

If GENI is a Programmable Architecture then

What (Real-Time) Instruction Set Architecture should GENI have?

Azer Bestavros
Computer Science Department

Boston University

best@cs.bu.edu

A Position Statement
NSF Workshop on Real-Time GENI

February 2006

Conceptually, if one considers that users of GENI [1] are in effect providing input to the control
plane of GENI, then one can view such a process as “programming” the GENI machinery. For
example, one can argue that an activity such as specifying QoS requirements or expectations
from the underlay is akin to a programming exercise.

The difficulty in programming the envisioned GENI control plane is that what is being
programmed is amorphous due its scale as well as to the emergent behaviors that come about due
to its open nature. In many ways, the difficulty in defining the interface between the envisioned
GENI architecture and its user base is akin to defining an “Instruction Set Architecture” (ISA)
for GENI. As we know from the evolution of ISA for traditional CPU architectures, the
development of an ISA is a balancing act between efficiency and expressive power.

Today, and to a large extent, network control suffers from the same lack of organizing principles
as did programming of stand-alone computers some thirty years ago. Primeval programming
languages were expressive but unwieldy; software engineering technology improved not only
through better understanding of useful abstractions, but also by automating the process of
verification of safety properties both at compile time (e.g., type checking) and run times (e.g.,
memory bound checks). What programming languages have done to software engineering is to
force programmers to adopt a disciplined approach to programming that reduces the possibility
of “bugs” and by making it possible to mechanically check (whether at compile time or run-time)
for unacceptable specifications/behaviors. In many ways, this was done at the expense of
reducing the expressive power given to programmers. High-level programming languages do not
afford to programmers the same expressive power that assembly language does (i.e., there are
programs that one can write in assembly language that one cannot write in Java).

High-level abstractions that restrict expressiveness are not unique to programming languages,
they are certainly the norm in Operating Systems, whereby programmers are allowed to interact
with (say) system code and resources in prescribed (less expressive) ways. This loss of
expressive power is precisely what has enabled us to deal with issues of scale of software
artifacts and systems. Yet, the same has not yet materialized for network management and
control. Along these lines, the same kinds of benefits in dealing with issues of scale and
complexity could find their way into real-time network management and control if we adopt a
more "disciplined" approach -- an approach that:

(1) confines the ability of real-time users of GENI to "program" the network, and
(2) allows for compositional analysis and implementation

For example, the notion of expressive power is tightly related to the notion of providing users of
GENI interesting in real-time networking with “QoS knobs” – what expressive powers we give
to users of GENI (e.g., real-time application developers) is clearly related to what “knobs” or
parameters of the control plane of GENI we expose, let alone allow users to change.

Finding the “right” balance of expressive power and the resulting timeliness guarantees, and
mapping such expressive powers to GENI mechanisms is the challenge. What we need is a
“disciplined” approach for trading off expressive power for real-time characteristics. Such
disciplined approaches exist – e.g., using network calculus, statistical scheduling and hierarchical
scheduling theories, control theory ... This is exemplified in our work in the iBench initiative at
Boston University [2,3].

References

[1] Global Environment for Network Innovations (GENI).

http://www.geni.net

[2] The iBench Initiative.
http://www.cs.bu.edu/groups/ibench

[3] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Ibrahim Matta. Typed Abstraction of
Complex Network Compositions. In Proceedings of ICNP'05: The 13th IEEE International
Conference on Network Protocols, Boston, MA, November 2005.
http://www.cs.bu.edu/~best/research/papers/icnp05.pdf

