In Proceedings of RTAS 97: The 1997 |EEE Real-Time Technology and Applications Symposium, Montreal, Canada, June 1997.

Admission Control for Soft-Deadline Transactions in ACCORD*

Sue Nagy'

The Open Group
Research Institute
Cambridge, MA 02142
s.nagy@opengroup.org

Abstract

The use of admission control and overload manage-
ment techniques in real-time systems has been shown
to result in improved system performance—in terms
of mazximizing the value-added to the system by those
transactions committing on time—in comparison to
systems which do not employ such techniques. Con-
tinuing with our research in hard deadline Real-Time
DataBase (RTDB) systems, we investigate the chal-
lenges associated with soft deadline transactions and
describe a number of admission control and overload
management techniques as well as scheduling algo-
rithms appropriate for such systems.

1 Introduction

In our previous work reported in [3], we introduced
ACCORD, an Admission Control and Capacity Over-
load management Real-time Database framework—an
architecture and a transaction model—for hard dead-
line RTDB systems. The system architecture consists
of admission control and scheduling components which
provide early notification of failure to submitted trans-
actions that are deemed not valuable or incapable of
completing on time. The transaction model consists
of two components: a primary task and a compensat-
ing task. The execution requirements for the primary
task are not known a priori, whereas those for the
compensating task are known a priori.

When a transaction is submitted to the system, an
Admission Control Mechanism (ACM) is employed to
decide whether to admit or reject that transaction.
Once admitted, a transaction is guaranteed to finish
executing before its deadline. A transaction is consid-
ered to have finished executing if exactly one of two
things occur: either its primary task is completed, in
which case we say that the transaction has successfully

*This work has been partially supported by NSF (grant
CCR-9706685).

TThis work was conducted as part of the author’s Ph.D. the-
sis at Boston University.

Azer Bestavros
Computer Science Department
Boston University
Boston, MA 02215
best@cs.bu.edu

committed, or its compensating task is completed, in
which case we say that the transaction has safely ter-
minated. A committed transaction brings a positive
profit to the system, whereas a terminated transac-
tion brings no profit. The goal of the admission con-
trol and scheduling protocols employed in the system
is to maximize the profit of those primary tasks which
finish on time.

Admission control and overload management tech-
niques preserve system resources by minimizing the
likelihood of a transaction being accepted for execu-
tion, only to later miss its deadline. Obviously, such
a situation cannot totally be eliminated in a system
where the execution requirements of transactions are
not known a priori. Therefore, missing a deadline is
always a possibility with which the system must con-
tend. Hence, there must exist some compensating ac-
tions that, when executed in a timely fashion, would
allow the system to be “bailed out” from the conse-
quences of missing a transaction’s deadline.

When transactions have hard deadlines, transac-
tions must successfully commit or else safely termi-
nate by their deadlines (due to the prohibitive loss to
be incurred if deadlines are missed). In this case, the
scheduling of compensating tasks is relatively straight-
forward. We attempt to schedule each compensating
task so that it starts at the latest possible time in or-
der to give the corresponding primary task as much
time as possible to complete on time. When transac-
tions have soft deadlines, however, then it is possible
for the system to finish (commit/terminate) a trans-
action past its deadline, which makes the problem of
compensating task scheduling much harder. The ques-
tion which we address in this research is the following;:
“How should compensating tasks be scheduled in soft
deadline RTDB systems, so that the profit returned
to the system is maximized?”

Our research is motivated by research problems in
application areas such as robotics, telephone switching
systems and the stock market where RTDB systems

are used to store the state of the world (i.e. phys-
ical components), directory information and finan-
cial data, respectively. Compensating actions, busy
signals for example, in a telephony application, are
needed if the system cannot handle the volume of call
requests.

We start in section 2 with a brief overview of our
transaction processing model and then in section 3
describe our time-varying value functions for transac-
tions in soft RTDB systems. In section 4, we delineate
the compensating task scheduling algorithms. Next,
we present our initial simulation results in section 5.
We then review in section 6 previous research work
and highlight our contributions. We conclude in sec-
tion 7 with a summary and a description of future
research directions.

2 System model

Figure 1 shows the various components in our
RTDB system. For a full explanation of all compo-
nents as well as details of our admission control pro-
tocols (i.e. workload and concurrency) and scheduling
algorithms (i.e. First Fit (FF), Latest Fit (LF), Lat-
est Marginal Fit (LMF), Latest Adaptable Fit (LAF),
Value Adaptable Fit (VAF)), please refer to [3].

WACM CACM Reject

ACM Finish
cem

LEGEND
ACM - Admission Control Manager
WACM - Workload ACM
CACM - Concurrency ACM
CTQ - Compensating Task Queue
PTQ - Prmary Task Queue
Sched - CPU scheduler
CCM - Concurrency Control Manager

— CTQ Commit/Terminate
Nin
Sched @
T
— PTQ Preempt

Figure 1: Major System Components

3 Value functions

Jensen, Locke and Tokuda [6] introduced the no-
tion of transactions’ values as a function of time.
Each transaction T; is associated with a value func-
tion V;(t) which represents the value of T; at time ¢. In
hard deadline systems, typically V;(t) is some constant
value v; until D;, the deadline of the transaction. Af-
ter this time, v; tends towards negative infinity, indi-
cating the catastrophic consequences of missing a hard
deadline. For soft deadline transactions, the value of
a transaction may decay until some point in time, de-
noted Z;, at which the value of the transaction is zero,
i.e. there is no benefit in continued execution of this

transaction as it adds no value to the system. More-
over, execution of a transaction passed “zero point”
results in a negative added to the system.

Similar to the work of Bestavros and Braoudakis
in [2], we define the penalty gradient of a transaction
to be the rate at which the transaction’s value decays
over time.

Definition 1 The penalty gradient of a transaction
T; with a value function of Vi(t) and a deadline D; is
defined as:

d

E‘/l(t), for t > Di-

In soft RTDB systems, we use the penalty gradient

as in indication of how soft deadlines are relative to
one another. In order to characterize the rate at which

transactions loose their value, we employ the following
value function.

Definition 2 The value function V;(t) of a transac-
tion T; with an arrival time of A; and a soft deadline
of D; is defined as:

v; ifAiStSDi
Vi(t) = { v; — [(t — Dy)tancoy] if t > D;

where v; is the value-added to (profit of) the system iff

T; completes its execution before its deadline D;, and
tan «; is its penalty gradient.

v,

V.
[

A D.

Figure 2: Typical Value Function

Figure 2 depicts a typical value function for trans-
action T;. The value of T; is v; from time A; up to
D;. After time D;, the value decays at a rate corre-
sponding to the tan a;. The penalty gradient of T; may
vary from zero for non-critical (non-real-time) transac-
tions (a; = 0) to infinity for very critical transactions
(o; = m/2).

4 Compensating task scheduling

As stated previously, when transactions have soft
deadlines rather than hard deadlines, the compensat-
ing task scheduling problem is more challenging. Un-
like in hard deadline RTDB systems, where the only
option available for scheduling a compensating task is
so that it completes by the deadline of the transaction,
with soft deadline RTDB systems, compensating tasks
may be scheduled to start at any time between the
arrival time of the transaction and an undetermined
future time. The powerful sense of urgency associated
with transactions having hard deadlines is no longer
present.

Direct extensions of hard deadline transaction
management

There are a number of compensating task scheduling
options to choose from which we discuss below.

1. AD: Schedule the compensating task so that it
starts At the Deadline, D;.

2. AZ: Schedule the compensating task so that it
starts At the Zero value time, Z;.

3. FZ: Schedule the compensating task so that it
starts Following the Zero value time, Z;.

With AD, primary tasks which successfully com-
mit will do so by the deadline of the transaction, and
hence they will return the maximum value to the sys-
tem. In addition, transactions will generally remain
in the system for shorter periods of time, and conse-
quently have less chances of wasting system resources
(e.g. CPU) only to abort. However, consider trans-
actions which are aborted and return no value to the
system. If these same transactions were kept in the
system past their deadlines, as with AZ or FZ, they
would have had more opportunity to successfully com-
mit and return some diminished value to the system.
The trade-off, though, is that transactions will typi-
cally remain in the system for longer periods of time.
AD scheduling basically transforms soft deadlines into
hard deadlines.

With AZ, although transactions may remain in the
system past their deadlines, there is the chance of gain-
ing some diminished value. Even though this value
may be less than that if the transaction had commit-
ted before its deadline, the value returned to the sys-
tem is greater than if the compensating task had safely
terminated by the deadline, a possible scenario with
AD.

With FZ, in the event that a primary task com-
mits past the zero value time, the result would be

the return of a negative value to the system, given
the time-varying value function as described in fig-
ure 2. The actual value lost by the system, when a
transaction 7; completes past its zero point Z;, de-
pends on how far past the deadline the transaction
completes. The time that a transaction completes
(i.e. successfully commits/safely terminates) is in part
determined by where the corresponding compensat-
ing task is scheduled. Certainly compensating tasks
could be scheduled at distant future times, using F'Z,
thereby allowing primary tasks to eventually commit.
The price that is paid for these successful commit-
ments is the potentially large, negative value incurred
by the system. However, the return of negative value
is not necessarily an undesirable outcome especially in
situations where there is a corresponding large, posi-
tive profit to be gained by the commitment(s) of other
high-valued transaction(s). Rather than execute the
compensating tasks of low-valued transactions—which
takes away processor time from the primary tasks of
other high-valued transactions—we permit less prof-
itable transactions to remain in the system and exe-
cute their primary tasks when doing so will not nega-
tively effect the more profitable transactions.

Generalized framework for soft deadline trans-
action management

There are a number of major differences between soft
and hard deadline systems which dictate the appro-
priate manner to schedule compensating tasks. With
hard deadline systems, compensating tasks must have
higher priority than primary tasks and also cannot be
preempted since all admitted transactions must either
successfully commit or safely terminate by their dead-
lines. With soft deadline transactions, compensating
tasks do not necessarily have higher priority than pri-
mary tasks and may also be preempted. In evaluat-
ing the performance of soft deadline RTDB systems,
our focus shifts from maximizing the number (or sum
of values) of transactions which complete on-time to
maximizing the value that is returned to the system
by transactions which successfully commit, both be-
fore as well as after their deadlines. Consequently,
the scheduling algorithm used to apportion the CPU
time to primary tasks must be changed as EDF [§],
which we employed for hard deadline transactions, is
no longer appropriate.

The Primary Task Queue (PTQ) is now organized
according to Dynamic Highest Value (DHV) which op-
erates as follows. Periodically we determine, for each
transaction T; whose PT; is queued in the PTQ, V;(¢),
i-e. the value of the primary task of transaction 7; at

the current time ¢, and reorganize the PTQ, as neces-
sary. The periodicity of this CPU reorganization can
be initiated every § time units by a daemon process
or upon the occurrence of a certain event, such as a
transaction submission. Compensating tasks are still
maintained in their own separate queue, the Compen-
sating Task Queue (CTQ) which is again ordered ac-
cording to ascending start time. However, the value,
which is also the priority for scheduling purposes, as-
sociated with each compensating task is 0—the same
as the value returned to the system upon their safe
termination.

As each transaction T; is submitted to the system,
we must determine where in the processor’s schedule
to place its compensating task. As an initial solution
to this problem which has an infinite number of solu-
tions, we schedule each compensating task using AZ
so that it starts at Z;, the time at which the value of
T; equals 0, i.e. V;(t) = Z;. When workload admis-
sion control (WACM) is employed, we then calculate
the processor load from A;, the arrival time of T; up
to Z;. If the amount of time occupied by currently
scheduled compensating tasks in this interval of time
violates the WACM threshold, we reject T3, otherwise,
we admit T;.

With soft deadline RTDB systems, compensating
tasks do not necessarily have to be executed by the
deadline of the transaction nor by the point in time
at which the value of the transaction is zero or even
negative. When exactly should compensating tasks be
executed? Given that compensating tasks have lower
priority than all primary task, compensating tasks will
never be executed. Hence, we need some process which
will trigger the possible execution of compensating
tasks. As we periodically determine the current value
of each transaction for scheduling purposes, we can
also periodically evaluate, for each admitted transac-
tion, whether to execute its compensating task at the
current time or to wait to execute its compensating
task until a later time. The approach here is similar to
one used by Bestavros and Braoudakis in [2] in which
the net value of committing a transaction as soon as it
validates (with OCC-BC concurrency control) is com-
pared with net value of deferring its commitment un-
til a future time. If the value-added to the system by
committing the transaction now is greater than the
value-added by committing it later, the transaction is
committed now; otherwise, it is committed later. We
discuss an overview of our method below.

In executing the compensating task of a transaction
at the current time, we neither gain nor loose any value
from this safe termination. However, we do potentially

loose the value that the primary task could have re-
turn upon its successful commitment (or correspond-
ingly could have incurred additional loss if the primary
task had committed past the zero value point in time),
should the compensating task not have been executed.
By removing this transaction from the system, though,
other admitted transactions will have less competition
for system resources, and as a result, may potentially
return more value to the system should they success-
fully commit. On the other hand, waiting to execute
the compensating task of a transaction till a later time
results in 1) the possibility of this transaction success-
fully committing and returning some diminished value
to the system, and 2) admitted transactions having to
continue to compete for system resources with this
transaction—possibly lessening their value.

By quantitatively analyzing these two options—
Execute Compensating Task Now (ECTN) and Wait
to execute Compensating Task until Later (WCTL)—
the final decision of when to execute a compensating
task is influenced by the potential value-added to the
system. If the value of ECTN is greater than WCTL,
then we execute the compensating task now, otherwise
we execute the compensating task at a later point in
time.

5 Performance evaluation

The RTDB system model used in our experiments
consists of a uniprocessor system with a 1000-page,
memory-resident database. A second CPU is dedi-
cated to supporting both admission and concurrency
control protocols. Our baseline simulation parameters
are as follows. The primary task of each transaction
reads 16 pages selected at random with a 25% update
probability. The CPU time needed to process a read
or a write is 2.5 ms. Thus, in the absence of any data
or resource conflicts, the primary task of each transac-
tion would need a serial ezecution time of 50 ms CPU
time.! The compensating task of each transaction fol-
lows a normal distribution with a mean of 10 ms and
standard deviation of 5 ms—amounting to an average
of 4 page accesses. Transaction deadlines were related
to the serial execution time through a slack factor,
such that (deadline time - arrival time) = slack factor
x serial ezecution time.

The transaction inter-arrival rate, which is drawn
from an exponential distribution, is varied from 5
transactions per second up to 50 transactions per
second in increments of 5, which represents a light-
to-medium loaded system. We used two additional

INotice that these figures (i.e. number of pages accessed and
serial execution time) are only needed to generate the workload
fed to the simulator. They are not known to the ACM.

Profit

2500

FF-S
FF-H
|

500

Arrival Rate (TPS)

Figure 3: Total Value Realized

arrival rates of 75 and 100 transactions per sec-
ond to experiment with a very heavy loaded system.
The primary task scheduling protocol was EDF while
the compensating task scheduling protocol was FF,
LF, and LMF. The threshold used with LMF was
0.125. We employed Optimistic Concurrency Control
with forward validation—OCC-BC [10]. All transac-
tions were from the same transaction class, i.e. have
the same transaction characteristics such as constant
value of 1 before the deadline (all are equally impor-
tant) and penalty gradient of o; = 45 degrees V T;.
For our initial baseline results, we scheduled compen-
sating tasks using AZ in order to see the performance
gains achievable with the simplest scheduling tech-
nique. Each simulation was run four times, each time
with a different seed, for 200,000 ms. The results de-
picted are the average over the four runs.

In figure 3, we see the total value (profit) realized
by the system by those transactions which success-
fully committed. Specifically, we compare our previ-
ous hard deadline results (denoted by -H) with our soft
deadline results (denoted -S). With the non-admission
control protocols of FF and LF, the results in the soft
deadline case are slightly better in light-to-medium
loaded systems and nearly the same in heavy loaded
systems. However, with LMF@0.125, which employs
an admission control mechanism, the results for the
soft deadline system are markedly improved, espe-
cially in moderately-to-heavily loaded systems . Since
transaction deadlines are soft, we are also interested in
the number of transactions which missed their dead-
lines out of the total number of transactions which
successfully committed. We see in figure 4 that the

Per cent
22

. /|
" /

16 FF
P e
14 - 3

12

10 /]

2 4 -
P
- = LMF@0.125
" = I—’—‘

o 20 40 60 80 100
Arrival Rate (TPS)

Figure 4: Percentage Missed Deadlines

percentage of transactions which successfully commit-
ted between D; (the deadline) and Z; (zero value)
(i.e. missed their deadlines) is very small over all sys-
tem loads for LMF@0.125. Almost all transactions
which successfully committed were able to do so by
their deadlines with LMF@0.125. As a result of ad-
mission control and our compensating task scheduling
technique, we have seen that in soft deadline RTDB
systems, we are better able to utilize system resource
for those transactions admitted to the system, we real-
ize more profit and miss fewer deadlines (i.e. complete
more transactions on time).

6 Related work

Our work differs from previous research in that
our transaction model incorporates not only primary
tasks, with unknown WCET, but also compensating
tasks. There have been a number of similar transac-
tion models suggested in the literature, and these are
contrasted with our model below.

Liu et al. [9] developed the imprecise computation
model which decomposes each task into two subtasks,
a mandatory part and an optional part. Others em-
ploying this model include Audsley et al. [1] and Davis
et al. [5]. Our model differs from the imprecise compu-
tation model in that the WCET requirements for the
mandatory and optional parts are assumed in [9, 1, 5],
whereas they are assumed only for the compensating
tasks in our model. Also, unlike the imprecise com-
putation model, we start off with the execution of the
optional component (the primary task), leaving the
mandatory component (the compensating task) to a
later time (if needed). In a sense, our paradigm is com-
plementary to the imprecise computation paradigm.

The primary/alternative model was employed by
Liestman and Campbell [7] and by Chetto and Chetto
[4]. In [7] primary tasks provide good quality of service
and are preferable to alternative tasks which produce
acceptable quality of service and handle primary tasks’
timing faults. Our notion of a compensating task is
indeed similar to that of an alternative; execution of
a compensating task provides less attractive quality
of service in comparison to the execution of the pri-
mary task. The similarities end here, however. Alter-
native tasks in [7] are not subject to timing failures,
whereas in our model compensating tasks may have
hard, soft or firm deadlines. Moreover, in [4], alterna-
tive tasks are periodic in nature, unlike compensating
tasks which are not.

In [11], Tew et al. introduce a task model with two
components: a load task and an execute task whereby
the load task first loads the task from disk into mem-
ory thereby making the execute task eligible to run
(i.e. there is a precedence relation between the two
tasks). The task model of Tew et al. is similar to
our transaction model. Both models consist of a main
task (primary task, execute task). However, the mo-
tivation for having the second component differs. Our
compensating task is necessitated by the fact that the
read/write sets and WCETSs of primary tasks are non-
deterministic, whereas Tew et al. are interested in
accounting for loading a task into memory.

A number of papers utilize transaction values and
value functions. Like [2, 12], we also use time-varying
value functions to indicate how soft deadlines are rela-
tive to each other. In addition, we use value functions
in order to determine where to schedule compensating
tasks, which are not present in the transaction models
of the other two papers.

7 Summary and future work

In this paper, we presented simple algorithms for
scheduling compensating tasks in soft RTDB systems
for ACCORD. Our initial results confirm even more
firmly our earlier conclusions drawn in hard deadline
systems: Admission control and overload management
techniques improve system performance by rationing
system resources and minimizing the likelihood of a
transaction being accepted for execution, only to later
miss its deadline. We presented the difficulties and
challenges associated with scheduling compensating
tasks for soft deadline systems, and we sketched a
generalized framework for such systems. However, the
methodology must still be further refined.

References

[1] N. C. Audsley, R. I. Davis, and A. Burns. Mecha-
nisms for enhancing the flexibility and utility of hard
real-time systems. In Proceedings of the Real-Time
Systems Symposium, pages 12-21, December 1994.

[2] Azer Bestavros and Spyridon Braoudakis. Value-
cognizant speculative concurrency control. In Pro-
ceedings of VLDB’95: The International Confer-
ence on Very Large Databases, Zurich, Switzerland,
Spetember 1995.

[3] Azer Bestavros and Sue Nagy. Value-cognizant ad-
mission control for rtdb systems. In RTSS’96: The
17th Real-Time Systems Symposium, pages 230-239,
Washington, D.C., December 1996.

[4] H. Chetto and M. Chetto. Some results of the earli-
est deadline scheduling algorithm. IEEE Transactions
on Software Engineering, 15(10):1261-1269, October
1989.

[6] R.I. Davis, S. Punnekkat, N. Audsley, and A. Burns.
Flexible scheduling for adaptable real-time systems.
In Proceedings of the Real-Time Technology and Ap-
plications Symposium, pages 230-239, May 1995.

[6] E. Jensen, C. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. In
Proceedings of the 6th Real-Time Systems Symposium,
pages 112-122, December 1985.

[7] A. Liestman and R. Campbell. A fault-tolerant
scheduling problem. IEEE Transaction on Software
Engineering, SE-12(11):1089-1095, November 1986.

[8] C. L. Liu and J. Layland. Scheduling algorithms for
multiprogramming in hard real-time environments.
Journal of the Assocation of Computing Machinery,
20(1):46-61, January 1973.

[9] J. W.-S. Liu, K. J. Lin, and S. Natarajan. Schedul-
ing real-time, periodic jobs using imprecise results. In
Proceedings of the 8th IEEE Real-time Systems Sym-
posium, December 1987.

[10] D. Menasce and T. Nakanishi. Optimistic versus pes-
simistic concurrency control mechanisms in database
management systems. Information Systems, 7(1),
1982.

[11] Ken Tew, Panos K. Chrysanthis, and Daniel Mosse.
Emperical evaluation of task and resource schedul-
ing in dynamic real-time systems. In Proceedings of
RTSS8°96 WIP Session: The 17" IEEE Real-Time
System Symposium, pages 35—-38, Washington, D.C.,
December 1996.

[12] S.-M. Tseng, Y.H. Chin, and W.-P. Yang. Scheduling
real-time transactions with dynamic values: a per-
formance evaluation. In Proceedings Second Inter-
national Workshop on Real-Time Computing Systems
and Applications, pages 60—67, October 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

