
A Type-Theoretic Framework for Efficient and Safe
Colocation of Periodic Real-time Systems
VATCHE ISHAKIAN

Computer Science Department
Boston University, USA
visahak@cs.bu.edu

AZER BESTAVROS

Computer Science Department
Boston University, USA

best@cs.bu.edu

ASSAF KFOURY

Computer Science Department
Boston University, USA
kfoury@cs.bu.edu

Abstract—Desirable application performance is typically guar-
anteed through the use of Service Level Agreements (SLAs)
that specify fixed fractions of resource capacities that must be
allocated for unencumbered use by the application. The mapping
between what constitutes desirable performance and SLAs is
not unique: multiple SLA expressions might be functionally
equivalent. Having the flexibility to transform SLAs from one
form to another in a manner that is provably safe would enable
hosting solutions to achieve significant efficiencies. This paper
demonstrates the promise of such an approach by proposing
a type-theoretic framework for the representation and safe
transformation of SLAs. Based on that framework, the paper
describes a methodical approach for the inference of efficient
and safe mappings of periodic, real-time tasks to the physical and
virtual hosts that constitute a hierarchical scheduler. Extensive
experimental results support the conclusion that the flexibility
afforded by safe SLA transformations has the potential to yield
significant savings.

I. INTRODUCTION

Motivation: The wide proliferation and adoption of virtualiza-
tion technologies can be attributed to the various benefits they
deliver, including cost efficiency (through judicious resource
consolidation), deployment flexibility (through just-in-time
“cloud” resource acquisition), simplified management (through
streamlined business processes), among others. Virtualization
delivers these benefits thanks in large to a key attribute:
performance isolation – the ability of a user (or a set of
applications thereof) to acquire appropriate fractions of shared
fixed-capacity resources for unencumbered use subject to well-
defined, binding Service-Level Agreements (SLAs) that ensure
the satisfaction of minimal Quality of Service (QoS) require-
ments. Such SLAs are guaranteed through the underlying
resource allocation and scheduling mechanisms of the hosting
environment, which operate at a macroscopic scale (e.g.,
enforcing specific resource utilization ratios over relatively
long time scales). While appropriate for most applications,
such coarse SLAs do not cater well to the needs of real-time
applications, whose QoS constraints require resource alloca-
tions at a more granular scale – e.g., through the specification
of a worst-case periodic resource utilization.

This research was supported in part by NSF awards #0720604, #0735974,
#0820138, and #0952145.

A very effective mechanism for dealing with this mismatch
is the use of hierarchical scheduling, whereby the granularity
of the reservations is refined as virtualization layers are tra-
versed. Using hierarchical scheduling, resources are allocated
by a parent scheduler at one level of the hierarchy to a
child scheduler (or a leaf application) at the next level of the
hierarchy. Conceptually, at any given layer of this hierarchy,
the parent scheduler can be seen as allocating a virtual slice of
the host at some granularity which is further refined by lower-
layer schedulers, until eventually appropriated and consumed
by a leaf application.

Independent of the recent proliferation of virtualization
technologies, hierarchical scheduling (and in particular hierar-
chical CPU scheduling) has been a topic of research for over
a decade because it allowed multiple scheduling mechanisms
to co-exist on the same infrastructure – i.e., regardless of the
underlying system scheduler. For example, Goyal et al [1]
proposed a hierarchical scheduling framework for supporting
different application classes in a multimedia system; Shin and
Lee [2] further generalized this concept, advocating its use
in embedded systems. Along the same lines, there has been a
growing attention to building hierarchical real-time scheduling
frameworks supporting different types of workloads [3]–[7].

A common characteristic (and/or inherent assumption) in
the above-referenced, large body of prior work (which we em-
phasize is not exhaustive) is that the “clustering” (or grouping)
of applications and/or schedulers under a common ancestor in
the scheduling hierarchy is known a priori based on domain
specific knowledge, e.g., all applications with the same priority
are grouped into a single cluster, or all applications requiring
a particular flavor of scheduling (e.g., periodic real-time EDF
or RMS) are grouped into a single cluster managed by the
desired scheduling scheme. Given such a fixed hierarchical
structure, most of this prior body of work is concerned with the
schedulability problem – namely deciding whether available
resources are able to support this fixed structure.

Assuming that the structure of a hierarchical scheduler is
known a priori is quite justified when all applications under
that scheduler are part of the same system. It is also justified
in small-scale settings in which the number of such appli-
cations (and the scale of the infrastructure supporting these
applications) is small, and in which the set of applications to

The Sixteenth IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/10 $26.00 © 2010 IEEE

DOI 10.1109/RTCSA.2010.34

143

The Sixteenth IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/10 $26.00 © 2010 IEEE

DOI 10.1109/RTCSA.2010.34

143

be supported is rather static. None of these conditions hold
in the emerging practices that fuel the use of virtualization
technologies. In such settings, inferring the structure of a
feasible, efficient hierarchical scheduler is the challenge.1 This
is precisely the problem we consider in this paper.
Scope and Contributions: Given a set of applications (tasks)
each of which specified by minimal resource utilization re-
quirements (SLAs), the problem we aim to address is that of
mapping these tasks to the leaves of a forest, whose inter-
nal nodes represent virtual hosts and whose roots represent
physical hosts.2 The set of nodes under a host comprise
a set of colocated resource consumers, which may be leaf
nodes (application tasks) or internal nodes (virtual hosts).
The allocation of resources by a host to the set of colocated
resource consumers under its control is done using one of any
number of schedulers. Without loss of generality, in this paper
we assume that all leaves are periodic real-time tasks, and
that the only scheduling strategy for hosts is Rate Monotonic
Scheduling (RMS).3

As we hinted above, one way to formulate this mapping
problem is to fix the structure of the scheduling hierarchy
and infer the minimum capacity of the physical hosts at the
root of the tree (or alternatively, check for schedulability of
the scheduling hierarchy atop capacitated physical hosts). For
instance, multiprocessor scheduling can be seen as restricting
the forest to be a set of m 1-level-deep trees, and attempting
to find an assignment of the tasks to the leaves that minimizes
m (or that checks if there is a feasible/schedulable assignment
for a given value of m). In such a formulation, there is also an
inherent assumption that the SLAs associated with the various
tasks (the leaves of the hierarchy) are immutable, in the sense
that any feasible mapping must satisfy these SLAs “verbatim”.

In this paper, we generalize this formulation in two sub-
stantial ways. First, we do not assume that the structure of the
hierarchy is known a priori, but rather that it is to be inferred
as part of the mapping problem. The scheduling hierarchy is
not an input (constraint) but rather an output. Second, we do
not assume that the SLAs requested by tasks (or offered by
hosts) are immutable. In particular, we recognize that it could
be the case that there are multiple, yet functionally equivalent,
ways to express the resource requirements of a periodic real-
time task. Thus, it is possible to rewrite SLAs as long as such
rewriting is safe. Our ability to make such SLA transforma-
tions enables us to consider different colocation possibilities
(and associated hierarchical structures), thus allowing us to

1We note that even if all applications are catering to the same mission or
if the number of applications is small, determining a hierarchical scheduling
structure is not a trivial problem. Scheduling in a multiprocessor environment
(an NP-hard problem in general) can be seen as an instance of this problem
where the clusters are simply groups of applications assigned to the same
processor.

2Our use of “physical” hosts is meant to imply that the resources available
at these root nodes are beyond the purview/control of our framework – they
represent the external supply of the resource(s) being managed, whether such
supply is provided physically (e.g., a dedicated CPU) or virtually (e.g., a VM).

3While the analysis and transformations we provide in this paper are based
on RMS, we emphasize that our framework and many of our results naturally
extend to other types of schedulers.

explore alternative mappings. As we will show later in this
paper, exploiting this flexibility yields significant efficiencies.
Paper Overview: The remainder of this paper is organized as
follows. We start in Section II with some basic background
and illustrative examples that crystalize the basic concepts
(albeit at a very rudimentary level) underlying our work. In
Section III, we introduce our basic type-theoretic model for
periodic, real-time resource supply and demand (for hosts
and tasks, respectively), along with necessary notation and
basic definitions. In Sections IV and V, we present a series
of safe transformations as exemplars of our notion of safe
SLA rewrite rules. In light of the NP-hard nature of the
problem, in Section VI we present a heuristic that allows
us to greedily explore (and prune) the solution space of our
mapping problem, through the application of various safe
transformations in our arsenal. In Section VI-B, we present
results of extensive experiments that demonstrate the efficacy
of our approach. In Section VII, we review relevant related
work. We conclude in Section VIII with closing remarks and
current and future research directions.

II. BACKGROUND AND ILLUSTRATIVE EXAMPLES

Liu and Layland [8] provided the following classical result for
the schedulability condition of n tasks, each of which requiring
the use of a resource for Ci out of every Ti units of time, under
RMS:

U =

n∑
i=1

Ci

Ti

≤ n(
n
√

2 − 1) (1)

Followup work, including that by Lehoczky et al [9] and Kuo
and Mok [10] showed that by grouping tasks in k clusters
such that the periods of tasks in each cluster are multiples of
each other (i.e., Harmonic), a tighter schedulability condition
is possible – namely:

U =

n∑
i=1

Ci

Ti

≤ k(
k
√

2 − 1) (2)

Given a set of periodic tasks, it might be possible to obtain
clusters of tasks with harmonic periods by manipulating the
period Ti of some of the tasks in the set. To illustrate this point,
consider the task set in Figure 1 (left). This task set consists
of 5 clusters with a total utilization of 1

4
+ 2

9
+ 3

17
+ 4

34
+ 5

67
=

0.840, which exceed the 0.743 bound from Equation (1), and
thus is not schedulable. Figure 1 (right) shows the result of
applying the aforementioned transformation (of reducing the
allocation periods) for some of the tasks. This transformed
task set consists of one cluster with a total utilization of
0.890, which satisfies the bound from Equation (2), and thus
is schedulable.

C 1 2 3 4 5
T 4 9 17 34 67

C 1 2 3 4 5
T 4 8 16 32 64

Fig. 1. Example of task transformations.

Obviously, for such a manipulation (as well as many others
we will exemplify later in the paper) to be possible, we

144144

must establish that it is safe to do so. For example, if the
application underlying the periodic task allows the period Ti

to be changed (e.g., the periodic task is a periodic zero-order
hold feedback measurement process), then reducing the period
Ti without reducing the requested resource time Ci is a safe
transformation, since it ensures that the task is in effect getting
a larger fraction of the resource.

To explain why the above transformation may not be safe
(even if it results in an increase in the fraction of the resource
alloted to the task), we note that if the period of the application
underlying the periodic task cannot be changed (e.g., it is
synchronized with a physically-bound process such as the
30hz refresh rate of a frame buffer), then applying the above
transformation may lead to missed deadlines. To illustrate this
point, consider a task that requires C = 1 time units of
the resource every period T = 5 time units. While reducing
the allocation period for this task from T = 5 to T ′ = 4
would result in that task being alloted the resource for a larger
fraction of time (25% as opposed to 20%), as shown in Figure
2, it is possible for that task to miss its original deadlines. In
that figure, the upper row shows the periodic boundaries as
originally specified (T = 5), whereas the lower row shows a
periodic allocation with (T ′ = 4), with “X” marking the times
when the resource is allocated.

Fig. 2. Illustration: Reducing the allocation period may result in missed
deadlines.

In the above example, the fact that the transformation we
considered resulted (or may result) in missed deadlines does
not mean that it cannot be used. In particular, if the SLA
associated with the periodic task in question allows for some
percentage of deadline misses, then if one is able to bound
the deadline misses resulting from the transformation – and
consequently show that the SLA is not violated – then the
transformation is indeed safe.

The above illustrative examples provide a good handle on
the premise and on the range of questions that need to be
considered in support of our hierarchical schedule inference
problem, and the ones we address in the remainder of this
paper – namely: How could the SLAs of periodic, real-time
applications be captured in a concise task model? What are
examples of transformations that might be applied to such task
models? How do these transformations affect task SLAs? Are
these transformations compositional with respect to safety?
Could this framework be presented to its potential users
through familiar (and well developed) programming concepts
such as typing, type checking, and type inference?

III. A TYPE-THEORETIC MODEL FOR SLAS

As we established earlier, SLAs can be seen as encapsulators
of the resources supplied by hosts (producers) and demanded

by tasks (consumers). While this concept is generic enough for
a wide variety of resources, in this section (and given the focus
of this paper), we provide a specific model for SLAs – namely,
one that supports periodic, real-time resource supply and
demand.4 We also provide the basic type-theoretic-inspired
definitions that allow us to establish subtyping relationships
between SLAs.

A. Periodic Supply/Demand SLA Types

Definition. A Service Level Agreement (SLA) type τ is de-
fined as a quadruple of natural numbers (C, T, D, W), C ≤ T ,
D ≤ W , and W ≥ 1, where C denotes the resource capacity
supplied or demanded in each allocation interval T , and D
is the maximum number of times such an allocation is not
possible to honor in a window consisting of W allocation
intervals.

As is common in the real-time literature, the above defini-
tion assumes that the periodic capacity could be allocated as
early as the beginning of any interval (or period) and must
be completely produced/consumed by the end of that same
interval (i.e., allocation deadline is T units of time from the
beginning of the period).

The concept of SLA types is general enough to capture the
various entities in our hierarchical scheduling framework. The
following are illustrative examples.

An SLA of type (1, 1, 0, 1) could be used to characterize
a uniform, unit-capacity supply provided by a physical host.
An SLA of type (1, n, 0, 1), n > 1 could be used to
characterize the fractional supply provided under a General
Processor Sharing (GPS) model to n processes. An SLA of
type (k, k∗n, 0, 1), n > 1, k ≥ 1 could be used to characterize
the fractional supply provided in a round robin fashion to n
processes using a quantum k. In all of the above examples,
the SLA type does not admit missed allocations (by virtue
of setting D = 0). In the remainder of this paper, we refer
to SLAs of the form (C, T, 0, 1) – simply denoted using the
shorthand (C, T) as hard SLAs, and we refer to the general
quadruple form as soft SLAs. We also use the (C, T) notation
when the consideration of D and W is immaterial.

An SLA of type (1, 30) could be used to represent a task
that needs a unit capacity C = 1 over an allocation period
T = 30 and cannot tolerate any missed allocations (hard
deadline semantics). An SLA of type (1, 30, 2, 5) is similar
in its periodic demand profile except that it is able to tolerate
missed allocations (soft deadline semantics) as long as there
are no more than D = 2 such misses in any window of W = 5
consecutive allocation periods.

In the above examples, there are two interpretations of what
it means to satisfy an SLA type (C, T, D, W), depending on
whether the allocations are defined using overlapping or non-
overlapping time intervals. The following definitions – of what
it means for a schedule to strongly or weakly satisfy an SLA –

4Readers familiar with real-time scheduling work should note that our
periodic, real-time SLA model mirrors existing periodic task models in the
literature (e.g., [11]–[16]).

145145

formalize these interpretations. First, we do so for SLAs of the
form (C, T) (i.e., those that do not admit missed allocations).
Next, we generalize these definitions for general SLA types
of the form (C, T, D, W).

B. Strong and Weak Satisfaction and Subtyping of Hard SLAs

Definition. A schedule α is a function from N to {0, 1}.

α : N → {0, 1}
A schedule α is said to weakly satisfy (denoted by �w)

or strongly satisfy (denoted by �s) an SLA type (C, T)
if the resource is allocated for C units of time in non-
overlapping (fixed) or overlapping (sliding) intervals of length
T , respectively.5

Definition. α �w (C, T) iff for every Q ≥ 0 and every m =
Q ∗ T

α(m) + · · · + α(m + T − 1) ≥ C

Definition. α �s (C, T) iff for every m ≥ 0

α(m) + · · · + α(m + T − 1) ≥ C

Fact 1. Strong satisfiability implies weak satisfiability: If α �s

(C, T) then α �w (C, T).

The set [(C, T)]w is defined as comprising all schedules that
weakly satisfy (C, T). Similarily, [(C, T)]s is defined as com-
prising all schedules that strongly satisfy (C, T). Formally:

Definition. [(C, T)]w = {α : N → {0, 1} | α �w (C, T)}
Definition. [(C, T)]s = {α : N → {0, 1} | α �s (C, T)}
Fact 2. [(C, T)]s ⊆ [(C, T)]w.

We are now ready to introduce weak and strong SLA subtyping
relationships (denoted by �w and �s, respectively) as follows:

Definition. (C, T) �w (C′, T ′) iff [(C, T)]w ⊆ [(C′, T ′)]w
Definition. (C, T) �s (C′, T ′) iff [(C, T)]s ⊆ [(C′, T ′)]s

C. Strong and Weak Satisfaction and Subtyping of Soft SLAs

We now generalize the above definitions for (the more
general) soft SLAs. To do so, we extend our definitions of
schedules, strong and weak SLA satisfaction, and of SLA
subtyping.6

Definition. Aα,C,T is a function from N to {0, 1}. Aα,C,T :
N → {0, 1}

Aα,C,T (m) =

{
0 if α(m) + · · · + α(m + T − 1) < C
1 if α(m) + · · · + α(m + T − 1) ≥ C

A schedule α is said to weakly satisfy (denoted by �w) or
strongly satisfy (denoted by �s) an SLA type (C, T, D, W)
if the resource is allocated for C units of time in at least

5Strong satisfiability can be seen as underscoring a pinwheel scheduling
model [17], whereas weak satisfiability can be seen as underscoring the
traditional strictly periodic model.

6While conceptually similar to the simpler hard SLA definitions, the
consideration of missed allocations requires a more elaborate notation (which
could be skipped on a first read).

W −D out of every W non-overlapping (fixed) or overlapping
(sliding) intervals of length W ∗ T , respectively.

Definition. α �w (C, T, D, W) iff for every Q ≥ 0 and every
m = Q ∗ W ∗ T

Aα,C,T (m) + Aα,C,T (m + T) + · · ·+
Aα,C,T (m + (W − 1) ∗ T) ≥ W − D

Definition. α �s (C, T, D, W) iff for every Q ≥ 0 and every
m = Q ∗ W

Aα,C,T (m) + Aα,C,T (m + 1) + · · ·+
Aα,C,T (m + (W − 1)) ≥ W − D

Fact 3. Strong satisfiability implies weak satisfiability: If α �s

(C, T, D, W) then α �w (C, T, D, W).

The set [(C, T, D, W)]w is defined as comprising all
schedules that weakly satisfy (C, T, D, W). Similarily,
[(C, T, D, W)]s is defined as comprising all schedules that
strongly satisfy (C, T, D, W). Formally:

Definition. [(C, T, D, W)]w = {α : N → {0, 1} | α �w

(C, T, D, W)}.

Definition. [(C, T, D, W)]s = {α : N → {0, 1} | α �s

(C, T, D, W)}.

Fact 4. [(C, T, D, W)]s ⊆ [(C, T, D, W)]w

We generalize the notion of weak and strong subtyping for
soft SLAs of the form (C, T, D, W) as follows:

Definition. (C, T, D, W) �w (C′, T ′, D′, W ′) iff
[(C, T, D, W)]w ⊆ [(C′, T ′, D′, W ′)]w.

Definition. (C, T, D, W) �s (C′, T ′, D′, W ′) iff
[(C, T, D, W)]s ⊆ [(C′, T ′, D′, W ′)]s.

IV. SLA SUBTYPING AND TRANSFORMATIONS

In this section, we present a set of SLA transformations
that exemplify (and certainly do not exhaust) the range of
scheduling results that could be “coded into” the type-theoretic
framework that underlies our hierarchical scheduling inference
and verification framework.7 Each one of the transformations
presented in this section is cast within a subtyping theorem.
Intuitively, establishing a subtyping relationship between two
SLAs implies that we can safely substitute one for the other
(e.g., transform the (supply-side) SLA of a virtual host from a
given type to a supertype thereof, or transform the (demand-
side) SLA of a task from a given type to a subtype thereof).
We start with transformations based on strong subtyping, and
follow that with transformations based on weak subtyping.

Theorem 1. (C, T) �s (C′, T ′) iff one of the following
conditions holds:

1) T ≤ T ′ and C ≥ C′/K where K = �T ′/T 	.
2) T ≥ T ′ and C ≥ T − T ′ + C′.

7We emphasize that many results from the vast real-time scheduling theory
literature could be translated into type transformations and leveraged in our
framework.

146146

Proof: 8

Condition 1: [If] Since T ≤ T ′, it follows that one interval
of length T will completely overlap K ∗ T non-overlapping
intervals. An allocation of C in each of the K intervals needs
to satisfy C′ allocation requirements of interval T ′. Thus C ≥
C′/K .
[Only If] Suppose α �s (C, T). This implies that for every
m ≥ 0: α(m)+· · ·+α(m+T−1) ≥ C. Given that K∗T ≤ T ′

and K ∗ C ≥ C′, it follows that

α(m) + · · · + α(m + (K ∗ T) − 1) ≥ K ∗ C ≥ C ′

Therefore α � s(C′, T ′) and (C, T) �s (C′, T ′).
Condition 2: [If] Since T ≥ T ′, it follows that one interval
of length T must overlap with at least one sliding interval
of length T ′ (shown in Figure 3). An allocation C in a single
interval of length T should satisfy all sliding intervals of length
T ′ that are fully overlapped by the interval T . In the worst
case, we need to consider an adversarial allocation of the entire
interval spanned by T − T ′, leaving at least one interval with
an unsatisfied allocation (first interval in Figure 3). To satisfy
all the sliding intervals overlapping the interval T , we need
an additional allocation of C′. Thus we need an allocation
C ≥ T − T ′ + C′.

Fig. 3. Allocation throughout T −T ′ leaves at least one unsatisfied interval.

[Only If] Suppose α �s (C, T). This implies that for every
m ≥ 0: α(m) + · · · + α(m + T − 1) ≥ C. We also have
T ≥ T ′ and C ≥ T − T ′ + C′, which implies that α(m) +
· · · + α(m + T − 1) ≥ C. Let γ = T − T ′, then

α(m) + · · · + α(m + T ′ − 1) ≥ C − γ ≥ C′

Hence α � s(C′, T ′) and (C, T) � s(C′, T ′).

Theorem 2. If (C, T) �w (C′, T ′) then

1) T ≤ T ′/2 and C ≥ C′/(K − 1) where K = �T ′/T 	.
2) T > T ′ and C ≥ T − (T ′ − C′)/2.
3) T ′/2 < T ≤ T ′ and T − (T ′ − C′)/3 ≤ C.

Proof:
Condition 1: T ≤ T ′/2 implies that K ≥ 2. According to
Lemma 1 (see appendix), an interval of length T ′ must overlap
with at least K − 1 fixed intervals of length T . These K − 1
intervals provide an allocation of (K − 1) ∗ C, enough for
interval T ′. Thus, (K − 1) ∗ C ≥ C′ and C ≥ C′/(K − 1).
Condition 2: Consider any interval I ′ of length T ′. Since T >
T ′, either I ′ will be completely overlapped by an interval I of

8This proof (as well as others in this paper) was mechanically verified using
the theorem prover of [18].

length T , or it will be overlapped by two intervals of length
T (as shown in Figure 4). For any interval I of length T ,
denote the left and right boundaries of I using l(I) and r(I),
respectively. Let x be the offset of l(I ′) from l(I1) and y be the

Fig. 4. T ′ is overlapped by two intervals of size T

offset of r(I ′) from l(I2). We observe that (T ′ − y)+ x = T ,
leading to C ≥ 1/2(x+(T−y)+C) and C ≥ T−(T ′−C′)/2
as a sufficient condition.
Condition 3: Consider any interval I ′ of length T ′. Since
T ′/2 < T ≤ T ′, I ′ will overlap with either two or three
intervals of length T . The case in which I ′ overlaps two
intervals of length T follows from Condition 2, resulting in
C ≥ (2T ′ − T + C′)/2. The case in which I ′ overlaps three
intervals I1, I2, and I3 of length T is shown in Figure 5.
Let x be the offset of l(I ′) from l(I1) and y be the offset

Fig. 5. T ′ is overlapped by three intervals of size T

of r(I ′) from l(I3). We observe that (T ′ − y) + x = 2T .
Thus, a sufficient condition is C ≥ 1/3(x+(T − y)+C) and
C ≥ T − (T ′ − C′)/3. Thus a bound for both cases is the
maximum of the two bounds, namely C ≥ T − (T ′ − C′)/3.

Conjecture 1. The converse of Theorem 2 holds. That is,
(C, T) �w (C′, T ′) if one of the following conditions holds:

1) T ≤ T ′/2 and C ≥ C′/(K − 1) where K = �T ′/T 	.
2) T > T ′ and C ≥ T − (T ′ − C′)/2.
3) T ′/2 < T ≤ T ′ and T − (T ′ − C′)/3 ≤ C.

Theorem 3. If (C, T, D, W) �s (C′, T ′, D′, W ′) then

1) (T ≤ T ′ and C ≥ C′/K) and D ≤ D′ and W ≥
D ∗ W ′/D′, where K = �T ′/T 	.

2) (T ≥ T ′ and C ≥ T − T ′ + C′) and D ≤ D′ and
W ≥ D ∗ W ′/D′.

Proof:
Condition 1: The proof for the bracketed part of the conjunc-
tion is identical to that under Condition 1 of Theorem 1. For
the remaining part, Lemma 2 (see appendix), which states that
every missed interval of length T ′ corresponds to missing an
interval of length T , implies that D ≤ D′ must hold.
Condition 2: The proof for the bracketed part of the conjunc-
tion is identical to that under Condition 2 of Theorem 1. For
the remaining part, Lemma 3 (see appendix), which states that

147147

every missed interval of length T corresponds to missing an
interval of length T ′, implies that D ≤ D′ must hold.

Conjecture 2. The converse of Theorem 3 holds. That is,
(C, T, D, W) �s (C′, T ′, D′, W ′) if one of the following
conditions holds:

1) (T ≤ T ′ and C ≥ C′/K) and D ≤ D′ and W ≥
D ∗ W ′/D′, where K = �T ′/T 	.

2) (T ≥ T ′ and C ≥ T − T ′ + C′) and D ≤ D′ and
W ≥ D ∗ W ′/D′.

Theorem 4. If (C, T, D, W) �w (C′, T ′, D′, W ′) then

1) (T ≤ T ′/2 and C ≥ C′/(K − 1)) and D ≤ D′/2 and
W ≥ D ∗ W ′/D′ ∗ (K + 1) where K = �T ′/T 	.

2) (T > T ′ and C ≥ T − (T ′ − C′)/2) and D ≤ D′/2K
and W ≥ D ∗ W ′/D′ ∗ (K + 1) where K = �T ′/T 	.

3) (T ′/2 < T ≤ T ′ and T − (T ′ − C′)/3 ≤ C) and
D ≤ D′/2 and W ≥ 2 ∗ D ∗ W ′/D′.

Proof: We use the fact from Lemma 4 (see appendix) that
D/W ≤ D′/W ′ is a necessary condition.

Condition 1: The proof for the bracketed part of the conjunc-
tion is identical to that under Condition 1 of Theorem 2. For
the remaining part, we note that since missed deadlines might
be stacked at the end of one window and at the beginning of
the next contributing to a window of size W, it follows that
D ≤ D′/2. Also, since K+1 consecutive intervals of length T
will span one interval of length T ′, it follows that every missed
interval of length T out of K+1 intervals will result in missing
an interval of length T ′. Thus, W ≥ (K + 1) ∗ (D ∗ W/D′)
must hold.

Condition 2: The proof for the bracketed part of the con-
junction is identical to that under Condition 2 of Theorem 2.
For the remaining part, in the worst case, missing an interval
of length T results in missing up to (K + 1) ∗ T ′ intervals,
where K = �T ′/T 	. Thus D ≤ D′/(K + 1) must hold as
well as W ≥ (K + 1) ∗ (D ∗ W/D′). However, since missed
deadlines might be stacked at the end of one window and at
the beginning of the next contributing to a window of size W,
it follows that D ≤ D′/2(K + 1) must hold.

Condition 3: The proof for the bracketed part of the conjunc-
tion is identical to that under Condition 3 of Theorem 2. For
the remaining part, the proof is similar to that in Condition
2 by taking K = �T ′/T 	 and consequently K = 1. Thus,
W ≥ (K + 1) ∗ (D ∗ W/D′) must hold.

Conjecture 3. The converse of Theorem 4 holds. That is,
(C, T, D, W) �w (C′, T ′, D′, W ′) if one of the following
conditions holds:

1) (T ≤ T ′/2 and C ≥ C′/(K − 1)) and D ≤ D′/2 and
W ≥ D ∗ W ′/D′ ∗ (K + 1) where K = �T ′/T 	.

2) (T > T ′ and C ≥ T − (T ′ − C′)/2) and D ≤ D′/2K
and W ≥ D ∗ W ′/D′ ∗ (K + 1) where K = �T ′/T 	.

3) (T ′/2 < T ≤ T ′ and T − (T ′ − C′)/3 ≤ C) and
D ≤ D′/2 and W ≥ 2 ∗ D ∗ W ′/D′.

V. ADDITIONAL TRANSFORMATIONS

Having characterized some basic notions of subtyping for
both overlapping and non-overlapping SLA types, for our
experimental evaluation – which we consider in the next
sections – we will focus on non-overlapping SLA types. Thus,
in this section, we present additional transformations that allow
for safe rewriting of such types. For intuition, we refer the
reader to [19].

Theorem 5. Let τ = (KC, KT) be an SLA type for some
K ≥ 1 and τ ′ = (C, T) be a host-provided SLA type. Then
τ ′

�w τ .

Proof: One can observe that one interval of τ will contain
K intervals of τ ′ with each interval providing C computation
time. Thus τ is satisfied.

Definition. (C′, T ′)�w,a,b (C, T) where a is the bound on the
missed deadlines over b intervals of length T .

Theorem 6. Let τ = (C, T) be an SLA type, and τ ′ = (C′, T ′)
be a host-provided SLA type, where T ′ = KT for some K > 1
then:

1) If 0 ≤ C′ < K ∗ (C − 1) + 1 then τ ′ �w,a,b τ , where
a = K ∗T and b = K . Moreover in such a case, α will
miss at least 1 deadline every K intervals.

2) For every J ∈ {1, . . . , K − 1}, if

K ∗ (C − 1) + (J − 1) ∗ (T − (C − 1)) + 1

≤ C′ < K ∗ (C − 1) + (J) ∗ (T − (C − 1)) + 1

then τ ′ �w,a,b τ , where a = (K − J) and b = K
3) For J = K , if

K ∗ (C − 1) + (J − 1) ∗ (T − (C − 1)) + 1 ≤ C ′ ≤ T ′

then τ ′ �w τ .

Proof: Omitted due to space constraints (see [19]).

Theorem 7. Let τ = (C, T) be an SLA type and τ ′ = (C, T ′)
be a host-provided SLA type, where (T + C)/2 < T ′ < T
and C ≤ T ′. If m = lcm(T, T ′)/T , and n = lcm(T, T ′)/T ′

where lcm is the least common multiple, then

1) We can guarantee at least s = n − m + 1 satisfied
intervals out of total m intervals.

2) We can guarantee at least l = � m

(C + 1)
� satisfied

intervals out of the total m intervals.

We can bound the number of missed deadlines every m
intervals to be a = m−max(s, l). Therefore τ ′�w,a,bτ where
a = m − max(s, l) and b = m.

Proof: Omitted due to space constraints (see [19]).
We also define a two step transformation of an SLA type

by applying the transformation in Theorem 6 followed by
applying the transformation in Theorem 7.

Theorem 8. Let τ1 = (C1, T1), and τ2 = (C2, T2) such that
τ2 �w,a,b τ1 by applying the transformation in Theorem 6.
Let τ3 = (C3, T3) such that τ3 �w,x,y τ2 by applying the

148148

transformation in using Theorem 7. Then τ2 �w,c,d τ1 where
c = (b ∗ x + (y − x) ∗ a) and d = (b ∗ y).

Proof: Omitted due to space constraints (see [19]).

Theorem 9. Applying the transformations in Theorems 6 and
7, in this order, is equivalent to applying the transformations
in Theorems 7 and 6, in this order. That is, the two transfor-
mations commute.

Proof: Omitted due to space constraints (see [19]).
Other two step transformations are possible like applying

the transformation in Theorem 5 followed by Theorem 6.

VI. INFERENCE OF EFFICIENT AND SAFE COLOCATIONS

With the underpinnings of our framework as well as the set
of SLA transformations we have developed (as exemplars) in
place, in this section we show how to leverage our framework
to map a set of real-time, periodic tasks into a hierarchical
scheduling structure. In particular, we present sample results
from extensive simulation experiments that demonstrate the
efficiencies that can be achieved through judicious colocation
of periodic tasks under separate physical/virtual hosts com-
prising a hierarchical scheduler. Before doing so, we start by
describing the specific strategy we use to come up with a
colocation arrangement.

A. Mapping Heuristic

Independent of the flexibility enabled through safe SLA
transformations, the crux of the problem at hand is that of iden-
tifying an efficient mapping of tasks to multiple hosts (each of
which underscoring a resource and associated scheduler). We
say “efficient” as opposed to optimal because multi-processor
real-time scheduling has been shown to be NP-Hard [20], [21]
(and our problem by reduction is also NP hard), thus requiring
the use of heuristics. Many such heuristics (approximations)
have been proposed in the literature (e.g., based on the use of
a bin packing or greedy strategy).

Our safe SLA transformations provide us with another
degree of freedom (i.e., another dimension in the search
space): Rather than finding the best packing of a set of tasks
with fixed SLA requirements (the original NP-hard problem),
we have the flexibility of safely manipulating the SLAs with
the hope of achieving a better packing. Towards that end,
we have implemented heuristic algorithms that utilize Breadth
First Search (BFS) and Depth First Search (DFS) techniques
to explore the solution search space.

Our (BFS or DFS) heuristic starts with a preprocessing
stage, in which we generate all possible transformations for
each task (using our arsenal of safe transformations). Next,
it proceeds by setting up the search space (tree or forest) of
all the alternative task sets that could be colocated. Finally, it
proceeds to explore that search space with the aim of finding
a feasible transformation.

In the worst case, our heuristic may end up searching

the entire solution space, which is obviously impractical.9

To manage the exponential nature of the search space, our
heuristic utilizes two optimization (pruning) strategies.

Our first optimization strategy adopts an early-pruning ap-
proach: at each stage of our search, if the aggregate utilization
(demanded SLA) of the tasks under consideration thus far
(whether these tasks are transformed or not) is greater than
the capacity of the host (supplied SLA), then we prune that
branch of the tree on the assumption (not necessarily correct)
that a feasible solution cannot exist down that path.

Our second optimization adopts a smaller-degree-first ap-
proach: we build the search space (tree) by greedily starting
with tasks that have the smallest number of transformations.
This ensures that when pruning is applied (using the above
strategy) we are likely to maximize the size of the pruned
subspace. This optimization strategy has been shown to be
quite effective in reducing the solution search space for
network embedding problems [22].

B. Experimental Evaluation

We evaluate the efficiency of our proposed mapping tech-
nique by comparing the schedulability of a workload (compris-
ing a set of synthetically-generated real-time period tasks) with
and without the application of our safe SLA transformations.
We do so for both uniprocessor (tree) and multiprocessor
(forest) settings.
Uniprocessor Set-up and Results: Tasks are created by
initially generating a period T based on a uniform distribution
between (Tmin, Tmax), followed by generating a periodic
resource (CPU) demand C uniformly at random between (α∗T
and β∗T), such that the generated tasks are schedulable under
RMS using the feasibility test of Liu and Layland [8]. Next, we
perturb the task set by modifying the values of Cs and T s such
that the task set is no longer schedulable under RMS. These
perturbed (C, T) values constitute the SLAs of the tasks in
the workload. For each such an unschedulable workload, we
define the overload as the difference between the aggregate
SLA demand of all tasks in the workload (i.e., the sum of the
requested fractions of the resource) and the utilization bound
of RMS for the same task set.

To evaluate our mapping technique, we apply our heuristic
to identify a possible set of safe SLA transformations (if any)
that would make the workload schedulable as determined by
the RMS test, reporting whether or not we are successful in
transforming an unschedulable task set to a schedulable one,
the number of tasks that were transformed, and the specific
transformations that were applied. Each experiment consisted
of evaluating 25 random task sets (using the same settings) to
obtain a success ratio. To ascertain statistical significance by
reporting a margin of error (ErrMargin), we report the avera ge
results of running 40 independent experiments.

9In case it is not clear, the colocation mapping techniques in this paper
are not meant to be used in an on-line fashion. As a service supporting the
use of virtualization infrastructures, these mappings are meant to be applied
over long time scales (and over a large number of tasks to benefit from the
efficiencies of scale).

149149

Overload SuccessRate ErrMargin Unmodified
0 - 7% 52.27% 1.28% 57.62%
7% - 14% 26.27% 1.09% 57.94%
14% - 21% 7.73% 0.73% 61.61%
21% - 28% 1.47% 0.30% 59.09%
28% - 35% 0.13% 0.09% 60.00%

TABLE I
RESULTS FOR HARD SLAS ON A UNIPROCESSOR.

Table I present results for α = 0.15 and β = 0.25 with
D = 0 and W = 1, i.e., under a hard SLA setting whereby
no misses are allowed. The results show that as the overload
(Overload) increases, the chances of finding a feasible trans-
formation (SuccessRate) decreases. An interesting observation
from these results is that the majority of tasks (Unmodified)
do not need transformations. Similar observations were noted
for many other settings of α and β (not reported due to space
considerations).

In the next set of experiments, we report on the effectiveness
of our transformations when soft SLAs are considered (i.e.,
with arbitrary D and W . Notice that in this case, we are able
to apply a wider range of transformations (compared to the
previous hard SLA setting). We use the same model described
above to generate C and T . For each task, we choose W
uniformly at random between Wmin and Wmax, and choose
D uniformly at random between 0 and θ ∗ W .

Since RMS’ schedulability test does not allow us to account
for the flexibility resulting the soft SLAs, we use the following
empirical approach to determine if the task set (without
transformations) is schedulable. We initially use the feasibility
test to check whether the generated tasks are schedulable, if
they are not, then we simulate task execution using a greedy
RMS to validate whether the tasks are schedulable. The greedy
RMS tries to schedule tasks following the regular RMS, but
once a minimum W − D is satisfied, the task does not get
scheduled again during the window W . If the task set is
not schedulable, we then apply our transformations and check
whether they are schedulable using only the schdulability test
of RMS – thus providing a conservative measure of success
since no task in our task set would miss a single deadline,
even though such misses are allowed under soft SLAs.10

Table II presents results for α = 0.15 and β = 0.25,
with random D and W as described above. Again, these
results show that as the overload increases, the chances of
finding a feasible transformation decreases. However, having
tasks that allow some flexibility in missing deadlines allowed
us to find feasible transformations under higher overloads.
Another interesting observation is that (unlike the case with
hard SLAs), as the overload increases more tasks are amenable
to transformations.
Multiprocessor Set-up and Results: Many multiprocessor
scheduling algorithms and associated schedulability tests have

10We note that checking for schedulability using greedy RMS is likely to
significantly improve our results (but it would also increase our search space
since not much pruning can be done in that case).

Overload SuccessRate ErrMargin Unmodified
0 - 7% 90.00% 0.64% 54.71%
7% - 14% 66.53% 1.79% 48.01%
14% - 21% 48.93% 1.24% 43.97%
21% - 28% 28.93% 0.99% 39.13%
28% - 35% 17.07% 0.90% 36.83%
35% - 42% 7.06% 0.64% 27.73%
42% - 49% 4.27% 0.48% 31.82%
49% - 56% 2.93% 0.36% 29.07%
56% - 63% 2.00% 0.31% 32.20%
63% - 70% 0.93% 0.21% 17.39%
70% - 77% 0.67% 0.19% 21.43%
77% - 84% 0.80% 0.20% 14.29%
84% - 91% 0.13% 0.09% 33.33%

TABLE II
RESULTS FOR SOFT SLAS ON A UNIPROCESSOR.

been proposed in the literature (e.g., [23]–[25]). For our
purposes, we use the schedulability condition from Andersson
et al [25], which rely on a global static priority scheduling
algorithm – namely that any number of arbitrary tasks can be
scheduled on m identical multiprocessors if U(t) < m2/3m−
2, where U(t) is the sum of the utilization of the set of tasks.
However if the tasks were harmonic, then the bound would be
U(t) < m2/2m− 1.

In our experiments, we use Andersson et al’s schedulability
condition to determine the number of processors needed to
satisfy the SLA demand of the task set (ProcBefore). Next, we
apply our mapping technique to identify an efficient packing
into a smaller number of processors (ProcAfter) that makes
use of the safe SLA transformations in our arsenal. Unlike the
uniprocessor case, and given the much larger search space in
a multiprocessor setting, we modified our system so it would
stop after a certain percentage reduction (e.g., a threshold of
50%) in the number of multiprocessors needed to support the
task set is achieved.

Tables III and IV present results for α = 0 and β = 0.5
and α = 0 and β = 0.75, respectively. T is generated
uniformly at random between Tmin and Tmax, and C is
generated uniformly at random between α ∗T and β ∗T with
W = 1 and D = 0 (hard SLA setting). As shown, with the
use of transformations, we are able to decrease the number of
processors needed to support the workload’s SLA by a factor
of two, matching our target threshold.

VII. RELATED WORK

Numerous previous studies dealt with hierarchical schedul-
ing frameworks [3]–[7]. Regehr and Stankovic [3] introduced
a hierarchical scheduling framework in support of various
types of guarantees. They use rewriting rules to convert a
guarantee provided under a specific scheduling algorithm to
a guarantee provided under another. This notion of rewriting
is different from ours as it does not accommodate workload
transformations.

Shin and Lee [4] present a compositional real-time schedul-
ing framework based on workload bounding functions, and
resource bounding functions. They utilize a tree data structure,

150150

ProcBefore SuccessRate AvgTasks ProcAfter Unmodified
3 94.89% 4.67 2.00 78.03%
4 96.67% 5.84 2.03 76.51%
5 99.33% 6.92 2.72 73.90%
6 99.78% 8.25 3.04 69.81%
7 100.00% 9.64 3.48 67.60%
8 100.00% 10.88 4.08 68.00%
9 100.00% 12.10 4.44 65.99%
10 100.00% 13.63 5.05 65.62%
11 100.00% 15.10 5.48 64.00%
12 100.00% 16.28 6.1 64.39%
13 100.00% 17.71 6.6 64.06%
14 100.00% 18.82 7.12 64.65%
15 100.00% 20.36 7.65 64.07%
16 100.00% 21.40 8.24 64.06%

TABLE III
RESULTS FOR HARD SLAS ON MULTIPROCESSORS (β = 0.5)

ProcBefore SuccessRate AvgTasks ProcAfter Unmodified
3 92.00% 3.16 2.00 65.81%
4 92.67% 3.97 2.06 70.83%
5 98.22% 4.86 2.63 67.43%
6 98.67% 5.69 3.17 64.47%
7 99.78% 6.54 3.46 63.25%
8 100.00% 7.49 4.16 65.09%
9 100.00% 8.25 4.54 62.19%
10 100.00% 9.22 5.16 63.19%
11 99.78% 10.02 5.62 62.44%
12 99.78% 10.83 6.1 61.00%
13 100.00% 11.79 6.72 61.37%
14 100.00% 12.82 7.27 62.56%
15 100.00% 13.6 7.74 61.79%
16 100.00% 14.49 8.54 63.52%

TABLE IV
RESULTS FOR HARD SLAS ON MULTIPROCESSORS (β = 0.75)

where a child scheduling system is the immediate descendant
of the parent scheduling system, and the parent scheduling
system is the immediate ancestor of the child scheduling
system. Their model assumes that the parent and children
scheduling systems can utilize different types of scheduling
algorithms. Under their framework any given system com-
posed of a workload, resources, and a scheduling algorithm,
will be schedulable if the minimum resource curve bounds
the maximum workload curve. This model is extended further
in [5] to include context switching overhead and incremental
analysis.

Our work complements these models, which did not focus
(or consider) the problem of inferring the scheduling hier-
archy (which set of tasks to be colocated under a common
scheduler). We believe that this capability is crucial, especially
when coupled with the possibility of safely transforming the
workload characteristics, which is a novel aspect of our work.

The idea of transforming task periods for improving schedu-
lability is not new. It was highlighted in [26], [27], where the
authors defined a period transformation method that involves
halving the C and T elements of the periodic task specifica-
tion. The purpose of this transformation was to increase the
priority of a task under RMS. In our work, we consider much
more general transformations targeting not only hard, but also

soft deadline semantics, and which are derived for overlapping
as well as traditional, non-overlapping intervals.

The work by Buttazzo et al [15] and its generalization in
[16] present an elastic work model based on a tasks defined
using a tuple (C, T, Tmin, Tmax, e) where T is the period that
the task requires, while Tmin and Tmax define the max and
min periods that a task can accept. Our transformations allows
us to serve workloads under completely different (C, T) server
supplied resources.

As we have emphasized throughout, the real-time schedul-
ing literature is huge, in particular as it relates to scheduling
algorithms and task models [8], [11]–[16], [28]. We view our
contributions mostly as providing a layer above “scheduling”
– a layer that leverages the many results in the literature to
enable SLA transformations.

VIII. CONCLUSION

The value proposition of virtualization technologies is highly
dependent on our ability to identify judicious mappings of
physical resources to virtualized instances that could be ac-
quired and consumed by applications subject to desirable per-
formance (e.g., QoS) bounds. These bounds are often spelled
out as a Service Level Agreement (SLA) contract between
the resource provider (hosting infrastructure) and the resource
consumer (application task). By necessity, since infrastructure
providers must cater to very many types of applications, SLAs
are typically expressed as fixed fractions of resource capacities
that must be allocated (or are promised) for unencumbered
use. That said, the mapping between “desirable performance
bounds” and SLAs is not unique. Indeed, it is often the case
that multiple SLA expressions might be functionally equivalent
with respect to the satisfaction of these performance bounds.
Having the flexibility to transform SLAs from one form to
another in a manner that is safe would enable hosting solutions
to achieve significant economies of scale.

This paper presented a particular incarnation of this vision
– a vision that we are also pursuing in other settings –
targeting the colocation of periodic real-time systems. The
particular approach we advocate (and the specific tools we
have developed) rely on a type-theoretic modeling of SLAs and
transformations thereof. In that regard, we have presented a
specific type-theoretic model for the specification of the SLAs
of periodic, real-time resource supply and demand (for hosts
and tasks, respectively), along with a number of provably-
safe SLA type transformations. Using that formal framework,
we have developed a methodical approach for the inference
of efficient and safe assignment of colocated periodic, real-
time tasks to the physical and virtual hosts that constitute
a hierarchical scheduler. Our experimental results support
our expectation that the flexibility afforded from safe SLA
transformations has the potential to yield significant savings.

The work presented in this paper underscores a number
of thrusts of our broader research agenda, which includes:
leveraging colocation for efficient management of virtual ma-
chine (VM) cloud infrastructures [29], using type-theoretic

151151

formulations in the modeling and analysis of network com-
positions [30], [31], and the development of automated and
semi-automated tools based on light-weight formalisms [18].
With respect to the specific framework presented in this paper,
our immediate future plans include enriching our SLA type
hierarchy through the introduction of additional semantics
(e.g., the consideration of other real-time schedulers), and the
codification of prior results in the vast real-time scheduling
literature into type transformations that could be used by our
mapping service.

APPENDIX

Due to space constraints, these lemmas which are used
in various theorems in the body of the paper are presented
without proof. We refer the reader to the proofs in [19].

Lemma 1. Given the periods T and T ′ such that T ≤ T ′/2.
Then an interval of length T ′ would contain at least (K − 1)
intervals of length T where K = �T ′/T 	.

Lemma 2. Let (C, T) �s (C′, T ′) such that T ≤ T ′ and
C′/K ≤ C where K = �T ′/T 	, then missing an interval of
length T will result in missing an interval of length T ′.

Lemma 3. Let (C, T) �s (C′, T ′) such that T ≥ T ′ and
C ≥ T − T ′ + C′, then missing an interval of length T will
result in missing an interval of length T ′.

Lemma 4. Given (C, T, D, W) �s (C, T, D′, W ′) or
(C, T, D, W) �w (C, T, D′, W ′), it is necessary for D/W ≤
D′/W ′.

ACKNOWLEDGEMENTS

We would like to thank Debajyoti Bera, Gabriel Parmer,
Andrei Lapets, and Jorge Londoño for their help with and
feedback on various aspects of this work.

REFERENCES

[1] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical cpu scheduler for
multimedia operating systems,” in OSDI, 1996, pp. 107–121.

[2] I. Shin and I. Lee, “A compositional framework for real-time embedded
systems,” in ISAS, 2005, pp. 137–148.

[3] J. Regehr and J. A. Stankovic, “Hls: A framework for composing soft
real-time schedulers,” in RTSS ’01:. Washington, DC, USA: IEEE
Computer Society, 2001, p. 3.

[4] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS ’03: Proceedings of the 24th IEEE International
Real-Time Systems Symposium. Washington, DC, USA: IEEE Computer
Society, 2003, p. 2.

[5] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky, “Compositional schedu-
lability analysis of hierarchical real-time systems,” in ISORC ’07:
Proceedings of the 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 274–281.

[6] T. A. Henzinger and S. Matic, “An interface algebra for real-time
components,” in RTAS ’06: Proceedings of the 12th IEEE Real-Time
and Embedded Technology and Applications Symposium. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 253–266.

[7] E. Wandeler and L. Thiele, “Interface-based design of real-time systems
with hierarchical scheduling,” in RTAS ’06: Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. Washington, DC, USA: IEEE Computer Society, 2006, pp. 243–
252.

[8] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[9] J. P. Lehoczky, L. Sha, and Y. Ding, “Rate-monotonic scheduling
algorithm: Exact characterization and average case behavior,” in Proc. of
the 11th IEEE Real-time Systems Symposium, Dec. 1989, pp. 166–171.

[10] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time systems,”
Dec 1991, pp. 160–170.

[11] R. West, K. Schwan, and C. Poellabauer, “Dynamic window-constrained
scheduling of real-time streams in media servers,” IEEE Transactions
on Computers, vol. 53, pp. 744–759, 2004.

[12] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m,k)-firm deadlines,” IEEE Transactions
on Computers, vol. 44, pp. 1443–1451, 1995.

[13] G. Bernat, A. Burns, and A. Llamos, “Weakly hard real-time systems,”
IEEE Transactions on Computers, vol. 50, pp. 308–321, 1999.

[14] Y. Zhang, R. West, and X. Qi, “A virtual deadline scheduler for window-
constrained service guarantees,” in RTSS ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 151–160.

[15] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in RTSS ’98:. Washington, DC, USA: IEEE Computer
Society, 1998, p. 286.

[16] T. Chantem, X. S. Hu, and M. Lemmon, “Generalized elastic schedul-
ing,” in Real-Time Systems Symposium, 2006. RTSS ’06. 27th IEEE
International, Dec. 2006, pp. 236–245.

[17] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The
pinwheel: a real-time scheduling problem,” in System Sciences, 1989.
Vol.II: Software Track, Proceedings of the Twenty-Second Annual Hawaii
International Conference on, vol. 2, Jan 1989, pp. 693–702 vol.2.

[18] A. Lapets, “Improving the accessibility of lightweight formal verification
systems,” CS Department, Boston University, Tech. Rep. BUCS-TR-
2009-015, April 30 2009.

[19] V. Ishakian, A. Bestavros, and A. Kfoury, “A Type-Theoretic Framework
for Efficient and Safe Colocation of Periodic Real-time Systems,”
CS Department, Boston University, Tech. Rep. BUCS-TR-2010-002,
January 2010.

[20] S. K. Baruah, R. R. Howell, and L. Rosier, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” Real-Time Systems, vol. 2, pp. 301–324, 1990.

[21] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
pp. 237–250, 1982.

[22] J. Londoño and A. Bestavros, “Netembed: A network resource mapping
service for distributed applications,” in Parallel and Distributed Process-
ing, 2008. IPDPS 2008. IEEE International Symposium on, April 2008.

[23] S. Lauzac, R. Melhem, and D. Moss, “An efficient rms admission
control and its application to multiprocessor scheduling,” in IPPS ’98:
Proceedings of the 12th. International Parallel Processing Symposium
on International Parallel Processing Symposium. Washington, DC,
USA: IEEE Computer Society, 1998, p. 511.

[24] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for
assigning real-time tasks to multiprocessor systems,” Computers, IEEE
Transactions on, vol. 44, no. 12, pp. 1429–1442, Dec 1995.

[25] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on
multiprocessors,” in Real-Time Systems Symposium, 2001. (RTSS 2001).
Proceedings. 22nd IEEE, Dec. 2001, pp. 193–202.

[26] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical
problems in prioritized preemptive scheduling,” in IEEE Real-Time
Systems Symposium, 1986, pp. 181–191.

[27] L. Sha and J. B. Goodenough, “Real-time scheduling theory and ada,”
Computer, vol. 23, no. 4, pp. 53–62, 1990.

[28] A. Atlas and A. Bestavros, “Statistical rate monotonic scheduling,” in
RTSS ’98: Proceedings of the IEEE Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 1998, p. 123.

[29] J. Londoño, A. Bestavros, and S.-H. Teng, “Collocation Games And
Their Application to Distributed Resource Management,” in Hot-
Cloud’09: Workshop on Hot Topics in Cloud Computing. USENIX,
2009.

[30] A. Bestavros, A. Kfoury, A. Lapets, and M. Ocean, “Safe composi-
tional network sketches: The formal framework,” in 13th International
Conference on Hybrid Systems: Computation and Control, April 2010.

[31] ——, “Safe compositional network sketches: Tool and use cases.” in
CRTS’09: The IEEE/RTSS Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems, December 2009.

152152

