
In Proceedings of RTDB’96: The 1996 Workshop on Real-Time Databases, Newport Beach, CA, March 1996.

Value�cognizant Admission Control Strategies for Real�Time DBMS�

Azer Bestavros

�best�cs�bu�edu�

Sue Nagy

�nagy�cs�bu�edu�

Computer Science Department

Boston University

Boston� MA �����

Abstract

We propose and evaluate an admission control paradigm for
RTDBS� in which a transaction is submitted to the system as
a pair of processes� a primary task� and a recovery block� The
execution requirements of the primary task are not known
a priori� whereas those of the recovery block are known a
priori� Upon the submission of a transaction� an Admission
Control Mechanism is employed to decide whether to admit
or reject that transaction� Once admitted� a transaction is
guaranteed to �nish executing before its deadline� A trans�
action is considered to have �nished executing if exactly one
of two things occur� Either its primary task is completed
�successful commitment�� or its recovery block is completed
�safe termination�� Committed transactions bring a pro�t
to the system� whereas a terminated transaction brings no
pro�t� The goal of the admission control and scheduling
protocols �e�g�� concurrency control� I�O scheduling� mem�
ory management� employed in the system is to maximize
system pro�t� We describe a number of admission control
strategies and contrast �through simulations� their relative
performance�

� Introduction

The main challenge involved in scheduling transactions in
a Real�Time DataBase Management System �RTDBMS� is
that the resources needed to execute a transaction are not
known a priori� For example� the set of objects to be read
�written� by a transaction may be dependent on user input
�e�g�� in a stock market application� or dependent on sen�
sory inputs �e�g�� in a process control application�� There�
fore� the a priori reservation of resources �e�g�� read�write
locks on data objects� to guarantee a particular Worst Case
Execution Time �WCET� becomes impossible�and the non�
deterministic delays associated with the on�the�	y acquisi�
tion of such resources pose the real challenge of integrating
scheduling and concurrency control techniques�

Current real�time concurrency control mechanisms re�
solve the above challenge by relaxing the deadline seman�
tics �thus suggesting best�e
ort mechanisms for concurrency
control in the presence of soft and �rm� but not hard dead�
lines�� or by restricting the set of acceptable transactions to
a �nite set of transactions with execution requirements that

�This work has been partially supported by NSF �grant CCR�
���������

are known a priori �thus reducing the concurrency control
problem to that of resource management and scheduling���

In this paper� we propose and evaluate� through simula�
tion experiments� a paradigm that preserves the hard dead�
line semantics without assuming complete a priori knowl�
edge of transaction execution requirements� Our paradigm
allows the system to reject a transaction that is submitted
for execution� or else admit it and thus guarantee that one
of two outcomes will occur by the transaction�s deadline�
either the transaction will successfully commit through the
execution of a primary task� or the transaction will safely ter�
minate through the execution of a recovery block� The sys�
tem assumes no a priori knowledge of the execution require�
ments of the primary task� but assumes that the WCET and
read�write sets of the recovery block are known� Through
the use of appropriate admission control policies� we show
that it is possible for the system to maximize its pro�t dy�
namically�

We start in section � with an overview of our transac�
tion processing model and the di
erent components therein�
Next� in section we describe the various Admission Control
Strategies to be used in our simulations� Next� in section �
we present and discuss our simulation baseline model and
results� In section �� we review previous research work and
highlight our contributions� We conclude in section � with
a summary and a description of future research directions�

� System Model

Each transaction submitted to the system consists of two
components� a primary task� and a recovery block� The
execution requirements for the primary task are not known
a priori� whereas those for the recovery block are known
a priori� Figure � shows the various components in our
RTDBMS�

When a transaction is submitted to the system� an Ad�
mission Control Mechanism �ACM� is employed to decide
whether to admit or reject that transaction� Once admitted�
a transaction is guaranteed to �nish executing before its
deadline� A transaction is considered to have �nished exe�
cuting if exactly one of two things occur� Either its primary
task is completed� in which case we say that the transac�
tion has successfully committed� or its recovery block is com�
pleted� in which case we say that the transaction has safely

�In this paper	 we do not consider approaches that attempt to
relax ACID properties
serializability in particular�

RBQ

PTQ

CPU

Finish
Sink

Sched

Preempt

Source

WACM CACM

ACM
Admit

Submit

Reject

CCM

Commit/Terminate

Figure �� Major System Components

terminated� A committed transaction brings a positive pro�t
to the system� whereas a terminated transaction brings no
pro�t� The goal of the admission control and scheduling
protocols employed in the system is to maximize pro�t�

When submitted to the system� each transaction is as�
sociated with a deadline and a pro�t �to be gained only if
the transaction is committed by its deadline�� In this pa�
per we consider only hard deadlines and thus assume that no
transaction will �nish �i�e� successfully commit or safely ter�
minate� past its deadline�� Also� we assume that all transac�
tions bring in equal pro�t when committed on time� More�
over� once admitted to the system� a transaction is abso�
lutely guaranteed �as opposed to conditionally guaranteed�
to �nish and cannot now be rejected in order to accommo�
date a newly submitted transaction�

The ACM consists of two major components� a Con�
currency Admission Control Manager �CACM� and aWork�
load Admission Control Manager �WACM�� The CACM is
responsible for ensuring that admitted transactions do not
overburden the system by requiring a level of concurrency
that is not sustainable� The WACM is responsible for en�
suring that admitted transactions do not overburden the
system by requiring computing resources �e�g�� CPU time�
that are not sustainable�

In this paper we study our admission control mecha�
nism in conjunction with two types of concurrency control
protocols� namely Optimistic Concurrency Control with for�
ward validation �such as OCC�BC ���� or SCC�nS ���� or
Pessimistic Concurrency Control with Priority Abort �such
as �PL�PA �����

We adopt a ��level priority scheme to schedule system
resources �e�g�� CPU�� In particular� all recovery blocks are
assumed to have a higher priority than primary tasks� Thus�
a primary task may be preempted �or aborted� by a recovery
block� whereas a recovery block cannot be preempted by
either a primary task or another recovery block under any
condition�

�Our current research involves extending our results to soft and
�rm deadline systems by allowing for a pro�t�loss past a transactions
deadline� This is similar to our work in ����

��� Workload Admission Control Manager

The source contains a set of transactions which are gen�
erated o
�line� Each enters the system at a random time
and is �rst processed by the ACM� The decision of whether
to admit or reject a transaction submitted for execution is
based upon a feedback mechanism that takes into consid�
eration the current demand on the resources in the system�
This decision is motivated by the overall goal for maximizing
pro�t by maximizing the number of successful commitments
�when primary tasks �nish� and minimizing the number of
safe terminations �when recovery blocks �nish�� For exam�
ple� if the percentage of the CPU bandwidth already com�
mitted to recovery blocks is high� then it may be prudent
for the WACM to reject the submitted transaction� An�
other important function of the WACM is the scheduling
of recovery blocks� A transaction is rejected if its recovery
block cannot be scheduled� even if the current demand on
the resources in the system is low�

��� Concurrency Admission Control Manager

In order to ensure that recovery blocks can execute unhin�
dered �and thus complete within their WCETs� the CACM
must guarantee that the admission of a transaction into the
system does not result in data con	icts between the recovery
block of that transaction and other already admitted trans�
actions� In a uniprocessor system employing an Optimistic
Concurrency Control �OCC� algorithm with forward vali�
dation �e�g�� OCC�BC�� recovery blocks �which cannot be
preempted� are guaranteed to �nish execution without in�
curing any restart delays� The same is true of a uniprocessor
system employing a Pessimistic Concurrency Control �PCC�
algorithm with priority abort �e�g�� �PL�PA� because recov�
ery blocks execute at a higher priority than primary tasks
and� thus� are guaranteed to �nish execution without incur�
ing any blocking delays� This is not true in a multiprocessor
system� where multiple recovery blocks may be executing
concurrently� In such a system� the CACM ensures that
only those recovery blocks that do not con	ict with each
other are allowed to overlap when executed�

��� Processor Scheduling Algorithm

There are two queues managed by the processor scheduler�
the Primary Task Queue �PTQ� and the Recovery Block
Queue �RBQ�� Each admitted transaction contributes one
entry in each of these queues� A primary task is ready to
execute as soon as it is enqueued in the PTQ� whereas a
recovery block must wait for its start time� speci�ed by
the ACM� As indicated before� recovery blocks execute at
a priority higher than that of the primary tasks� Thus� the
scheduling algorithm will always preempt a primary task in
favor of a recovery block which is ready to execute�

Since all tasks in the PTQ are ready to execute� a
scheduling algorithm must be used to apportion the CPU
time amongst these tasks� We use the Earliest Deadline
First algorithm �EDF� ����� which is optimal for a unipro�
cessor system with independent� preemptible tasks having
arbitrary deadlines �����

The RBQ is organized as a series of slots� one for each
recovery block� Each slot contains the recovery block id as
well as its start and end times� Slots are order according to
ascending recovery block start time�

��� Concurrency Control Manager

The function of the CCM is to enforce the concurrency con�
trol protocol in use� For OCC techniques� this enforcement
is done at the time a transaction �nishes its execution� either
by the commitment of its primary task or by the safe termi�
nation of its recovery block� In the case of OCC�BC� con	ict�
ing �primary tasks of� transactions are restarted� whereas in
the case of SCC�nS� con	icting �primary tasks of� transac�
tions are rolled back to a point preceding the con	icting
action� For PCC techniques� this enforcement is done at
the time of each read�write request� For recovery blocks�
which execute at a higher priority� such a request is always
granted� This may result in aborting�restarting con	icting
primary tasks� Notice that it is impossible for two recovery
blocks to con	ict since the processor scheduler guarantees
that recovery blocks do not overlap�� For primary tasks�
such a request may result in blocking �if the read�write lock
is not available��

All transactions� whether �nished or rejected� are re�
moved from the system and sent to the sink which generates
statistical information used to evaluate the system perfor�
mance�

� Optimizing Pro�t through ACM

In order to maximize the value added to the system from
the successful commitment of transactions� the ACM must
admit �enough� transactions�but not too many�to make
use of the system capacity� Admitting too many transac�
tions results in the system being overloaded� which results
in having to be content with most transactions safely termi�
nating �i�e� not successfully committing�� which minimizes
the pro�t to the system� We use the term thrashing to coin
this condition �i�e� the system is busy� yet doing nothing of
value��

As indicated before� the main determinant of whether
transactions are admitted into the system is the schedulabil�
ity of recovery blocks� In this section we present a number
of techniques that could be used by the WACM and contrast
their performance�

First�Fit �FF� Using this technique� the recovery block of
a transaction is inserted in the RBQ at the latest slot that
satis�es its WCET� If no slot is big enough to �t the recov�
ery block� then the transaction is rejected� otherwise it is
admitted�

Latest�Fit �LF� Using this technique� the recovery block of
a transaction is inserted in the RBQ at the latest slot� If
the slot is not large enough� then the recovery blocks pre�
ceeding that slot are rescheduled to start at earlier times
so as to �make room� for the new recovery block� If this
rescheduling is not possible�because it leads to a recovery
block having to be rescheduled before the current time�
then the transaction is rejected� otherwise it is admitted�

Latest�Marginal�Fit �LMF� This technique is identical to
Latest�Fit� except that the scheduling of a recovery block�
and� if necessary� the ensuing rescheduling of other recovery
blocks�is conditional on whether or not the percentage of

�This condition is true in any uniprocessor system where recovery
blocks cannot be preempted�

CPU time allotted to recovery blocks� is below a preset mar�
gin or threshold� If recovery blocks scheduled so far utilize
CPU bandwidth above that margin� then the transaction
is rejected� otherwise Latest�Fit �as described before� is at�
tempted�

Latest�Adaptable�Fit �LAF� This technique is identical to
Latest�Marginal�Fit� except that the threshold used to gauge
the CPU bandwidth alloted to recovery blocks is set dynam�
ically� based on measured variables� such as arrival rate of
transactions� distribution of computation times for success�
fully committed primary tasks as it relates to the distribu�
tion of computation times for recovery blocks� probability of
con	ict over database objects �e�g�� transaction read�write
mix��

Both FF and LF continue to admit transactions into
the system as long as recovery blocks are schedulable� In
other words� there is no feedback mechanism �admission
control� that would prevent thrashing� LMF implements
such a mechanism by refraining from admitting new trans�
actions� once the percentage of CPU bandwidth allocated
to recovery blocks reaches a preset static threshold� LAF
does the same� but allows that threshold to be determined
dynamically using a table lookup procedure� The table is
computed o
�line �using simulations� to determine the opti�
mum quiescent value for the threshold under a host of other
parameters�

� Performance Evaluation

We have implemented the above ACM policies for a unipro�
cessor system using either OCC�BC or �PL�PA� In this sec�
tion we show the value of admission control by compar�
ing the performance achievable through FF� LF� LMF� and
LAF� Since we assume that all transactions bring in equal
pro�t when committed before their deadlines� we desire to
maximize the number of primary task completions while
minimizing the number of recovery block completions �i�e� pri�
mary task abortions��

Table � shows the baseline parameters for our simu�
lations� We assume a �����page memory�resident database�
The primary task of each transaction reads �� pages selected
at random with a ��� update probability� The CPU time
needed to process a read or a write is ��� ms� Thus� in the
absence of any data or resource con	icts� the primary task of
each transaction would need a serial execution time of �� ms
CPU time�� The recovery block of each transaction follows
a normal distribution with a mean of �� ms and standard
deviation of � ms�� Transaction deadlines were related to
the serial execution time through a slack factor� such that
�deadline time � arrival time� � SlackFactor � serial exe�
cution time�

The transaction inter�arrival rate� which is drawn from
an exponential distribution� is varied from � transactions per
second up to �� transactions per second in increments of ��
which represents a light�to�medium loaded system� We used

�within a window of time determined by the current time and the
deadline of the submitted transaction

�Notice that these �gures �i�e� number of pages accessed and serial
execution time� are only needed to generate the workload fed to the
simulator� They are not known to the ACM�

�This amounts to an average of � page accesses�

Parameter Meaning Value

ArrivalRate Transaction arrival rate � � ��� TPS
DBsize Database size in pages �����
Xsize Number of reads per transaction ��
UpdateProb Update Probability ����
RbCompTime Mean Recovery Block Time �� ms
RbStdDev St�Dev� of Recovery Block Time � ms
SlackFactor Slack factor �
TaskSchd Task scheduling protocol EDF

RbSchd Rb scheduling protocol FF� LF� LMF
Thrsh Rb computation threshold �����
CCntrl Concurrency Control protocol OCC�BC

Table �� Baseline Workload Parameters

two additional arrival rates of �� and ��� transactions per
second to experiment with a very heavy loaded system� Each
simulation was run four times� each time with a di
erent
seed� for ������� ms� The results depicted are the average
over the four runs�

Figure � shows the absolute number of successfully com�
mitted transactions� which is a measure of the value�added
to �or pro�t of� the system� under the baseline parameters
shown in table �� Under light�to�medium loads �arrival rates
� �� TPS�� the performance of FF and that of LF are identi�
cal� Under medium�to�heavy �arrival rates � �� TPS� loads
FF performs slightly better� This is expected due to LF�s
tighter packing of recovery blocks via rescheduling� which
results in the admission of more transactions� thus resulting
in a more pronounced thrashing behavior� Under light�to�
medium loads� the performance of LMF is indistinguishable
from that of FF or LF� but under medium�to�heavy loads
LMF manages to avoid thrashing� thus keeping the system�s
pro�t in check with its capacity�

We performed two additional simulations under the
LMF policy� In the �rst� we changed the concurrency con�
trol protocol to �PL�PA� In the second� we set the update
probability to zero� thus simulating the performance of LMF
in the absence of data con	icts �i�e� when all transactions
are �read�only��� These simulations� illustrated in Figure
� show that LMF is most bene�cial when data con	icts
are least� Also� it shows that LMF is more bene�cial with
OCC�BC than it is with �PL�PA� This could be explained
by noting that OCC techniques are better suited for sys�
tems with controllable utilization ����� which is the case in
a system with admission control like ours�

The value of the threshold to be used in LMF is key
to its performance� As we explained before� the optimal
value for this threshold depends on many parameters� most
of which cannot be estimated a priori� One such parame�
ter is the arrival rate of transactions� To demonstrate this�
we ran a set of experiments using LMF� in which we var�
ied the value of the threshold and the transaction arrival
rates� Figure � shows the percentage of submitted trans�
actions that were successfully committed by LMF for these
threshold values and arrival rates�

Figure � shows that for lightly�loaded systems �arrival
rates less than �� TPS�� the performance is unimodal� thus
any threshold less than � is not optimal� This implies that

at such low loads all transactions should be admitted� mak�
ing the performance of LMF identical to that of LF� For
moderately�loaded and heavily�loaded systems� Figure � in�
dicates that an optimum threshold exists for each arrival
rate� Setting the threshold to that optimal value yields
the highest percentage of successful commitments� and thus
yields the highest possible pro�t� The sensitivity of the
pro�t to the value of that threshold is much more pro�
nounced under heavy loads �e�g�� ����� TPS� than it is
under more moderate loads �e�g�� ����� TPS��

Figure � shows the performance gains achievable through
admission control for various arrival rates �system load�� For
each arrival rate we perform two simulations of the system
under the baseline parameters� The �rst utilizes LF whereas
the second utilizes LAF �i�e� LMF at optimal thresholds as
determined from �gure ��� Figure � is a plot of the percent�
age increase in transaction commits achieved when LAF is
used relative to when LF is used� As expected� the ad�
vantage of using LAF is much more pronounced when the
system is overloaded��

To evaluate the e
ect of dynamically changing the thresh�
old in LAF� we ran a simulation of the system� in which we
varied the arrival rate� The parameters used were identi�
cal to those in table �� except that the update probability
was set to zero �thus making these results independent of
the concurrency control protocol in use�� Our simulation
consisted of � consecutive epochs� each running for ������
ms� for a total of ��� seconds� The arrival rate of trans�
actions in these epochs was set to ��� ��� �� ��� and ��
TPS� respectively� Figure � shows the performance of LAF
against that of LMF for two threshold values� ����� and
������ For each one of the three mechanisms� we plotted the
mean number of successful commitments observed over peri�
ods of ������ ms� thus yielding �ve measurements per epoch
for each mechanism �shown in Figure � as a scatter plot��
These data points were used to �t a curve to characterize the
performance of each mechanism over the full ��� seconds of
simulation� Overall� the performance of LAF is better than
both LMF �� ������ and LMF �� ������ As expected� when
the system is lightly loaded� the performance of LMF ��
����� is close to that of LAF� whereas the performance of
LMF �� ������ is meager as a result of its unduly restric�

�It can be shown that the plot in �gure � could be �tted to a
hyperbola	 suggesting a power�law relationship between the perfor�
mance improvement achieved through LAF and the system load�

 500

1000

1500

2000

2500

 0 20 40 60 80 100

LMF @ 0.125

of Commits
System Profit

LF

FF

Arrival rate (TPS)

Figure �� Performance of FF� LF� and LMF

tive admission control� When the system is heavily loaded�
the performance of LMF �� ������ is close to that of LAF�
whereas the performance of LMF �� ����� is meager as a
result of its excessively lax admission control� When the
system is moderately loaded� the performance of all three
techniques is similar�

	 Related Work

Our work di
ers from previous research in that our system
model incorporates not only primary tasks� with unknown
WCET� but also recovery blocks� The admission control
mechanism used admits transactions into the system with
the absolute guarantee that either the primary task will
successfully commit or the recovery block safely terminate�
There have been a number of similar models suggested in
the literature� These are contrasted to our model below�

Liu et al� ���� ��� �� describe the imprecise computa�
tion model which decomposes each task into two subtasks�
a mandatory part and an optional part� The mandatory
part� which has a hard deadline� must be completed in order
for the task to produce an acceptable result� The optional
part� which has a soft deadline and executes upon comple�
tion of the mandatory part� re�nes the result produced by
the mandatory part� The error in the result produced by
a task is zero if the optional part completes its execution�
otherwise� it is equal to the un�nished processing time of

 500

1000

1500

2000

2500

 0 20 40 60 80 100

of Commits
System Profit

Arrival rate (TPS)

No Conflict

OCC-BC

 2PL-PA

Figure � LMF under various concurrency conditions

the optional part� The goal in this model is to minimize the
average error incurred by all tasks� Our work di
ers from
that of Liu et al� in that the WCET requirements of the
mandatory and optional parts are assumed� and both must
complete in order to obtain a precise result� Like the manda�
tory part� a recovery block must execute to completion but
only in the event that the primary task incurs a timing fail�
ure� Given our goal of maximizing the pro�t� our priority is
to execute primary tasks rather than recovery blocks�

A number of papers have employed the primary � alter�
native model in which the primary task provides good qual�
ity of service and is preferable to the alternative which pro�
duces an acceptable quality of service� Alternatives handle
timing faults in ���� �� and processor failures in ���� ��� ����
Our notion of a recovery block is indeed similar to that of
an alternative� execution of a recovery block provides less
attractive quality of service in comparison to the execution
of the primary task� The similarities end here� however�
The alternatives in Liestman and Campbell are not subject
to timing failures� i�e� they have soft deadlines� whereas
recovery blocks have hard deadlines� Moreover� in Chetto
and Chetto� the alternatives are periodic in nature� unlike
recovery blocks which are not�

Most previous RTDBMS studies have assumed that the
only possible outcome of a transaction execution is either the
commitment or the abortion of the transaction� In many sys�
tems� a third outcome of an outright rejection may be desir�

Commit %

Threshold of LMF

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00 0.20 0.40 0.60 0.80 1.00

100 TPS
75 TPS

50 TPS
45 TPS

40 TPS

35 TPS

30 TPS

25 TPS

20 TPS

15 TPS

10 TPS

 5 TPS

Figure �� E
ect of threshold setting on LMF performance

able� For example� in a process control application� the out�
right rejection of a transaction may be safer then attempting
to execute that transaction� only to miss its deadline� Our
work allows the system to reject a transaction� thus making
it possible for compensating actions to be taken in a timely
fashion �possibly by the outside mechanism that submitted
that very same transaction�� Also� this 	exibility allows the
system to ration its resources in the most pro�table way�
by only admitting high�value transactions when the system
is overloaded� while being less choosy when the system is
underloaded�

Haritsa et al� ��� incorporate a feedback mechanism
into an Adaptive Earliest Deadline �AED� scheduling strat�
egy for transactions in a �rm deadline environment� Goyal
et al� ���� describe an approach that allows transactions to
be rejected as part of an optimization of the Load Adaptive
B�link algorithm �LAB�link�� a real�time version of index �B�
tree� concurrency control algorithms in �rm�deadline RT�
DBMS� LAB�link ensures that the root of the B�tree �disk�
does not become a bottleneck by rejecting transactions when
the percentage of transactions missing their deadlines is above
a preset threshold� By tuning the system based on the per�
centage of missed deadlines� their technique does not guar�
antee a maximum pro�t� Also� the notion of a guarantee
�whether for commitment or safe termination by the dead�
line� is non�existent in their work�

The performance objective in most previous RTDBS

Percent

Arrival Rate (TPS)
20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 Profit Gain of Admission Control

 0

Figure �� Percentage Pro�t Gain for LAF

studies has been to minimize the number of transactions
that miss their deadlines in a hard or �rm deadline environ�
ment� or to minimize tardiness� i�e� the time by which late
transactions miss their deadlines� in a soft deadline environ�
ment� The assumption in these systems is that all transac�
tions are of equal value� In many systems� this assumption
is not valid� making it necessary to consider the worth of
a transaction� when making resource allocation and con	ict
resolution decisions� In such systems� the performance ob�
jective becomes that of maximizing the system pro�t�

The notion of transaction values and value functions
���� ��� have been utilized in both general real�time sys�
tems ��� �� as well as in RTDMBS ��� ��� ���� In ��� ���
the value of a task is evaluated during the admission control
process� The decision to reject a task or remove a previously
guaranteed task is based upon tasks� values� A task which
is accepted into the system is conditionally guaranteed� to
complete its execution provided that no higher valued �crit�
ical� task �with which it con	icts� arrives� In all cases� the
WCET of the tasks is assumed to be known a priori�

This notion of �cost consciousness� is similar to that
investigated by Chakravarthy� Hong� and Johnson in ����
where a Cost Conscious Approach with Average Load Fac�
tor �CCA�ALF� is proposed and evaluated� CCA�ALF is a

�This is in contrast to an absolute guarantee	 which speci�es that
once admitted to a system	 the task will complete its execution by its
deadline�

System Profit

65

70

75

80

85

90

95

100

105

110

115

120

Latest Marginal Fit (0.250)
Latest Marginal Fit (0.125)
Latest Adaptable Fit

Total Commits

60

Transaction Arrival Rate
15 TPS 25 TPS 45 TPS35 TPS 75 TPS

0 50 100 150 200 250

sec

Figure �� Dynamic Performance of LMF and LAF

best�e
ort scheduling strategy �i�e� no guarantees are given�
that takes into account the dynamic aspects of transaction
execution �e�g�� system load� in addition to its static as�
pects �e�g�� soft��rm deadlines� when making scheduling de�
cisions� Huang et al� ���� use transaction values to sched�
ule system resources �e�g�� CPU� and in con	ict resolution
protocols in a soft real�time environment� Bestavros and
Braoudakis ��� also employs value functions in a soft real�
time system to determine whether it is more advantageous
�i�e� adds more value to the system� to commit a transaction
or to delay that commitment for a period of time�

Two recent PhD theses have proposed novel transac�
tion processing frameworks that allow RTDBS to apportion
their resources in a value�cognizant fashion� In ���� ���� Kim
establishes a RTDBS model which includes both hard and
soft real�time transactions� maintains temporal and logical
consistency of data ����� and supports multiple guarantee
levels� Under this model� an integrated transaction pro�
cessing scheme is devised� providing both predictability and
consistency for RTDBS such that every application in the
system is assured to achieve its own performance goal �the
guarantee level� and maintain consistency requirement� A
simulation study shows that higher guarantee levels require
more system resources and therefore cost more than non�
guaranteed transactions�

In ��� ��� Braoudakis takes a di
erent approach� whereby
transactions are associated with value functions that identify

the nature of their timing constraints� as well as their over�
all importance to the system�s mission� Under this frame�
work a whole spectrum of transactions could be speci�ed�
including transactions with no timing constraints� as well as
transactions with soft� �rm� and hard deadlines� The nov�
elty of this approach is that it allows a single transaction
processing protocol to be carried uniformly on all types of
transactions� The e�cacy of this approach has been demon�
strated by applying it to the concurrency control problem in
RTDBS� In particular� speculative concurrency control algo�
rithms �� were extended to work under this framework and
were shown�in detailed simulation studies�to yield supe�
rior performance� The notion of value functions is a gener�
alization of the earlier work of Biyabani et al� ���� Huang et
al� ����� and Chakravarthy et al� ����

 Conclusion and Future Work

In this paper� we proposed a new paradigm for the execution
of transactions in a RTDBMS� Our paradigm allows the sys�
tem to reject a transaction that is submitted for execution�
or else admit it and thus guarantee that one of two outcomes
will occur by the transaction�s deadline� either the transac�
tion will successfully commit through the execution of a pri�
mary task� or the transaction will safely terminate through
the execution of a recovery block� The system assumes no
a priori knowledge of the execution requirements of the pri�
mary task� but assumes that the WCET and read�write sets
of the recovery block are known� Through the use of appro�
priate admission control policies� we show that it is possible
for the system to maximize its pro�t dynamically�

In this paper� we considered only hard�deadline trans�
actions� This implied that once admitted� a transaction
must be successfully committed� or else safely terminated
by its deadline �due to the prohibitive loss to be incured if
that deadline is missed�� If soft�deadline transactions are
to be managed� then it is possible for the system to �nish
�commit�terminate� a transaction past its deadline� which
makes the problem of recovery block scheduling much harder�

The interaction between concurrency control and ad�
mission control is one of the main themes of this paper�
Yet� many facets of this interaction have not been addressed�
For example� the CCM could use information provided to
the CACM to make better concurrency control decisions��

Conversely� the CACM could use information about the
read�write sets of primary tasks to determine whether or
not to accept a particular recovery block�

Our current work involves extending our transaction
model to include transactions with di
erent values� New ad�
mission control techniques which take into account a trans�
action�s value �i�e� relative importance with respect to the
transaction set� are being designed� When a transaction is
submitted to the system� the pro�t to be gained by admit�
ting this transaction is compared against the pro�t to be
lost by previously admitted transaction� If the pro�t�gain
is greater than the pro�t�loss� we admit the new transac�
tion� otherwise� we reject it� In addition� CPU scheduling
of primary tasks by value will also be studied�

�In particular	 the read�write sets of recovery blocks could be used
by an SCC�nS ��� algorithm to determine when shadow transactions
are to be created�

References

��� Robert Abbott and Hector Garcia�Molina� Schedul�
ing real�time transactions� ACM� SIGMOD Record�
������������ �����

��� Robert Abbott and Hector Garcia�Molina� Schedul�
ing real�time transactions� A performance evaluation�
In Proceedings of the 	
th International Conference on
Very Large Data Bases� pages ����� Los Angeles� Ca�
�����

�� Azer Bestavros and Spyridon Braoudakis� Timeliness
via speculation for real�time databases� In Proceedings
of RTSS��
 The 	
th IEEE Real�Time System Sym�
posium� San Juan� Puerto Rico� December �����

��� Azer Bestavros and Spyridon Braoudakis� Value�
cognizant speculative concurrency control� In Proceed�
ings of VLDB��� The International Conference on
Very Large Databases� Zurich� Switzerland� Spetember
�����

��� Sara Biyabani� John Stankovic� and Krithi Ramam�
ritham� The integration of deadline and criticalness
in hard real�time scheduling� In Proceedings of the �th
Real�Time Systems Symposium� December �����

��� Spyridon Braoudakis� Concurrency Control Proto�
cols for Real�Time Databases� PhD thesis� Computer
Science Department� Boston University� Boston� MA
������ November �����

��� G� Buttazzo� M� Spuri� and F� Sensini� Value vs� dead�
line scheduling in overload conditions� In Proceedings
of the 	�th Real�Time Systems Symposium� December
�����

��� S� Chakravarthy� D� Hong� and T� Johnson� Incorpo�
rating load factor into the scheduling of soft real�time
transactions� Technical Report TR������� University
of Florida� Department of Computer and Information
Science� �����

��� H� Chetto and M� Chetto� Some results of the earliest
deadline scheduling algorithm� IEEE Transactions on
Software Engineering� ����������������� October �����

���� M� L� Dertouzos� Control robotics� The procedu�
ral control of physical processes� In Proceedings IFIP
Congress� pages ������� �����

���� B� Goyal� J� Haritsa� S� Seshadri� and V� Srinivasan�
Index concurrency control in �rm real�time dbms� In
Proceedings of the �	st VLDB Conference� pages ����
���� September �����

���� Jayant R� Haritsa� Michael J� Carey� and Miron Livny�
On being optimistic about real�time constraints� In
Proceedings of the 	��� ACM PODS Symposium� April
�����

��� Jayant R� Haritsa� Miron Livny� and Michael J� Carey�
Earliest deadline scheduling for real�time database sys�
tems� In Proceedings of the 	�th Real�Time Systems
Symposium� December �����

���� J� Huang� J� A� Stankovic� D� Towsley� and K� Ramam�
ritham� Experimental evaluation of real�time transac�
tion processing� In Proceedings of the 	�th Real�Time
Systems Symposium� December �����

���� E�D� Jensen� C�D� Locke� and J� Tokuda� A time�driven
scheduling model for real�time operating systems� In
Proceedings of the �th Real�Time Systems Symposium�
pages �������� December �����

���� Y� Kim and S� H� Son� An approach towards predictable
real�time transaction processing� In Proceedings of the
�th Euromicro Workshop on Real�Time Systems� pages
������ Oulu� Finland� June ����

���� Young�Kuk Kim� Predictability and Consistency in
Real�Time Transaction Processing� PhD thesis� Depart�
ment of Computer Science� University of Virginia� May
�����

���� C� M� Krishna and K� G� Shin� On scheduling tasks
with a quick recovery from failure� IEEE Transactions
on Computers� ������������� May �����

���� A� Liestman and R� Campbell� A fault�tolerant schedul�
ing problem� IEEE Transaction on Software Engineer�
ing� SE������������������ November �����

���� K� J� Lin� S� Natarajan� and J� W��S� Liu� Imprecise
results� Utilizing partial commputations in real�time
systems� In Proceedings of the �th IEEE Real�Time
Systems Symposium� December �����

���� K� J� Lin� S� Natarajan� J� W��S� Liu� and T� Krauskopf�
Concord� A system of imprecise computations� In Pro�
ceedings of the IEEE Compsac� October �����

���� C� L� Liu and J� Layland� Scheduling algorithms
for multiprogramming in hard real�time environments�
Journal of the Assocation of Computing Machinery�
������������ January ����

��� J� W��S� Liu� K� J� Lin� and S� Natarajan� Schedul�
ing real�time� periodic jobs using imprecise results� In
Proceedings of the �th IEEE Real�time Systems Sympo�
sium� December �����

���� C� Locke� Best E�ort Decision Making for Real�Time
Scheduling� PhD thesis� Carnegie�Mellon University�
Department of Computer Science� May �����

���� D� Menasce and T� Nakanishi� Optimistic versus pes�
simistic concurrency control mechanisms in database
management systems� Information Systems� ����� �����

���� D� Mosse� R� Melhem� and S� Ghosh� Analysis of a fault�
tolerant multiprocessor scheduling algorithm� IEEE
Fault Tolerant Computing� pages ������ �����

���� Y� Oh and S� Son� An algorithm for real�time fault�
tolerant scheduling in multiprocessor systems� In
Fourth Euromicro Workshop on Real�time Systems�
�����

���� Krithi Ramamritham� Real�time databases� Interna�
tional journal of Distributed and Parallel Databases�
����� ����

���� John Stankovic and Wei Zhao� On real�time transac�
tions� ACM� SIGMOD Record� ����������� �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

