
In Proceedings of the First IEEE Workshop on Real-Time Applications, New York, NY, May 1993.

Probabilistic Job Scheduling for Distributed Real�time Applications

Azer Bestavros Dimitrios Spartiotis

Computer Science Department

Boston University

Boston� MA �����

Abstract

We describe a heuristic for dynamically scheduling time�
constrained tasks in a distributed environment� When
a task is submitted to a node� the scheduling software
tries to schedule the task locally so as to meet its dead�
line� If that is not feasible� it tries to locate another
node where this could be done with a high probability of
success� Nodes in the system inform each other about
their state �viz�a�viz the availability of free cycles� us�
ing a combination of broadcasting and gossiping� The
performance of the proposed protocol is evaluated both
analytically and via simulation� Based on our �ndings�
we argue that keeping a diverse availability pro�le and
using passive bidding �through gossiping� are both advan�
tageous to distributed scheduling for real�time systems�

� Introduction

Loosely coupled� time�critical distributed systems are
used to control physical processes in complex applica�
tions� such as controllers in aviation systems and nuclear
power plants� Most tasks in such systems have strict ex�
ecution deadlines� Depending on the strictness of the
execution deadline� tasks are categorized as critical and
essential ����� ����� If missing a task�s deadline is catas�
trophic� then the task�s deadline is considered to be hard�
and the task is categorized as critical� The characteris�
tics of such tasks are well known in advance� and all the
resources they request are usually preallocated so that
they always meet their execution deadlines� Essential
tasks are those tasks whose deadline if not met� will not
cause a catastrophe� but will result in the degradation
of the system performance� Since these tasks are the re�
sults of random events 	e�g�� pressing of a button
 their
characteristics do not become known until the time they
occur� Their deadlines are considered to be soft� and
occasionally missing such deadlines can be tolerated�

In this paper� we present a decentralized algorithm
for scheduling randomly submitted tasks 	in the presence
of other critical tasks
 in a loosely coupled distributed
system� We start with an overview of the system model
followed by a description of the proposed heuristic� Next
we present our simulation results and conclude with fu�
ture research directions�

� The System Model

We model a distributed time�critical system as a set of
nodes connected via a communication network� Each
node consists of two processors� one is for schedul�
ing�executing tasks and the other is for communication�
Each node is associated with a 	possibly empty
 set of
periodic tasks� which possess hard execution deadlines�
We assume that the deadline for a periodic requests is
the beginning of the next period� Thus� a periodic task
can be described by the pair 	Ci� Pi
� where Ci is the
required execution time each period Pi� The character�
istics of periodic tasks are known a priori� This enables
them to be scheduled o
�line during system startup�

In addition to periodic tasks� sporadic tasks with
strict execution deadlines may be submitted dynam�
ically� We describe a sporadic task by the triplet
	Aj � Cj� Dj
� where Aj is the time task Tj makes its re�
quest for computation� Cj is the units of execution time
required� and Dj is the time the computation has to �n�
ish 	deadline
� The characteristics of sporadic tasks are
not known a priori� they become known when submitted
for execution� Upon submission� the node tries to sched�
ule the sporadic task locally� If not successful� the task
is forwarded for remote execution on a di
erent node�

An algorithm for scheduling aperiodic tasks is com�
posed of a transfer policy and a location policy ���� Our
transfer policy is to forward a sporadic task to another
node if the amount of idle processor time until the task�s
deadline is less than the task computational require�
ments� Otherwise� the task is guaranteed execution on
the node to which it was initially assigned� The task
transfer decision is made dynamically and is based on
the current state of the node and the characteristics of
the task� The location policy dictates the way the target
node is selected� This is described in the next section�

For scheduling periodic tasks on a single processor�
we use the Earliest Deadline First 	EDF
 which is a dy�
namic� preemptive scheduling algorithm� For a given
task set T � with n periodic tasks� a necessary and su��
cient condition for the EDF to feasibly schedule the task
set� is U �

Pn

i��
Ci

Pi
� �� Since the characteristics of

the periodic tasks are known a priori� we can guarantee
their schedulability by simply computing the utilization
factor U � during the system setup�

For scheduling sporadic tasks we use the results ob�
tained in ���� Two implementations of the EDF� respec�
tively called EDS and EDL� are possible such that tasks
are processed� respectively� as soon as possible and as
late as possible� Following the notation in ���� we intro�
duce the availability function fXY 	t
� with respect to a
task set Y � scheduled according to the scheduling algo�
rithm X in the time interval ��� t�� to be

fXY 	t
 �

�
� if the processor is idle at t
� otherwise�

For any time instances t� and t�� the integral

�XY 	t�� t�
 �
R t�
t�
fXY 	t
dt gives the total number of units

of time the processor is idle in the interval �t�� t��� For a
sporadic task set T � with D as the maximumdeadline of
the sporadic tasks in T � it holds that for any instant t �
D� �EDS

T
	�� t
 � �X

T
	�� t
� and �EDL

T
	�� t
 � �X

T
	�� t
�

where X is any preemptive scheduling algorithm� So�
scheduling tasks by EDL will provide us with the largest
number of idle processor cycles over the interval ��� t��

In order to check the schedulability of sporadic tasks
we implemented an algorithm� ACCEPT � that utilizes
the previous results� ACCEPT is invoked whenever a
sporadic task arrives at a node� It looks ahead in time
and decides whether the sporadic task can be accepted
depending on the un�nished work until the task�s dead�
line� ACCEPT runs in time linear with respect to the
number of requests until the task�s deadline�

� Heuristic Algorithm Description

In order to maximize the probability that a transfered
sporadic task will meet its time constraint� each node has
to gather information about the load at the other nodes
in the system� Our scheme does not use this information
to achieve a load balanced system� On the contrary� it
allows nodes to be unequally loaded so as to get a broad
spectrum of available free cycles network�wide 	availabil�
ity pro�le
� This promises to increase the probability of
a transfer success� Because of the diversity of the avail�
ability pro�le� the source node 	the sender of the spo�
radic task
 might �nd more than one suitable node for
transfer� In this case� the target node is selected proba�
bilistically� so as to avoid overwhelming a lightly loaded
node with sporadic tasks from various sources�

Dispersal of information�

The most important information a node sends out to
other nodes is the localization and duration of the node�s
idle times and the time interval for which this informa�
tion was computed� The information about idle times
changes whenever a sporadic task arrives at a node and
is accepted for execution� In this case� by invoking al�
gorithm ACCEPT the node is able to compute the new
localization and duration of the idle times�

Changes in the workload of a node are detected
by looking at the utilization factor �� We de�ne three
threshold values for �� namely �L� �M and �H � When�
ever � � �L the node is considered to be lightly loaded�
whenever �L � � � �M the node is considered to have a
medium load� whenever �M � � � �H the node is heav�
ily loaded� but it can schedule all the tasks assigned to
it� and whenever � � �H the node is overloaded and can�
not schedule all of its tasks� so it has to transfer some of
them to other nodes� When the � value of a node crosses
one of these thresholds� the node sends out the informa�
tion described previously� The use of threshold values
prevent �ooding the network with redundant messages�

It is obvious that a trade�o
 exists between the num�
ber of threshold values and the recency of the work�
load information� In order to alleviate this problem�
we introduced a technique called gossiping� Whenever
a node detects the communication medium idle� and a
change in its work load has occured� but not a signi��
cant one to cause broadcasting� it starts talking with its
neighbors� During this process� it exchanges informa�
tion about its own work load and about the work load
of other nodes 	accordingly it receives similar informa�
tion from the neighboring nodes
� A node that receives
information about another node 	either because of load
change or gossiping
 checks if the information received
is newer than the one already kept� If this is the case� it
updates its information table� So� two nodes involved in
gossiping can exchange up�to�date information about a
third node� not directly involved in their conversation�

Information updating�

On every node there is a system task that regularly com�
putes the workload on the node and stores the informa�
tion in appropriate data structures� This task runs as
a periodic system task with period Qi for node i� As
soon as the communication processor detects this up�
date� and as soon as the communication channels with
its neighbors are idle� it starts gossiping� In addition to
the local workload information� global workload infor�
mation 	about other nodes in the network
 is gossiped
as well�

It might be the case� however� that the workload
information for a node is communicated to other nodes
before Qi time units elapse� This happens whenever a
new sporadic task is accepted in the time interval be�
tween two successive rounds of gossiping� or an already
accepted sporadic task completes execution� Since a new
task is accepted 	completes
 at the node� the work load
on the CPU increases 	decreases
� in which case the new
work load information is computed� If the change in
the work load 	which is measured by the utilization fac�
tor
 crosses the threshold values for � then the new in�
formation is broadcast to the network� If the � value
stays within the threshold interval� the new information
is simply communicated to the node�s neighbors 	and�
eventually� becomes known to everyone
 via gossiping�

Selection of target node�

The process of selecting a target node is carried in such a
way so as to maximize the probability of the transferred
task being accepted� The selection is based on a predic�
tion scheme used by the sender of the task to estimate
the idle cycles 	at the receiver
 until the task�s deadline�
This estimation is based on the workload information
communicated as mentioned above�

When the node has to select a target node� it does
so by looking at its set of trusted nodes� This set includes
nodes that 	with high probability
 will accept and sched�
ule a transferred task� This set changes dynamically ac�
cording to the workload information a node receives from
the network� The trusted set is divided into two cate�
gories� The �rst category includes lightly loaded nodes�
and the second includes nodes with a medium workload�
The distinction is based on the threshold values speci�ed
earlier for �� It is possible for a node to move to another
category or removed out of the set� From amongst the
trusted nodes� the node which has the lightest load and
is closest to the sender node has the highest probability
of being selected as target node�

When a sporadic task arrives at a node and cannot
be guaranteed execution� the node starts looking for a
target node� First� it selects probabilistically either the
light�load category or the medium�load category� After
a category has been selected� the nodes in this category
are considered� For each node in the catergory� a pre�
diction scheme is used that approximates the number of
idle cycles by the time the sporadic task arrives at the
node� had the task been sent there� If the estimated idle
processor cycles satisfy the task execution requirements�
the node is considered a candidate target node� After
the candidate target nodes have been selected� one of
them is selected probabilistically as the target node� and
the task is �nally transferred to it� If no target node can
be found� the task is kept for later re�submission�

� Algorithm Evaluation

In this section� simulation results for the proposed al�
gorithm are presented and compared to those obtained
by other dynamic algorithms� We evaluated our proto�
col on a system with six nodes� The interarrival times
and execution times of sporadic tasks submitted to the
nodes are assumed to follow an exponential distribution�
whereas their laxities are drawn from the normal distri�
bution� We de�ne the laxity ratio to be the ratio of a
task�s mean laxity time over its mean computation time�

To measure the network�wide load due to the arrival
of sporadic tasks we de�ne the demand ratio W � For a
simulation of t time units� if I is the total number of
idle cycles during that period on all the nodes � in the
absence of any sporadic tasks � and S is the number of
execution cycles requested by all the sporadic tasks oc�
curing on every node during t� then the demand ratio is

de�ned as W � S�I� Notice that this measure does not
take into consideration the pattern of the arrival times
of the sporadic tasks� So� even ifW is less than or equal
to ���� this does not mean that the system should be
able to guarantee all the sporadic tasks that arrive� be�
cause of bursty arrivals that might have occured� In all
the subsequent graphs� the X axis corresponds to the
demand ratio�

To measure the performance of the algorithm� we
use the total guarantee ratio G� Since the periodic tasks
are always guaranteed� G is de�ned as the total number
of sporadic tasks guaranteed network�wide over the total
number of sporadic tasks submitted network�wide� In
all the subsequent graphs� the Y axis corresponds to the
guarantee ratio� Each data point in the following graphs
is the average of three simulation runs�

E�ect of task characteristics�
Figure � shows the guarantee ratio for three di
erent
sets of sporadic tasks� The laxity for all the task sets is
drawn from the distribution N 	���� ���
� while the task
transfer delay is set to � time units per hop�

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.50 1.00 1.50 2.00

Demand Ratio (Load)

Success Ratio

µ = 25

µ = 50

µ = 100

Figure �� E
ect of execution time on guarantee ratio�

For the �rst set� the mean execution time is �� time
units 	� � ����
 and the laxity ratio is �� This very
large laxity ratio is the reason the algorithm achieves
a high guarantee ratio� even under overload conditions�
For the second set� the mean execution time is �� time
units 	� � ����
 making the laxity ratio �� Due to the
larger execution times of the tasks� the guarantee ratio
is not so high as in the previous case� The situation
gets even worse when the execution requirements of the
tasks are increased to ��� time units 	� � ����
� In this
case� the laxity ratio falls down to �� This means that
a task does not get many chances for re�examination�

once the �rst attempt to �nd a candidate target node
fails� Also� the fact that the execution requirements are
demanding� decreases the number of candidate target
nodes� However� because of the probabilistic scheme� the
nodes are not equally balanced� and thus the algorithm
is still able to �nd some nodes to transfer sporadic tasks
and guarantee some of them�

So� it is obvious that the task laxities play an im�
portant role on the performance of the probabilistic al�
gorithm� Also� as it can be seen from �gure �� the guar�
antee ratio is not a linear function of the task parame�
ters� Figure � shows the impact of the task laxities on
the performance of the algorithm� Now� the mean task
execution time is set to �� time units�

mean laxity = 030

mean laxity = 060

mean laxity = 100

mean laxity = 300

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.50 1.00 1.50 2.00

Demand Ratio (Load)

Success Ratio

Figure �� E
ect of laxities on guarantee ratio�

We examine the following four cases�

�� The laxities are quite small with a distribution of
N 	��� ���
� and a laxity ratio of ����

�� The laxities are moderate with a distribution of
N 	��� ���
� and a laxity ratio of ����

�� The laxities are large with a distribution of
N 	���� ���
� and a laxity ratio of �� and

�� The laxities are very large with a distribution of
N 	���� ����
� and a laxity ratio of ��

Figure � shows that when the laxity increases the
number of sporadic tasks guaranteed increases� For
a moderate load of W � ���� and a laxity ratio of
���� G � ����� while for a laxity ratio of �� G � ���� This
increase in the guarantee ratio is more obvious in moder�
ate loads� When the system becomes overloaded� this in�
crease becomes less obvious� For example� for W � ����
increasing the laxity ratio from ��� to ���� increases the
guarantee ratio from �� � to �� �� increasing the laxity
ratio from ��� to �� increases G from �� � to �� �� while

increasing the laxity ratio from � to �� increases G from
�� � to �� � only�

mean laxity = 300

mean laxity = 450

mean laxity = 600

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 1.00 1.50 2.00 2.50 3.00

Demand Ratio (Load)

Success Ratio

Figure �� E
ect of very large laxities on guarantee ratio�

One can also see that when the system becomes ex�
cessively overloaded� increasing the task laxity does not
bene�t the guarantee ratio� This is also true for medium
or heavy loads� After a certain threshold value� the in�
crease in the task laxity does not result in more spo�
radic tasks being guaranteed� Figure � shows that for
� � ����� increasing the task laxity from N 	���� ����

to N 	���� ����
� and from N 	���� ����
 to N 	���� ����

does not increase the number of sporadic tasks guaran�
teed� The threshold value for the task laxities in this
speci�c case is ���� thus a laxity ratio of ��

Comparison to other algorithms�

Figure � shows that the performance of our algorithm
is much better than that of a no�forwarding algorithm
	NFA
� and that it approaches the performance of a
delay�free algorithm� The NFA and DFA algorithms can
be thought of as de�ning lower and upper bounds on the
attainable performance of our heuristic� Using NFA� if a
sporadic task cannot be guaranteed timely execution lo�
cally� it is not forwarded� DFA� on the other hand� works
exactly like our probabilistic algorithm� except that per�
fect information about node workloads is available at no
overhead cost�

Figure � shows a comparison of our algorithm to
an algorithm that uses a random forwarding mechanism�
The task characteristics and the task communication de�
lay are the same as before� In general� it can be seen that
the probabilistic algorithmperforms better than the ran�
dom scheduling algorithm� This is especially true� in
the cases of moderate and heavy loads� However� when
the system becomes overloaded� the performance of the

Our Protocol (ideal)

Our Protocol (actual)

Local Scheduling

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.50 1.00 1.50 2.00

Demand Ratio (Load)

Success Ratio

Figure �� Lower and upper performance bounds�

two algorithms tends to coincide� This happens because
nodes can no longer accept transferred tasks� So� while
the probabilistic algorithm will not transfer a task� the
random algorithm will transfer the task� only to have it
miss its deadline remotely�

Probabilistic

Random

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 1.00 1.50 2.00

Demand Ratio (Load)

Success Ratio

Figure �� Comparison with random scheduling�

� Conclusion

Dynamic scheduling of tasks with execution deadlines in
a distributed time�critical environments is known to be
an NP�hard problem� In this work� a heuristic approach
was discussed and evaluated� The approach is a dynamic
one and tries to increase the number of sporadic tasks
that are accepted for execution� in the presence of critical
periodic tasks that must always meet their deadlines�

The simulation results we have presented con�rm
the superiority of our approach� In particular� it indi�
cates that the probabilistic algorithm performs close to
the algorithm that always has up�to�date global infor�
mation and forwards sporadic tasks to other nodes at
no communication cost� Another conclusion drawn from
the results relates the relative performances of the proba�
bilistic and the random scheduling algorithms� Random
scheduling seems to perform well� and its performance
coincides with that of the probabilistic algorithm under
overload conditions� Under moderate loads� the proba�
bilistic algorithm performs better than the random al�
gorithm� since in such conditions the proper selection of
a target node is the critical issue for the overall perfor�
mance of the system�

References

��� S� K� Baruah� A� K� Mok� and L� E� Rosier� �Preemp�
tively scheduling hard�real�time sporadic tasks on one
processor�� in Proc� of the Real�Time Syst� Symp�� pp�
��	��
�� Lake Buena Vista� FL� December �

�� IEEE�

�	� H� Chetto and M� Chetto� �On the acceptation of non�
periodic time critical tasks in distributed systems�� in
Proc� �th IFAC Workshop Distributed Computer Control
Systems �DCCS����� Maychoss� West Germany� Oct�
��
Sept� 	� �
���

�
� H� Chetto and M� Chetto� �Some results of the earliest
deadline scheduling algorithm�� IEEE Trans� Software
Eng�� vol� SE���� Oct� �
�
�

��� E� G� Co�man� Jr� �editor�� Computer and Job�Shop
Scheduling Theory� John Wiley � Sons� �
���

��� M� Dertouzos� �Control robotics� The procedural con�
trol of physical processes�� in Proc� IFIP Congr�� pp�
������
� �
���

��� M� L� Dertouzos and A� K� Mok� �Multiprocessor on�
line scheduling of hard�real�time tasks�� IEEE Trans�
Software Eng�� vol SE���� Dec� �
�
�

��� D� L� Eager� E� D� Lazowska� and J� Zahorjan� �Adap�
tive load sharing in homogeneous distributed systems��
IEEE Trans� Software Eng�� vol� SE��	� pp� ��	�����
May �
���

��� R� L� Graham et al�� �Optimization and approximation
in deterministic sequencing and scheduling� A survey��
Ann� Discrete Math�� vol� �� pp� 	���
	�� �
�
�

�
� J� F� Kurose and R� Chipalkatti� �Load sharing in soft
real�time distributed computer systems�� IEEE Trans�
Comput�� vol� C�
�� Aug� ���

���� J� P� Lehoczky� L� Sha� and J� K� Strosnider� �En�
hanced aperiodic responsiveness in hard real�time envi�
ronments�� in Proc� of the �th IEEE Real�Time Systems
Symposium� December �
��� pp� 	���	���

���� C� L� Liu and J� Layland� �Scheduling algorithms for
multiprogramming in a hard real�time environment�� J�
ACM� vol� ��� no� �� Jan� �
�
�

��	� A� K� Mok� �Fundamental design problems of dis�
tributed systems for the hard real�time environment��
Ph�D� Thesis� M�I�T�� �
�
�

��
� A� K� Mok and M� Dertouzos� �Multiprocessor schedul�
ing in a hard real�time environment�� in Proc� Seventh
Texas Conf� Comput� Syst�� Nov� �
���

���� K� Ramamritham� �Allocation and scheduling of com�
plex periodic tasks�� International Conference on Dis�
tributed Computing Systems� May�June� �

��

���� K� Ramamritham� J� Stankovic� and W� Zhao� �Dis�
tributed scheduling of tasks with deadlines and resource
requirements�� IEEE Trans� Comput�� vol� C�
�� Aug�
�
�
�

���� B� Sprunt� L� Sha� and J� Lehoczky� �Scheduling spo�
radic and aperiodic events in a hard real�time system��
Technical Report CMU�SEI��
�TR���� Apr� �
�
�

���� B� Sprunt� �Aperiodic task scheduling for real�time sys�
tems�� Ph�D� Dissertation� Dept� of Electrical and Com�
puter Engineering� Carnegie Mellon University� Pitts�
burg� PA� August �

��

���� J� A� Stankovic� K� Ramamritham� and S� Cheng �
�Evaluation of a �exible task scheduling algorithm for
distributed hard real�time systems�� IEEE Trans� Com�
put�� vol� C�
�� Dec� �
���

��
� J� K� Strosnider� �Highly responsive real�time token
rings�� Ph�D� Dissertation� Dept� of Electrical and Com�
puter Engineering� Carnegie Mellon University� Pitts�
burg� PA� August �
���

�	�� W� Zhao� K� Ramamritham� and J� A� Stankovic�
�Scheduling tasks with resource requirements in hard
real�time systems�� IEEE Trans� Software Eng�� vol� SE�
�
� May �
���

�	�� W� Zhao and J� A� Stankovic� �Performance analysis
of FCFS and improved FCFS scheduling algorithms for
dynamic real�time computer systems�� �
�
�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

