted r	� times within each
broadcast period to completely mask the effect of up to r

block transmission errors. To explain how this could be
achieved, consider the broadcast program shown in figure
7. Files A and B are replicated so that they are transmitted
twice in each broadcast period. If an error is encountered in
retrieving any single block from a file—sayA—then that er-
ror will not result in missing any time constraints associated
with the retrieval of file A at the client because that same
block will be retransmitted again within the same broad-
cast period. The cost of masking such errors is to reduce
the downstream bandwidth utilization. This result is estab-
lished in the following lemma.

Lemma 6 Using a shadowed organization of broadcast
disks, it is possible to tolerate any r failures per broadcast
period by sacrificing r

r
�
of the bandwidth available to the

broadcast disk.

A1 A2 B1 A3 B2 A4 B3 A5 A1 A2 B1 A3 B2 A4 B3 A5

Program Broadcast Period

Figure 7. A shadowed broadcast program

4.2. AIDA-based Broadcast Programs

AIDA could be used not only to reduce the impact (recovery
delay) of a transmission error, but also to completely mask
the impact of such error by sacrificing a minimal percent-
age of the downstream bandwidth. In other words, AIDA
could be used to ensure that for a preset maximum number
of failures, a transmission error will not result in delays that

would jeopardize the timely retrieval of data from a broad-
cast disk.

To explain how this could be achieved, consider the
broadcast program shown in figure 8. File A is dispersed
using AIDA in such a way that any 5 of its blocks would
be enough to reconstruct it. Yet, in the broadcast program,
6 blocks are used within a single broadcast period. Sim-
ilarly, file B is dispersed using AIDA in such a way that
any 3 of its blocks would be enough to reconstruct it. Yet,
in the broadcast program, 4 blocks are used within a single
broadcast period. The result of packing an “extra” block
from files A and B within the broadcast period is to make
clients able to completely mask the impact of a single block
transmission error (per file per broadcast period). In other
words, if an error is encountered in retrieving any single
block from a file—say A—then that error will not result in
missing any time constraint associated with the retrieval of
file A at the client. The cost of masking such errors is to
reduce the downstream bandwidth utilization. This result is
established in the following lemma.

Lemma 7 Using an AIDA-based organization of broadcast
disks, it is possible to tolerate any r failures per broadcast
period by sacrificing a fraction

r

r 	 �

k

Pk

i���mi�

of the bandwidth available to the broadcast disk, where mi

is the minimum number of blocks necessary to reconstruct
data item Di, and k is the total number of data items in the
broadcast program.

B1 A2 A3 B2 A4 B3 A5 A6 B4 A7 A8 B5 A9 B6 A10

Program Broadcast Period

’ ’ ’ ’ ’ ’ ’ ’

Program Data Cycle

A1
’ ’ ’ ’ ’ ’ ’ ’

Figure 8. An AIDA-based broadcast program

In the example of figure 8, masking a single block trans-
mission error costs 20% of the broadcast disk's bandwidth.
This is to be compared with 50%, if the same effect is to
be achieved using a simple shadowed broadcast disk or-
ganization. The value of AIDA-based broadcast programs
in masking transmission errors is further appreciated by
comparing the bandwidth savings achievable through AIDA
when more than a single failure is to be tolerated. This could
be established by computing the ratio of the extra bandwidth
needed when AIDA is used and the the extra bandwidth
needed when shadowing is used. Assuming that broadcast
disk consists of k data items of sizes Si� i � �� � � � � k, and
assuming that the size of a block is b, then from lemmas 6
and 7, this ratio is as follows.

AIDA Extra bandwidth

Shadowing Extra Bandwidth
�

kb
Pk

i���Si�
(7)

For example, if the broadcast program consists of k � ��
files, each consisting of 10 blocks, then using AIDA results
in a 10-fold decrease in the “extra” bandwidth necessary to
mask the effect of any number of failures. Notice that this
result depends on the block size used. In particular, if the
block size is halved, making each one of the 20 files occupy
20 blocks, then using AIDA results in a 20-fold decrease
in “extra” bandwidth. Generally speaking, smaller block
sizes result in larger bandwidth savings when AIDA is used.
This, however, is not without a cost. Namely, smaller block
sizes result in a larger number of blocks, and hence a more
complex (costly) reconstruction process. Therefore the sav-
ings in bandwidth must be weighed against the computation
cost of the reconstruction process.

Using the results of lemma 7, we are now ready to re-
formulate lemmas 1, 2, and 3 to obtain the minimum down-
stream bandwidth requirements to be able to satisfy both
the real-time and fault-tolerance constraints imposed on flat,
rate monotonic, and slotted rate monotonic broadcast disks,
respectively.

Lemma 8 If Si is the size of data item Di and Ti is the
worst-case latency tolerable for its retrieval in the presence
of at most r block transmission errors, where i � �� � � � k,
then the downstream bandwidth Bd for an AIDA-based flat
broadcast with a block size b is bounded by the inequality.

Bd �

Pk

i���Si 	 rb�

minki���Ti�
(8)

Lemma 9 If Si is the size of data item Di and Ti is the
worst-case latency tolerable for the retrieval of Di in the
presence of at most r block transmission errors, where
i � �� � � � k, then the downstream bandwidth Bd for an
AIDA-based rate monotonic broadcast with a block size b

is bounded by the inequality.

Bd �

kX

i��

�Si 	 rb�

Ti
(9)

Lemma 10 If Si is the size of data item Di and Ti is the
worst-case latency tolerable for the its retrieval in the pres-
ence of at most r block transmission errors, where i �
�� � � � k, then the downstream bandwidth Bd for an AIDA-
based slotted rate monotonic broadcast consisting of disks

Cu� u � �� � � � � q with broadcast periods �u and a block size
b is bounded by the inequalities.

Bd �

qX

u��

P
�Di�Cu

�Si 	 rb�

�u
(10)

�Di � Cu � Ti � �u (11)

5. Conclusion and Future Work

With the advent of mobile computers and cellular communi-
cation, it is expected that most clients in a distributed envi-
ronment will have limited storage capacities. More impor-
tantly these clients will have a limited upstream bandwidth
(if any) for transferring information to servers, as opposed
to a large downstream broadcast bandwidth for receiving
information from servers. Example applications include
intelligent navigational systems, wearable battlefield com-
puters, and computerized interactive TV cable boxes. The
significant asymmetry between downstream and upstream
communication capacities, and the significant disparity be-
tween server and client storage capacities have prompted re-
searchers to suggest the use of the downstream bandwidth
as a broadcast disk, on which data items that may be needed
by clients are continuously and repeatedly transmitted by
servers.

The execution of critical tasks in such asymmetric client-
server environments requires that data retrievals be success-
fully completed before some set deadlines. Previous work
on broadcast disks did not deal explicitly with the fault-
tolerance and timeliness constraints imposed by such crit-
ical tasks. In this paper, we have proposed a number of
broadcast disk organizations that would alleviate such con-
straints. In particular, we have presented and evaluated a
novel real-time, fault-tolerant, secure broadcast disk orga-
nization technique based on the Adaptive Information Dis-
persal Algorithm (AIDA).

AIDA does not guarantee that time-constraints will be
satisfied, rather it guarantees a (possibly dynamic) lower
bound on the probability of meeting these constraints. This
probability can be made arbitrarily high if enough band-
width is sacrificed. This, however, may not be feasible if the
system is running close to capacity. One possible approach
to deal with such a situation is to allow the quality of service
to degrade gracefully. The integration of AIDA with best-
effort techniques such as those presented in [10, 13] and
imprecise computation techniques such as those suggested
in [17] is an interesting research problem yet to be pursued.

In this paper we considered three possible organizations
for broadcast programs: flat, rate monotonic, and slotted
rate monotonic. Of these three organizations the slotted rate
monotonic organization strikes the right balance between

efficient bandwidth utilization and ease of programming.
One problem that was not considered in this paper—and
which is the subject of on-going research—is the optimal
specification of the broadcast periods for the various broad-
cast disks (and the allocation of data items thereon) in a
slotted rate monotonic organization.

The question of propagating updates to data stored on
broadcast disks is an interesting topic that received no at-
tention from the research community. Current work ignores
this problem under the assumption that modified data will
eventually be rebroadcasted, thus invalidating client caches,
and possibly restarting transactions or computations carried
on the old stale data. Delays from such restarts could be
fatal in a real-time environment. Techniques that allow for
very frequent broadcasting of invalidation messages (or in-
cremental updates) coupled with speculative client process-
ing policies [8] could be useful in alleviating this problem.
Other related issues include real-time database concurrency
control and indexing.

Broadcast disks are likely to be used by clients in re-
trieving information from a large body of data. Despite the
abundance of downstream bandwidth, it is likely that this
bandwidth is not going to be “enough” to broadcast all the
information that clients may ever need. One approach to
deal with this problem is for clients to dispatch agents by
sending appropriate control messages through the limited
upstream bandwidth. These agents gather the needed infor-
mation by searching the Global Infosphere (say the WWW)
and by contacting servers to transmit that information down
to clients. In a real-time setting, there are a number of issues
to be considered. For example, agents must be designed to
meet timing constraints established by clients. This could
be done through the use of (say) imprecise computation
techniques. Also, admission control and scheduling strate-
gies must be incorporated in broadcast disks protocols to en-
sure that agents are able to transmit results to clients in due
time. Other related issues include client-initiated caching
and prefetching strategies.

The selection of “what data to locate” on broadcast
disks and “how frequently to broadcast it” are interesting
problems, reminiscent of the specualtive data dissemination
protocols [7] we proposed and evaluated for the WWW. The
use of broadcast disks, however, poses new challenges for
the implementation of these protocols. In particular, when
broadcast disks are used, servers cannot keep track of the
access patterns necessary for data dissemination. Therefore,
new protocols must be devised to allow servers to recon-
struct these access patterns.

Broadcast disks offer an attractive mechanism for “link-
ing” mobile clients to the Global Infosphere. Nevertheless,
broadcast disks introduce problems of their own. One such
problem is security. If data is broadcast to a client, then it
is available to all. More importantly, if clients are to rely on

agents they dispatch, then mechanisms must be devised to
authenticate messages received from such agents. In this pa-
per we investigated the potential use of information disper-
sal to boost the security/privacy of broadcast disks through
the use of secret dispersal keys. More work needs to be done
to embed encryption/authentication protocols in broadcast
disks protocols.

In order to evaluate real-time fault-tolerant broadcast
disks protocols, it is necessary to develop a testbed and a set
of benchmarks. To that end, our current effort involves the
development and use of such utilities to establish the cor-
rectness and compare the performance of various broadcast
disks protocols.

Acknowledgments:
I would like to thank Agnes Lee and Mariya Kishenyuk
for their efforts in building the BDisks testbed and for their
feedback on earlier versions of this paper.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broad-
cast disks: Data management for asymmetric communica-
tions environments. In Proceedings of ACM SIGMOD con-
ference, San Jose, CA, May 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik. Prefetching from
a broadcast disk. In Proceedings of ICDE'96: The 1996 In-
ternational Conference on Data Engineering, New Orleans,
Louisiana, March 1996.

[3] Swarup Acharya, Michael Franklin, and Stanley Zdonik.
Dissemination-based data delivery using broadcast disks.
IEEE Personal Communications, 2(6), December 1995.

[4] Azer Bestavros. IDA-based disk arrays. Technical Mem-
orandum 45312-890707-01TM, AT&T, Bell Laboratories,
Department 45312, Holmdel, NJ, July 1989.

[5] Azer Bestavros. SETH: A VLSI chip for the real-time
information dispersal and retrieval for security and fault-
tolerance. In Proceedings of ICPP'90, The 1990 Interna-
tional Conference on Parallel Processing, Chicago, Illinois,
August 1990.

[6] Azer Bestavros. An adaptive information dispersal algorithm
for time-critical reliable communication. In Ivan Frisch,
Manu Malek, and Shivendra Panwar, editors, Network Man-
agement and Control, Volume II. Plenum Publishing Corpo-
ration, New York, New York, 1994.

[7] Azer Bestavros. Speculative data dissemination and service
to reduce server load, network traffic and service time for dis-
tributed information systems. In Proceedings of ICDE'96:
The 1996 International Conference on Data Engineering,
New Orleans, Louisiana, March 1996.

[8] Azer Bestavros and Spyridon Braoudakis. Value-cognizant
speculative concurrency control for real-time databases. In-
formation Systems Journal: Special Issue on Real-Time
Database Systems, 21(1):75–101, March 1996.

[9] Azer Bestavros, Danny Chen, and Wing Wong. The reliabil-
ity and performance of parallel disks. Technical Memoran-
dum 45312-891206-01TM, AT&T, Bell Laboratories, De-
partment 45312, Holmdel, NJ, December 1989.

[10] D. Ferrari. Design and application of a delay jitter control
scheme for packet-switching internetworks. In Proceedings
of the second International Conference on Network and Op-
erating System Support for Digital Audio and Video, Heidel-
berg, Germany, November 1991.

[11] Garth Gibson, Lisa Hellerstein, Richard Karp, Randy Katz,
and David Patterson. Coding techniques for handling failures
in large disk arrays. Technical Report UCB/CSD 88/477,
Computer Science Division, University of California, July
1988.

[12] David Gifford. Ploychannel systems for mass digital com-
munication. Communications of the ACM, 33, February
1990.

[13] M. Gilge and R. Gussella. Motion video coding for packet-
switching networks – an integrated approach. In Proceedings
of the SPIE Conference on Visual Communications and Im-
age Processing, Boston, MA, September 1991.

[14] T. Imielinski and B. Badrinath. Mobile wireless comput-
ing: Challenges in data management. Communications of
the ACM, 37, October 1994.

[15] T. Imielinski, S. Viswanathan, and B. Badrinath. Energy ef-
ficient indexing on air. In Proceedings of ACM SIGMOD
Conference, Minneapolis, MN, May 1994.

[16] C. L. Liu and J. Layland. Scheduling algorithms for multi-
programming in hard real-time environments. Journal of the
Assocation of Computing Machinery, 20(1):46–61, January
1973.

[17] Jane Liu and Victor Lopez-Millan. A congestion control
scheme for a real-time traffic switching element using the im-
precise computations technique. In Proceedings of the IEEE
IPPS 1st Workshop on Parallel and Distributed Real-Time
Systems, pages 89–93, Newport Beach, CA, April 1993.

[18] Yuh-Dauh Lyuu. Fast fault-tolerant parallel communication
and on-line maintenance using information dispersal. Tech-
nical Report TR-19-1989, Harvard University, Cambridge,
Massachusetts, October 1989.

[19] Michael O. Rabin. Efficient dispersal of information for se-
curity, load balancing and fault tolerance. Journal of the As-
sociation for Computing Machinery, 36(2):335–348, April
1989.

[20] A. Shamir. How to share a secret? Communication of the
ACM, 22:612–613, November 1979.

[21] S. Zdonik, M. Franklin, R. Alonso, and S. Acharya. Are
`disks in the air' just pie in the sky? In Proceedings of the
IEEE Workshop on Mobile Computing Systems and Applica-
tions, Santa Cruz, CA, December 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

