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Abstract

We propose and evaluate an admission control paradigm for
RTDBS� in which a transaction is submitted to the system as
a pair of processes� a primary task� and a recovery block� The
execution requirements of the primary task are not known
a priori� whereas those of the recovery block are known a
priori� Upon the submission of a transaction� an Admission
Control Mechanism is employed to decide whether to admit
or reject that transaction� Once admitted� a transaction is
guaranteed to �nish executing before its deadline� A trans�
action is considered to have �nished executing if exactly one
of two things occur� Either its primary task is completed
�successful commitment�� or its recovery block is completed
�safe termination�� Committed transactions bring a pro�t
to the system� whereas a terminated transaction brings no
pro�t� The goal of the admission control and scheduling
protocols �e�g�� concurrency control� I�O scheduling� mem�
ory management� employed in the system is to maximize
system pro�t� We describe a number of admission control
strategies and contrast �through simulations� their relative
performance�

� Introduction

The main challenge involved in scheduling transactions in
a Real�Time DataBase Management System �RTDBMS� is
that the resources needed to execute a transaction are not
known a priori� For example� the set of objects to be read
�written� by a transaction may be dependent on user input
�e�g�� in a stock market application� or dependent on sen�
sory inputs �e�g�� in a process control application�� There�
fore� the a priori reservation of resources �e�g�� read�write
locks on data objects� to guarantee a particular Worst Case
Execution Time �WCET� becomes impossible�and the non�
deterministic delays associated with the on�the�	y acquisi�
tion of such resources pose the real challenge of integrating
scheduling and concurrency control techniques�

Current real�time concurrency control mechanisms re�
solve the above challenge by relaxing the deadline seman�
tics �thus suggesting best�e
ort mechanisms for concurrency
control in the presence of soft and �rm� but not hard dead�
lines�� or by restricting the set of acceptable transactions to
a �nite set of transactions with execution requirements that
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are known a priori �thus reducing the concurrency control
problem to that of resource management and scheduling���

In this paper� we propose and evaluate� through simula�
tion experiments� a paradigm that preserves the hard dead�
line semantics without assuming complete a priori knowl�
edge of transaction execution requirements� Our paradigm
allows the system to reject a transaction that is submitted
for execution� or else admit it and thus guarantee that one
of two outcomes will occur by the transaction�s deadline�
either the transaction will successfully commit through the
execution of a primary task� or the transaction will safely ter�
minate through the execution of a recovery block� The sys�
tem assumes no a priori knowledge of the execution require�
ments of the primary task� but assumes that the WCET and
read�write sets of the recovery block are known� Through
the use of appropriate admission control policies� we show
that it is possible for the system to maximize its pro�t dy�
namically�

We start in section � with an overview of our transac�
tion processing model and the di
erent components therein�
Next� in section  we describe the various Admission Control
Strategies to be used in our simulations� Next� in section �
we present and discuss our simulation baseline model and
results� In section �� we review previous research work and
highlight our contributions� We conclude in section � with
a summary and a description of future research directions�

� System Model

Each transaction submitted to the system consists of two
components� a primary task� and a recovery block� The
execution requirements for the primary task are not known
a priori� whereas those for the recovery block are known
a priori� Figure � shows the various components in our
RTDBMS�

When a transaction is submitted to the system� an Ad�
mission Control Mechanism �ACM� is employed to decide
whether to admit or reject that transaction� Once admitted�
a transaction is guaranteed to �nish executing before its
deadline� A transaction is considered to have �nished exe�
cuting if exactly one of two things occur� Either its primary
task is completed� in which case we say that the transac�
tion has successfully committed� or its recovery block is com�
pleted� in which case we say that the transaction has safely

�In this paper	 we do not consider approaches that attempt to
relax ACID properties
serializability in particular�



RBQ

PTQ

CPU

Finish
Sink

Sched

Preempt

Source

WACM CACM

ACM
Admit

Submit

Reject

CCM

Commit/Terminate

Figure �� Major System Components

terminated� A committed transaction brings a positive pro�t
to the system� whereas a terminated transaction brings no
pro�t� The goal of the admission control and scheduling
protocols employed in the system is to maximize pro�t�

When submitted to the system� each transaction is as�
sociated with a deadline and a pro�t �to be gained only if
the transaction is committed by its deadline�� In this pa�
per we consider only hard deadlines and thus assume that no
transaction will �nish �i�e� successfully commit or safely ter�
minate� past its deadline�� Also� we assume that all transac�
tions bring in equal pro�t when committed on time� More�
over� once admitted to the system� a transaction is abso�
lutely guaranteed �as opposed to conditionally guaranteed�
to �nish and cannot now be rejected in order to accommo�
date a newly submitted transaction�

The ACM consists of two major components� a Con�
currency Admission Control Manager �CACM� and aWork�
load Admission Control Manager �WACM�� The CACM is
responsible for ensuring that admitted transactions do not
overburden the system by requiring a level of concurrency
that is not sustainable� The WACM is responsible for en�
suring that admitted transactions do not overburden the
system by requiring computing resources �e�g�� CPU time�
that are not sustainable�

In this paper we study our admission control mecha�
nism in conjunction with two types of concurrency control
protocols� namely Optimistic Concurrency Control with for�
ward validation �such as OCC�BC ���� or SCC�nS ���� or
Pessimistic Concurrency Control with Priority Abort �such
as �PL�PA �����

We adopt a ��level priority scheme to schedule system
resources �e�g�� CPU�� In particular� all recovery blocks are
assumed to have a higher priority than primary tasks� Thus�
a primary task may be preempted �or aborted� by a recovery
block� whereas a recovery block cannot be preempted by
either a primary task or another recovery block under any
condition�

�Our current research involves extending our results to soft and
�rm deadline systems by allowing for a pro�t�loss past a transactions
deadline� This is similar to our work in ����

��� Workload Admission Control Manager

The source contains a set of transactions which are gen�
erated o
�line� Each enters the system at a random time
and is �rst processed by the ACM� The decision of whether
to admit or reject a transaction submitted for execution is
based upon a feedback mechanism that takes into consid�
eration the current demand on the resources in the system�
This decision is motivated by the overall goal for maximizing
pro�t by maximizing the number of successful commitments
�when primary tasks �nish� and minimizing the number of
safe terminations �when recovery blocks �nish�� For exam�
ple� if the percentage of the CPU bandwidth already com�
mitted to recovery blocks is high� then it may be prudent
for the WACM to reject the submitted transaction� An�
other important function of the WACM is the scheduling
of recovery blocks� A transaction is rejected if its recovery
block cannot be scheduled� even if the current demand on
the resources in the system is low�

��� Concurrency Admission Control Manager

In order to ensure that recovery blocks can execute unhin�
dered �and thus complete within their WCETs� the CACM
must guarantee that the admission of a transaction into the
system does not result in data con	icts between the recovery
block of that transaction and other already admitted trans�
actions� In a uniprocessor system employing an Optimistic
Concurrency Control �OCC� algorithm with forward vali�
dation �e�g�� OCC�BC�� recovery blocks �which cannot be
preempted� are guaranteed to �nish execution without in�
curing any restart delays� The same is true of a uniprocessor
system employing a Pessimistic Concurrency Control �PCC�
algorithm with priority abort �e�g�� �PL�PA� because recov�
ery blocks execute at a higher priority than primary tasks
and� thus� are guaranteed to �nish execution without incur�
ing any blocking delays� This is not true in a multiprocessor
system� where multiple recovery blocks may be executing
concurrently� In such a system� the CACM ensures that
only those recovery blocks that do not con	ict with each
other are allowed to overlap when executed�

��� Processor Scheduling Algorithm

There are two queues managed by the processor scheduler�
the Primary Task Queue �PTQ� and the Recovery Block
Queue �RBQ�� Each admitted transaction contributes one
entry in each of these queues� A primary task is ready to
execute as soon as it is enqueued in the PTQ� whereas a
recovery block must wait for its start time� speci�ed by
the ACM� As indicated before� recovery blocks execute at
a priority higher than that of the primary tasks� Thus� the
scheduling algorithm will always preempt a primary task in
favor of a recovery block which is ready to execute�

Since all tasks in the PTQ are ready to execute� a
scheduling algorithm must be used to apportion the CPU
time amongst these tasks� We use the Earliest Deadline
First algorithm �EDF� ����� which is optimal for a unipro�
cessor system with independent� preemptible tasks having
arbitrary deadlines �����

The RBQ is organized as a series of slots� one for each
recovery block� Each slot contains the recovery block id as
well as its start and end times� Slots are order according to
ascending recovery block start time�



��� Concurrency Control Manager

The function of the CCM is to enforce the concurrency con�
trol protocol in use� For OCC techniques� this enforcement
is done at the time a transaction �nishes its execution� either
by the commitment of its primary task or by the safe termi�
nation of its recovery block� In the case of OCC�BC� con	ict�
ing �primary tasks of� transactions are restarted� whereas in
the case of SCC�nS� con	icting �primary tasks of� transac�
tions are rolled back to a point preceding the con	icting
action� For PCC techniques� this enforcement is done at
the time of each read�write request� For recovery blocks�
which execute at a higher priority� such a request is always
granted� This may result in aborting�restarting con	icting
primary tasks� Notice that it is impossible for two recovery
blocks to con	ict since the processor scheduler guarantees
that recovery blocks do not overlap�� For primary tasks�
such a request may result in blocking �if the read�write lock
is not available��

All transactions� whether �nished or rejected� are re�
moved from the system and sent to the sink which generates
statistical information used to evaluate the system perfor�
mance�

� Optimizing Pro�t through ACM

In order to maximize the value added to the system from
the successful commitment of transactions� the ACM must
admit �enough� transactions�but not too many�to make
use of the system capacity� Admitting too many transac�
tions results in the system being overloaded� which results
in having to be content with most transactions safely termi�
nating �i�e� not successfully committing�� which minimizes
the pro�t to the system� We use the term thrashing to coin
this condition �i�e� the system is busy� yet doing nothing of
value��

As indicated before� the main determinant of whether
transactions are admitted into the system is the schedulabil�
ity of recovery blocks� In this section we present a number
of techniques that could be used by the WACM and contrast
their performance�

First�Fit �FF� Using this technique� the recovery block of
a transaction is inserted in the RBQ at the latest slot that
satis�es its WCET� If no slot is big enough to �t the recov�
ery block� then the transaction is rejected� otherwise it is
admitted�

Latest�Fit �LF� Using this technique� the recovery block of
a transaction is inserted in the RBQ at the latest slot� If
the slot is not large enough� then the recovery blocks pre�
ceeding that slot are rescheduled to start at earlier times
so as to �make room� for the new recovery block� If this
rescheduling is not possible�because it leads to a recovery
block having to be rescheduled before the current time�
then the transaction is rejected� otherwise it is admitted�

Latest�Marginal�Fit �LMF� This technique is identical to
Latest�Fit� except that the scheduling of a recovery block�
and� if necessary� the ensuing rescheduling of other recovery
blocks�is conditional on whether or not the percentage of

�This condition is true in any uniprocessor system where recovery
blocks cannot be preempted�

CPU time allotted to recovery blocks� is below a preset mar�
gin or threshold� If recovery blocks scheduled so far utilize
CPU bandwidth above that margin� then the transaction
is rejected� otherwise Latest�Fit �as described before� is at�
tempted�

Latest�Adaptable�Fit �LAF� This technique is identical to
Latest�Marginal�Fit� except that the threshold used to gauge
the CPU bandwidth alloted to recovery blocks is set dynam�
ically� based on measured variables� such as arrival rate of
transactions� distribution of computation times for success�
fully committed primary tasks as it relates to the distribu�
tion of computation times for recovery blocks� probability of
con	ict over database objects �e�g�� transaction read�write
mix��

Both FF and LF continue to admit transactions into
the system as long as recovery blocks are schedulable� In
other words� there is no feedback mechanism �admission
control� that would prevent thrashing� LMF implements
such a mechanism by refraining from admitting new trans�
actions� once the percentage of CPU bandwidth allocated
to recovery blocks reaches a preset static threshold� LAF
does the same� but allows that threshold to be determined
dynamically using a table lookup procedure� The table is
computed o
�line �using simulations� to determine the opti�
mum quiescent value for the threshold under a host of other
parameters�

� Performance Evaluation

We have implemented the above ACM policies for a unipro�
cessor system using either OCC�BC or �PL�PA� In this sec�
tion we show the value of admission control by compar�
ing the performance achievable through FF� LF� LMF� and
LAF� Since we assume that all transactions bring in equal
pro�t when committed before their deadlines� we desire to
maximize the number of primary task completions while
minimizing the number of recovery block completions �i�e� pri�
mary task abortions��

Table � shows the baseline parameters for our simu�
lations� We assume a �����page memory�resident database�
The primary task of each transaction reads �� pages selected
at random with a ��� update probability� The CPU time
needed to process a read or a write is ��� ms� Thus� in the
absence of any data or resource con	icts� the primary task of
each transaction would need a serial execution time of �� ms
CPU time�� The recovery block of each transaction follows
a normal distribution with a mean of �� ms and standard
deviation of � ms�� Transaction deadlines were related to
the serial execution time through a slack factor� such that
�deadline time � arrival time� � SlackFactor � serial exe�
cution time�

The transaction inter�arrival rate� which is drawn from
an exponential distribution� is varied from � transactions per
second up to �� transactions per second in increments of ��
which represents a light�to�medium loaded system� We used

�within a window of time determined by the current time and the
deadline of the submitted transaction

�Notice that these �gures �i�e� number of pages accessed and serial
execution time� are only needed to generate the workload fed to the
simulator� They are not known to the ACM�

�This amounts to an average of � page accesses�



Parameter Meaning Value

ArrivalRate Transaction arrival rate � � ��� TPS
DBsize Database size in pages �����
Xsize Number of reads per transaction ��
UpdateProb Update Probability ����
RbCompTime Mean Recovery Block Time �� ms
RbStdDev St�Dev� of Recovery Block Time � ms
SlackFactor Slack factor �
TaskSchd Task scheduling protocol EDF

RbSchd Rb scheduling protocol FF� LF� LMF
Thrsh Rb computation threshold �����
CCntrl Concurrency Control protocol OCC�BC

Table �� Baseline Workload Parameters

two additional arrival rates of �� and ��� transactions per
second to experiment with a very heavy loaded system� Each
simulation was run four times� each time with a di
erent
seed� for ������� ms� The results depicted are the average
over the four runs�

Figure � shows the absolute number of successfully com�
mitted transactions� which is a measure of the value�added
to �or pro�t of� the system� under the baseline parameters
shown in table �� Under light�to�medium loads �arrival rates
� �� TPS�� the performance of FF and that of LF are identi�
cal� Under medium�to�heavy �arrival rates � �� TPS� loads
FF performs slightly better� This is expected due to LF�s
tighter packing of recovery blocks via rescheduling� which
results in the admission of more transactions� thus resulting
in a more pronounced thrashing behavior� Under light�to�
medium loads� the performance of LMF is indistinguishable
from that of FF or LF� but under medium�to�heavy loads
LMF manages to avoid thrashing� thus keeping the system�s
pro�t in check with its capacity�

We performed two additional simulations under the
LMF policy� In the �rst� we changed the concurrency con�
trol protocol to �PL�PA� In the second� we set the update
probability to zero� thus simulating the performance of LMF
in the absence of data con	icts �i�e� when all transactions
are �read�only��� These simulations� illustrated in Figure
� show that LMF is most bene�cial when data con	icts
are least� Also� it shows that LMF is more bene�cial with
OCC�BC than it is with �PL�PA� This could be explained
by noting that OCC techniques are better suited for sys�
tems with controllable utilization ����� which is the case in
a system with admission control like ours�

The value of the threshold to be used in LMF is key
to its performance� As we explained before� the optimal
value for this threshold depends on many parameters� most
of which cannot be estimated a priori� One such parame�
ter is the arrival rate of transactions� To demonstrate this�
we ran a set of experiments using LMF� in which we var�
ied the value of the threshold and the transaction arrival
rates� Figure � shows the percentage of submitted trans�
actions that were successfully committed by LMF for these
threshold values and arrival rates�

Figure � shows that for lightly�loaded systems �arrival
rates less than �� TPS�� the performance is unimodal� thus
any threshold less than � is not optimal� This implies that

at such low loads all transactions should be admitted� mak�
ing the performance of LMF identical to that of LF� For
moderately�loaded and heavily�loaded systems� Figure � in�
dicates that an optimum threshold exists for each arrival
rate� Setting the threshold to that optimal value yields
the highest percentage of successful commitments� and thus
yields the highest possible pro�t� The sensitivity of the
pro�t to the value of that threshold is much more pro�
nounced under heavy loads �e�g�� ����� TPS� than it is
under more moderate loads �e�g�� ����� TPS��

Figure � shows the performance gains achievable through
admission control for various arrival rates �system load�� For
each arrival rate we perform two simulations of the system
under the baseline parameters� The �rst utilizes LF whereas
the second utilizes LAF �i�e� LMF at optimal thresholds as
determined from �gure ��� Figure � is a plot of the percent�
age increase in transaction commits achieved when LAF is
used relative to when LF is used� As expected� the ad�
vantage of using LAF is much more pronounced when the
system is overloaded��

To evaluate the e
ect of dynamically changing the thresh�
old in LAF� we ran a simulation of the system� in which we
varied the arrival rate� The parameters used were identi�
cal to those in table �� except that the update probability
was set to zero �thus making these results independent of
the concurrency control protocol in use�� Our simulation
consisted of � consecutive epochs� each running for ������
ms� for a total of ��� seconds� The arrival rate of trans�
actions in these epochs was set to ��� ��� �� ��� and ��
TPS� respectively� Figure � shows the performance of LAF
against that of LMF for two threshold values� ����� and
������ For each one of the three mechanisms� we plotted the
mean number of successful commitments observed over peri�
ods of ������ ms� thus yielding �ve measurements per epoch
for each mechanism �shown in Figure � as a scatter plot��
These data points were used to �t a curve to characterize the
performance of each mechanism over the full ��� seconds of
simulation� Overall� the performance of LAF is better than
both LMF �� ������ and LMF �� ������ As expected� when
the system is lightly loaded� the performance of LMF ��
����� is close to that of LAF� whereas the performance of
LMF �� ������ is meager as a result of its unduly restric�

�It can be shown that the plot in �gure � could be �tted to a
hyperbola	 suggesting a power�law relationship between the perfor�
mance improvement achieved through LAF and the system load�
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tive admission control� When the system is heavily loaded�
the performance of LMF �� ������ is close to that of LAF�
whereas the performance of LMF �� ����� is meager as a
result of its excessively lax admission control� When the
system is moderately loaded� the performance of all three
techniques is similar�

	 Related Work

Our work di
ers from previous research in that our system
model incorporates not only primary tasks� with unknown
WCET� but also recovery blocks� The admission control
mechanism used admits transactions into the system with
the absolute guarantee that either the primary task will
successfully commit or the recovery block safely terminate�
There have been a number of similar models suggested in
the literature� These are contrasted to our model below�

Liu et al� ���� ��� �� describe the imprecise computa�
tion model which decomposes each task into two subtasks�
a mandatory part and an optional part� The mandatory
part� which has a hard deadline� must be completed in order
for the task to produce an acceptable result� The optional
part� which has a soft deadline and executes upon comple�
tion of the mandatory part� re�nes the result produced by
the mandatory part� The error in the result produced by
a task is zero if the optional part completes its execution�
otherwise� it is equal to the un�nished processing time of
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the optional part� The goal in this model is to minimize the
average error incurred by all tasks� Our work di
ers from
that of Liu et al� in that the WCET requirements of the
mandatory and optional parts are assumed� and both must
complete in order to obtain a precise result� Like the manda�
tory part� a recovery block must execute to completion but
only in the event that the primary task incurs a timing fail�
ure� Given our goal of maximizing the pro�t� our priority is
to execute primary tasks rather than recovery blocks�

A number of papers have employed the primary � alter�
native model in which the primary task provides good qual�
ity of service and is preferable to the alternative which pro�
duces an acceptable quality of service� Alternatives handle
timing faults in ���� �� and processor failures in ���� ��� ����
Our notion of a recovery block is indeed similar to that of
an alternative� execution of a recovery block provides less
attractive quality of service in comparison to the execution
of the primary task� The similarities end here� however�
The alternatives in Liestman and Campbell are not subject
to timing failures� i�e� they have soft deadlines� whereas
recovery blocks have hard deadlines� Moreover� in Chetto
and Chetto� the alternatives are periodic in nature� unlike
recovery blocks which are not�

Most previous RTDBMS studies have assumed that the
only possible outcome of a transaction execution is either the
commitment or the abortion of the transaction� In many sys�
tems� a third outcome of an outright rejection may be desir�
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able� For example� in a process control application� the out�
right rejection of a transaction may be safer then attempting
to execute that transaction� only to miss its deadline� Our
work allows the system to reject a transaction� thus making
it possible for compensating actions to be taken in a timely
fashion �possibly by the outside mechanism that submitted
that very same transaction�� Also� this 	exibility allows the
system to ration its resources in the most pro�table way�
by only admitting high�value transactions when the system
is overloaded� while being less choosy when the system is
underloaded�

Haritsa et al� ��� incorporate a feedback mechanism
into an Adaptive Earliest Deadline �AED� scheduling strat�
egy for transactions in a �rm deadline environment� Goyal
et al� ���� describe an approach that allows transactions to
be rejected as part of an optimization of the Load Adaptive
B�link algorithm �LAB�link�� a real�time version of index �B�
tree� concurrency control algorithms in �rm�deadline RT�
DBMS� LAB�link ensures that the root of the B�tree �disk�
does not become a bottleneck by rejecting transactions when
the percentage of transactions missing their deadlines is above
a preset threshold� By tuning the system based on the per�
centage of missed deadlines� their technique does not guar�
antee a maximum pro�t� Also� the notion of a guarantee
�whether for commitment or safe termination by the dead�
line� is non�existent in their work�

The performance objective in most previous RTDBS
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studies has been to minimize the number of transactions
that miss their deadlines in a hard or �rm deadline environ�
ment� or to minimize tardiness� i�e� the time by which late
transactions miss their deadlines� in a soft deadline environ�
ment� The assumption in these systems is that all transac�
tions are of equal value� In many systems� this assumption
is not valid� making it necessary to consider the worth of
a transaction� when making resource allocation and con	ict
resolution decisions� In such systems� the performance ob�
jective becomes that of maximizing the system pro�t�

The notion of transaction values and value functions
���� ��� have been utilized in both general real�time sys�
tems ��� �� as well as in RTDMBS ��� ��� ���� In ��� ���
the value of a task is evaluated during the admission control
process� The decision to reject a task or remove a previously
guaranteed task is based upon tasks� values� A task which
is accepted into the system is conditionally guaranteed� to
complete its execution provided that no higher valued �crit�
ical� task �with which it con	icts� arrives� In all cases� the
WCET of the tasks is assumed to be known a priori�

This notion of �cost consciousness� is similar to that
investigated by Chakravarthy� Hong� and Johnson in ����
where a Cost Conscious Approach with Average Load Fac�
tor �CCA�ALF� is proposed and evaluated� CCA�ALF is a

�This is in contrast to an absolute guarantee	 which speci�es that
once admitted to a system	 the task will complete its execution by its
deadline�
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best�e
ort scheduling strategy �i�e� no guarantees are given�
that takes into account the dynamic aspects of transaction
execution �e�g�� system load� in addition to its static as�
pects �e�g�� soft��rm deadlines� when making scheduling de�
cisions� Huang et al� ���� use transaction values to sched�
ule system resources �e�g�� CPU� and in con	ict resolution
protocols in a soft real�time environment� Bestavros and
Braoudakis ��� also employs value functions in a soft real�
time system to determine whether it is more advantageous
�i�e� adds more value to the system� to commit a transaction
or to delay that commitment for a period of time�

Two recent PhD theses have proposed novel transac�
tion processing frameworks that allow RTDBS to apportion
their resources in a value�cognizant fashion� In ���� ���� Kim
establishes a RTDBS model which includes both hard and
soft real�time transactions� maintains temporal and logical
consistency of data ����� and supports multiple guarantee
levels� Under this model� an integrated transaction pro�
cessing scheme is devised� providing both predictability and
consistency for RTDBS such that every application in the
system is assured to achieve its own performance goal �the
guarantee level� and maintain consistency requirement� A
simulation study shows that higher guarantee levels require
more system resources and therefore cost more than non�
guaranteed transactions�

In ��� ��� Braoudakis takes a di
erent approach� whereby
transactions are associated with value functions that identify

the nature of their timing constraints� as well as their over�
all importance to the system�s mission� Under this frame�
work a whole spectrum of transactions could be speci�ed�
including transactions with no timing constraints� as well as
transactions with soft� �rm� and hard deadlines� The nov�
elty of this approach is that it allows a single transaction
processing protocol to be carried uniformly on all types of
transactions� The e�cacy of this approach has been demon�
strated by applying it to the concurrency control problem in
RTDBS� In particular� speculative concurrency control algo�
rithms �� were extended to work under this framework and
were shown�in detailed simulation studies�to yield supe�
rior performance� The notion of value functions is a gener�
alization of the earlier work of Biyabani et al� ���� Huang et
al� ����� and Chakravarthy et al� ����


 Conclusion and Future Work

In this paper� we proposed a new paradigm for the execution
of transactions in a RTDBMS� Our paradigm allows the sys�
tem to reject a transaction that is submitted for execution�
or else admit it and thus guarantee that one of two outcomes
will occur by the transaction�s deadline� either the transac�
tion will successfully commit through the execution of a pri�
mary task� or the transaction will safely terminate through
the execution of a recovery block� The system assumes no
a priori knowledge of the execution requirements of the pri�
mary task� but assumes that the WCET and read�write sets
of the recovery block are known� Through the use of appro�
priate admission control policies� we show that it is possible
for the system to maximize its pro�t dynamically�

In this paper� we considered only hard�deadline trans�
actions� This implied that once admitted� a transaction
must be successfully committed� or else safely terminated
by its deadline �due to the prohibitive loss to be incured if
that deadline is missed�� If soft�deadline transactions are
to be managed� then it is possible for the system to �nish
�commit�terminate� a transaction past its deadline� which
makes the problem of recovery block scheduling much harder�

The interaction between concurrency control and ad�
mission control is one of the main themes of this paper�
Yet� many facets of this interaction have not been addressed�
For example� the CCM could use information provided to
the CACM to make better concurrency control decisions��

Conversely� the CACM could use information about the
read�write sets of primary tasks to determine whether or
not to accept a particular recovery block�

Our current work involves extending our transaction
model to include transactions with di
erent values� New ad�
mission control techniques which take into account a trans�
action�s value �i�e� relative importance with respect to the
transaction set� are being designed� When a transaction is
submitted to the system� the pro�t to be gained by admit�
ting this transaction is compared against the pro�t to be
lost by previously admitted transaction� If the pro�t�gain
is greater than the pro�t�loss� we admit the new transac�
tion� otherwise� we reject it� In addition� CPU scheduling
of primary tasks by value will also be studied�

�In particular	 the read�write sets of recovery blocks could be used
by an SCC�nS ��� algorithm to determine when shadow transactions
are to be created�
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