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Abstract

We describe a heuristic for dynamically scheduling time�
constrained tasks in a distributed environment� When
a task is submitted to a node� the scheduling software
tries to schedule the task locally so as to meet its dead�
line� If that is not feasible� it tries to locate another
node where this could be done with a high probability of
success� Nodes in the system inform each other about
their state �viz�a�viz the availability of free cycles� us�
ing a combination of broadcasting and gossiping� The
performance of the proposed protocol is evaluated both
analytically and via simulation� Based on our �ndings�
we argue that keeping a diverse availability pro�le and
using passive bidding �through gossiping� are both advan�
tageous to distributed scheduling for real�time systems�

� Introduction

Loosely coupled� time�critical distributed systems are
used to control physical processes in complex applica�
tions� such as controllers in aviation systems and nuclear
power plants� Most tasks in such systems have strict ex�
ecution deadlines� Depending on the strictness of the
execution deadline� tasks are categorized as critical and
essential ����� ����� If missing a task�s deadline is catas�
trophic� then the task�s deadline is considered to be hard�
and the task is categorized as critical� The characteris�
tics of such tasks are well known in advance� and all the
resources they request are usually preallocated so that
they always meet their execution deadlines� Essential
tasks are those tasks whose deadline if not met� will not
cause a catastrophe� but will result in the degradation
of the system performance� Since these tasks are the re�
sults of random events 	e�g�� pressing of a button
 their
characteristics do not become known until the time they
occur� Their deadlines are considered to be soft� and
occasionally missing such deadlines can be tolerated�

In this paper� we present a decentralized algorithm
for scheduling randomly submitted tasks 	in the presence
of other critical tasks
 in a loosely coupled distributed
system� We start with an overview of the system model
followed by a description of the proposed heuristic� Next
we present our simulation results and conclude with fu�
ture research directions�

� The System Model

We model a distributed time�critical system as a set of
nodes connected via a communication network� Each
node consists of two processors� one is for schedul�
ing�executing tasks and the other is for communication�
Each node is associated with a 	possibly empty
 set of
periodic tasks� which possess hard execution deadlines�
We assume that the deadline for a periodic requests is
the beginning of the next period� Thus� a periodic task
can be described by the pair 	Ci� Pi
� where Ci is the
required execution time each period Pi� The character�
istics of periodic tasks are known a priori� This enables
them to be scheduled o
�line during system startup�

In addition to periodic tasks� sporadic tasks with
strict execution deadlines may be submitted dynam�
ically� We describe a sporadic task by the triplet
	Aj � Cj� Dj
� where Aj is the time task Tj makes its re�
quest for computation� Cj is the units of execution time
required� and Dj is the time the computation has to �n�
ish 	deadline
� The characteristics of sporadic tasks are
not known a priori� they become known when submitted
for execution� Upon submission� the node tries to sched�
ule the sporadic task locally� If not successful� the task
is forwarded for remote execution on a di
erent node�

An algorithm for scheduling aperiodic tasks is com�
posed of a transfer policy and a location policy ���� Our
transfer policy is to forward a sporadic task to another
node if the amount of idle processor time until the task�s
deadline is less than the task computational require�
ments� Otherwise� the task is guaranteed execution on
the node to which it was initially assigned� The task
transfer decision is made dynamically and is based on
the current state of the node and the characteristics of
the task� The location policy dictates the way the target
node is selected� This is described in the next section�

For scheduling periodic tasks on a single processor�
we use the Earliest Deadline First 	EDF
 which is a dy�
namic� preemptive scheduling algorithm� For a given
task set T � with n periodic tasks� a necessary and su��
cient condition for the EDF to feasibly schedule the task
set� is U �

Pn

i��
Ci

Pi
� �� Since the characteristics of

the periodic tasks are known a priori� we can guarantee
their schedulability by simply computing the utilization
factor U � during the system setup�



For scheduling sporadic tasks we use the results ob�
tained in ���� Two implementations of the EDF� respec�
tively called EDS and EDL� are possible such that tasks
are processed� respectively� as soon as possible and as
late as possible� Following the notation in ���� we intro�
duce the availability function fXY 	t
� with respect to a
task set Y � scheduled according to the scheduling algo�
rithm X in the time interval ��� t�� to be

fXY 	t
 �

�
� if the processor is idle at t
� otherwise�

For any time instances t� and t�� the integral

�XY 	t�� t�
 �
R t�
t�
fXY 	t
dt gives the total number of units

of time the processor is idle in the interval �t�� t��� For a
sporadic task set T � with D as the maximumdeadline of
the sporadic tasks in T � it holds that for any instant t �
D� �EDS

T
	�� t
 � �X

T
	�� t
� and �EDL

T
	�� t
 � �X

T
	�� t
�

where X is any preemptive scheduling algorithm� So�
scheduling tasks by EDL will provide us with the largest
number of idle processor cycles over the interval ��� t��

In order to check the schedulability of sporadic tasks
we implemented an algorithm� ACCEPT � that utilizes
the previous results� ACCEPT is invoked whenever a
sporadic task arrives at a node� It looks ahead in time
and decides whether the sporadic task can be accepted
depending on the un�nished work until the task�s dead�
line� ACCEPT runs in time linear with respect to the
number of requests until the task�s deadline�

� Heuristic Algorithm Description

In order to maximize the probability that a transfered
sporadic task will meet its time constraint� each node has
to gather information about the load at the other nodes
in the system� Our scheme does not use this information
to achieve a load balanced system� On the contrary� it
allows nodes to be unequally loaded so as to get a broad
spectrum of available free cycles network�wide 	availabil�
ity pro�le
� This promises to increase the probability of
a transfer success� Because of the diversity of the avail�
ability pro�le� the source node 	the sender of the spo�
radic task
 might �nd more than one suitable node for
transfer� In this case� the target node is selected proba�
bilistically� so as to avoid overwhelming a lightly loaded
node with sporadic tasks from various sources�

Dispersal of information�

The most important information a node sends out to
other nodes is the localization and duration of the node�s
idle times and the time interval for which this informa�
tion was computed� The information about idle times
changes whenever a sporadic task arrives at a node and
is accepted for execution� In this case� by invoking al�
gorithm ACCEPT the node is able to compute the new
localization and duration of the idle times�

Changes in the workload of a node are detected
by looking at the utilization factor �� We de�ne three
threshold values for �� namely �L� �M and �H � When�
ever � � �L the node is considered to be lightly loaded�
whenever �L � � � �M the node is considered to have a
medium load� whenever �M � � � �H the node is heav�
ily loaded� but it can schedule all the tasks assigned to
it� and whenever � � �H the node is overloaded and can�
not schedule all of its tasks� so it has to transfer some of
them to other nodes� When the � value of a node crosses
one of these thresholds� the node sends out the informa�
tion described previously� The use of threshold values
prevent �ooding the network with redundant messages�

It is obvious that a trade�o
 exists between the num�
ber of threshold values and the recency of the work�
load information� In order to alleviate this problem�
we introduced a technique called gossiping� Whenever
a node detects the communication medium idle� and a
change in its work load has occured� but not a signi��
cant one to cause broadcasting� it starts talking with its
neighbors� During this process� it exchanges informa�
tion about its own work load and about the work load
of other nodes 	accordingly it receives similar informa�
tion from the neighboring nodes
� A node that receives
information about another node 	either because of load
change or gossiping
 checks if the information received
is newer than the one already kept� If this is the case� it
updates its information table� So� two nodes involved in
gossiping can exchange up�to�date information about a
third node� not directly involved in their conversation�

Information updating�

On every node there is a system task that regularly com�
putes the workload on the node and stores the informa�
tion in appropriate data structures� This task runs as
a periodic system task with period Qi for node i� As
soon as the communication processor detects this up�
date� and as soon as the communication channels with
its neighbors are idle� it starts gossiping� In addition to
the local workload information� global workload infor�
mation 	about other nodes in the network
 is gossiped
as well�

It might be the case� however� that the workload
information for a node is communicated to other nodes
before Qi time units elapse� This happens whenever a
new sporadic task is accepted in the time interval be�
tween two successive rounds of gossiping� or an already
accepted sporadic task completes execution� Since a new
task is accepted 	completes
 at the node� the work load
on the CPU increases 	decreases
� in which case the new
work load information is computed� If the change in
the work load 	which is measured by the utilization fac�
tor
 crosses the threshold values for � then the new in�
formation is broadcast to the network� If the � value
stays within the threshold interval� the new information
is simply communicated to the node�s neighbors 	and�
eventually� becomes known to everyone
 via gossiping�



Selection of target node�

The process of selecting a target node is carried in such a
way so as to maximize the probability of the transferred
task being accepted� The selection is based on a predic�
tion scheme used by the sender of the task to estimate
the idle cycles 	at the receiver
 until the task�s deadline�
This estimation is based on the workload information
communicated as mentioned above�

When the node has to select a target node� it does
so by looking at its set of trusted nodes� This set includes
nodes that 	with high probability
 will accept and sched�
ule a transferred task� This set changes dynamically ac�
cording to the workload information a node receives from
the network� The trusted set is divided into two cate�
gories� The �rst category includes lightly loaded nodes�
and the second includes nodes with a medium workload�
The distinction is based on the threshold values speci�ed
earlier for �� It is possible for a node to move to another
category or removed out of the set� From amongst the
trusted nodes� the node which has the lightest load and
is closest to the sender node has the highest probability
of being selected as target node�

When a sporadic task arrives at a node and cannot
be guaranteed execution� the node starts looking for a
target node� First� it selects probabilistically either the
light�load category or the medium�load category� After
a category has been selected� the nodes in this category
are considered� For each node in the catergory� a pre�
diction scheme is used that approximates the number of
idle cycles by the time the sporadic task arrives at the
node� had the task been sent there� If the estimated idle
processor cycles satisfy the task execution requirements�
the node is considered a candidate target node� After
the candidate target nodes have been selected� one of
them is selected probabilistically as the target node� and
the task is �nally transferred to it� If no target node can
be found� the task is kept for later re�submission�

� Algorithm Evaluation

In this section� simulation results for the proposed al�
gorithm are presented and compared to those obtained
by other dynamic algorithms� We evaluated our proto�
col on a system with six nodes� The interarrival times
and execution times of sporadic tasks submitted to the
nodes are assumed to follow an exponential distribution�
whereas their laxities are drawn from the normal distri�
bution� We de�ne the laxity ratio to be the ratio of a
task�s mean laxity time over its mean computation time�

To measure the network�wide load due to the arrival
of sporadic tasks we de�ne the demand ratio W � For a
simulation of t time units� if I is the total number of
idle cycles during that period on all the nodes � in the
absence of any sporadic tasks � and S is the number of
execution cycles requested by all the sporadic tasks oc�
curing on every node during t� then the demand ratio is

de�ned as W � S�I� Notice that this measure does not
take into consideration the pattern of the arrival times
of the sporadic tasks� So� even ifW is less than or equal
to ���� this does not mean that the system should be
able to guarantee all the sporadic tasks that arrive� be�
cause of bursty arrivals that might have occured� In all
the subsequent graphs� the X axis corresponds to the
demand ratio�

To measure the performance of the algorithm� we
use the total guarantee ratio G� Since the periodic tasks
are always guaranteed� G is de�ned as the total number
of sporadic tasks guaranteed network�wide over the total
number of sporadic tasks submitted network�wide� In
all the subsequent graphs� the Y axis corresponds to the
guarantee ratio� Each data point in the following graphs
is the average of three simulation runs�

E�ect of task characteristics�
Figure � shows the guarantee ratio for three di
erent
sets of sporadic tasks� The laxity for all the task sets is
drawn from the distribution N 	���� ���
� while the task
transfer delay is set to � time units per hop�
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Figure �� E
ect of execution time on guarantee ratio�

For the �rst set� the mean execution time is �� time
units 	� � ����
 and the laxity ratio is �� This very
large laxity ratio is the reason the algorithm achieves
a high guarantee ratio� even under overload conditions�
For the second set� the mean execution time is �� time
units 	� � ����
 making the laxity ratio �� Due to the
larger execution times of the tasks� the guarantee ratio
is not so high as in the previous case� The situation
gets even worse when the execution requirements of the
tasks are increased to ��� time units 	� � ����
� In this
case� the laxity ratio falls down to �� This means that
a task does not get many chances for re�examination�



once the �rst attempt to �nd a candidate target node
fails� Also� the fact that the execution requirements are
demanding� decreases the number of candidate target
nodes� However� because of the probabilistic scheme� the
nodes are not equally balanced� and thus the algorithm
is still able to �nd some nodes to transfer sporadic tasks
and guarantee some of them�

So� it is obvious that the task laxities play an im�
portant role on the performance of the probabilistic al�
gorithm� Also� as it can be seen from �gure �� the guar�
antee ratio is not a linear function of the task parame�
ters� Figure � shows the impact of the task laxities on
the performance of the algorithm� Now� the mean task
execution time is set to �� time units�
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Figure �� E
ect of laxities on guarantee ratio�

We examine the following four cases�

�� The laxities are quite small with a distribution of
N 	��� ���
� and a laxity ratio of ����

�� The laxities are moderate with a distribution of
N 	��� ���
� and a laxity ratio of ����

�� The laxities are large with a distribution of
N 	���� ���
� and a laxity ratio of �� and

�� The laxities are very large with a distribution of
N 	���� ����
� and a laxity ratio of ��

Figure � shows that when the laxity increases the
number of sporadic tasks guaranteed increases� For
a moderate load of W � ���� and a laxity ratio of
���� G � ����� while for a laxity ratio of �� G � ���� This
increase in the guarantee ratio is more obvious in moder�
ate loads� When the system becomes overloaded� this in�
crease becomes less obvious� For example� for W � ����
increasing the laxity ratio from ��� to ���� increases the
guarantee ratio from �� � to �� �� increasing the laxity
ratio from ��� to �� increases G from �� � to �� �� while

increasing the laxity ratio from � to �� increases G from
�� � to �� � only�
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Figure �� E
ect of very large laxities on guarantee ratio�

One can also see that when the system becomes ex�
cessively overloaded� increasing the task laxity does not
bene�t the guarantee ratio� This is also true for medium
or heavy loads� After a certain threshold value� the in�
crease in the task laxity does not result in more spo�
radic tasks being guaranteed� Figure � shows that for
� � ����� increasing the task laxity from N 	���� ����

to N 	���� ����
� and from N 	���� ����
 to N 	���� ����

does not increase the number of sporadic tasks guaran�
teed� The threshold value for the task laxities in this
speci�c case is ���� thus a laxity ratio of ��

Comparison to other algorithms�

Figure � shows that the performance of our algorithm
is much better than that of a no�forwarding algorithm
	NFA
� and that it approaches the performance of a
delay�free algorithm� The NFA and DFA algorithms can
be thought of as de�ning lower and upper bounds on the
attainable performance of our heuristic� Using NFA� if a
sporadic task cannot be guaranteed timely execution lo�
cally� it is not forwarded� DFA� on the other hand� works
exactly like our probabilistic algorithm� except that per�
fect information about node workloads is available at no
overhead cost�

Figure � shows a comparison of our algorithm to
an algorithm that uses a random forwarding mechanism�
The task characteristics and the task communication de�
lay are the same as before� In general� it can be seen that
the probabilistic algorithmperforms better than the ran�
dom scheduling algorithm� This is especially true� in
the cases of moderate and heavy loads� However� when
the system becomes overloaded� the performance of the
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Figure �� Lower and upper performance bounds�

two algorithms tends to coincide� This happens because
nodes can no longer accept transferred tasks� So� while
the probabilistic algorithm will not transfer a task� the
random algorithm will transfer the task� only to have it
miss its deadline remotely�
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Figure �� Comparison with random scheduling�

� Conclusion

Dynamic scheduling of tasks with execution deadlines in
a distributed time�critical environments is known to be
an NP�hard problem� In this work� a heuristic approach
was discussed and evaluated� The approach is a dynamic
one and tries to increase the number of sporadic tasks
that are accepted for execution� in the presence of critical
periodic tasks that must always meet their deadlines�

The simulation results we have presented con�rm
the superiority of our approach� In particular� it indi�
cates that the probabilistic algorithm performs close to
the algorithm that always has up�to�date global infor�
mation and forwards sporadic tasks to other nodes at
no communication cost� Another conclusion drawn from
the results relates the relative performances of the proba�
bilistic and the random scheduling algorithms� Random
scheduling seems to perform well� and its performance
coincides with that of the probabilistic algorithm under
overload conditions� Under moderate loads� the proba�
bilistic algorithm performs better than the random al�
gorithm� since in such conditions the proper selection of
a target node is the critical issue for the overall perfor�
mance of the system�
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