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Abstract

The vital role that real-time embedded systems are
playing and will continue to play in our world, coupled
with their increasingly complex and critical nature, de-
mand a rigorous and systematic treatment that recog-
nizes their unique requirements. The Time-constrained
Reactive Automaton (TRA) is a formal model of com-
putation that admits these requirements. Among its
salient features is a fundamental notion of space and
time that restricts the expressiveness of the model in a
way that allows the specification of only reactive, spon-
taneous, and causal computations. Using the TRA for-
malism, there is no conceptual distinction between a
system and a property; both are specified as formal ob-
jects. This reduces the verification process to that of
establishing correspondences — namely preservation and
implementation relationships — between such objects.
In this paper, we present the TRA model and briefly
overview our experience in using it in the specification
and verification of real-time embedded systems.

1 Introduction

A computing system is embedded if it 1s explicitly viewed
as being a component of a larger system whose primary
purpose is to monitor and control an environment. The
leaping advances in computing technologies that the last
few decades have witnessed has resulted in an explosion
in the extent and variety of such systems. This trend 1s
only likely to continue in the future.

Embedded systems are usually associated with crit-
ical applications, in which human lives or expensive ma-
chinery are at stake. Their missions are often long-lived
and uninterruptible, making maintainance or reconfigu-
ration difficult. Examplesinclude command and control
systems, nuclear reactors, process-control plants,

robotics, avionics, switching circuits and telephony,
data-acquisition systems, and real-time databases, just
to name a few. The sustained demands of the exter-
nal environments in which such systems operate pose
relatively rigid and urgent requirements on their per-
formance. These requirements are usually stated as
constraints on the real-time behavior of these systems.
Wirth [33] singled out this processing-time dependency
as the one aspect that differentiates embedded systems
from other sequential and parallel systems. This led
to a body of research on real-ttme computing, which
encompasses issues of specification techniques, analysis
and validation, formal verification, programming lan-
guages, development tools, scheduling, and operating
systems [31]. However, the absence of a unified suitable
formal framework that addresses the afforementioned
issues severely limited the usefulness of these studies

[14].

Previous studies in modeling real-time systems
have focussed on adding the notion of time to the for-
mal modeling techniques of traditional systems, namely
logic-based [26, 10, 1, 16], Petri-net-based [27, 24, 11,
17], state-based [12, 32, 18, 2, 5], and process-algebra-
based [28, 13, 3]. In all of these studies very little em-
phasis, if any, was put on the physical nature of the
modeled systems. Issues of spontaneity, causality, spa-
cial locality, and reactivity are often disregarded, thus
making real-time computing research physically unreal-
istic.

In [8], we proposed the Time-constrained Reactive
Automata (TRA) model as a real-time computing for-
malism that recognizes the physical aspects of embed-
ded systems. In that respect, the TRA model proved
to be instrumental in the specification, verification, and
simulation of asynchronous circuit designs, reactive con-
trol systems [9], and behavioral planning [7]. In this
paper, we briefly overview the TRA model and its use in
the specification and verification of real-time embedded
systems.



2 The TRA Model

The TRA model has evolved from our earlier work in [5]
extending Lynch’s TOA model [21, 20] to suit embedded
and time-constrained computation.

2.1 Novelties

The TRA model differs from others in that it does not
allow the specification of systems that are not reactive.
A system is reactive if it cannot block the occurence
of events not under its control. A sufficient condition
for reactiveness is the input enabling property proposed
in [21]. The TRA model is input enabled. Tt distin-
guishes clearly between environment-controlled actions,
which cannot be restricted or constrained, and locally-
controlled actions, which can be scheduled and disabled.
Communication is asynchronous and non-blocking.

An important aspect of the TRA model is its notion
of space in relation to time. In particular, events oc-
cur at uniquely identifiable points in time and space.
Events occuring at the same time and place are undis-
tinguishable. The TRA model admits the causal nature
of physical processes. A non-deterministic system 1s
causal if given two inputs that are identical up to any
given point in time, there exist outputs (for the respec-
tive inputs) that are also identical up to the same point
in time. The TRA model enforces causality by requiring
that any locally-controlled actions be produced only as
a result of an earlier trigger. Spontaneity is a notion
closely related to causality.® A system is spontancous if
its output actions at any given point in time ¢ cannot
depend on actions occuring at or after time ¢. In partic-
ular, if an output occurs simultaneously with (say) an
input transition, the same output could have been pro-
duced without the simultaneous input transition [30].
Simultaneity is, thus, a mere coincidence; the output
event could have occured spontaneously even if the in-
put transition was delayed. The TRA model enforces
spontaneity by requiring that simultaneously occuring
events be independent; time has to necessarily advance
to observe dependencies.

The TRA model distinguishes between two notions
of time, namely real and perceived. Real time cannot
be measured by any single process in a given system;
it is only observable by the environment. Perceived
time, on the other hand, can be specified using uncer-
tain real time delays. The TRA model, therefore, does
not provide for (or allow the specification of) any global
or perfect clocks. As a consequence, the only measure
of time available for system processes has to be relative
to imperfect, local clocks. This distinction between real
time and perceived time is important when dealing with
embedded applications where specifications are usually
given with respect to real time, but have to be imple-
mented relying on perceived time.

! Actually both spontaneity and causality are directly re-
lated to the past and future light cones of an event in space-
time [15].

2.2 Basic definitions

We adopt a continuous model of time similar to that
used in [2, 19]. We represent any point in time by a
nonnegative real ¢ € N. Time intervals are defined by
specifying their end-points which are drawn from the
set of nonnegative rationals @ C . A time interval is
viewed as a traditional set over nonnegative real num-
bers. It can be an empty set, in which case it is denoted
by £, it can be a singleton set, in which case it is de-
noted by the [t, 1], € Q, or else it can be an infinite set,
in which case it is denoted by [t;,t,], (t1,tu], [t1, tu), or
(t1,ty) — the right-closed, left-closed, and open time in-
tervals, respectively, where #;,%, € Q and #; < t,. The
set of all such infinite time intervals is denoted by D.

A real-time system is viewed as a set of inter-
acting mealy automata called TRAs. TRAs communi-
cate with each other through channels. A channel is
an abstraction for an ideal unidirectional communica-
tion. The information that a channel carries is called
a signal, which consists of a sequence of events. An
event underscores the occurence of an action at a spe-
cific point in time. An action 1s a walue associated
with a channel. For example, let North, South, East,
and West be the possible values that can be signaled
on some channel MOVE of a given TRA. MOVE(East) is,
therefore, a possible action of the TRA. The instanti-
ation of MOVE(East) at time ¢; denotes the occurence
of an event (MOVE(East):¢1). The sequence of events
(MOVE(East) : ¢1)(MOVE(North) : ¢2) (MOVE(South) : {3)
...elc. constitutes a signal. Signals are single valued;
they cannot convey more than one event simultaneously.
That is, for a signal {ag : to){ay :t1)...{ap 1 t5) ... we
require that ¢ < {41,k > 0.

At any point in time, a TRA is in a given state.
The set of all such possible states defines the TRA’s
state space. The state of a TRA is visible and can
only be changed by local computations. Computations
(and thus state transitions) are triggered by actions and
might be required to meet specific timing constraints.

2.3 TRA Objects
A TRA object is a sextuple (X, 00,11,0, A, T), where

e X the TRA signature, 1s the set of all the channels
of the TRA. It is partitioned into three disjoint sets
of input, output, and internal channels. We denote
these by i, Yout, and Xint, respectively. The set
consisting of both input and output channels is the
set of external channels (Zext). These are the only
channels visible from outside the TRA. The set con-
sisting of both output and internal channels is the
set of local channels (X)oc). These are the locally
controlled channels of the TRA.

e 0y € ¥, 1s the start channel.

e II, the signaling range function, maps each channel
in X to a possibly infinite set of actions that can



be signaled on that channel. Action sets of differ-
ent channels are disjoint. The function II naturally
generalizes to sets of channels in the following man-
ner: 1I(%;) = U]' (o;;), where o;; € X;. In partic-
ular, the set of all the TRA actions is given by: TI(X).
The set of input, output, internal, external, and lo-
cal actions are similarily given by TI(Zi,), TT(Zout ),
M(Zint ), M(Zext), and M(Tioc), respectively.

e O is a possibly infinite set of states of the TRA.

e A COXII(X)xO is aset of possible computational
steps of the TRA. TRAs are input enabled which
means that for every m € T(X4y), and for every
0 € O, there exists at least one step (6,7,0) € A,
for some ¢’ € O.

e T CEXToexDx29 is a set of time constraints on
the operation of the TRA. A time constraint v; € T
is a quadruple (o, 0}, 8;,©;) whose interpretation
is that: if an action is signaled at time ¢t € R on the
channel o¢;, then an action should be fired on the
channel o} at time t', where ' —t € §;, provided
that the TRA does not enter any of the states in ©;
for the open interval (¢,¢'). The channel o; € &
is called the trigger of the time constraint, whereas
o} € Yloc is called the constrained channel. ©; C ©
defines the set of states that disable the time con-
straint; once triggered a time constraint becomes
and remains active until satisfied or disabled. A
time constraint is satisfied by the firing of an ac-
tion on the channel ¢; within the imposed time
bounds; it is disabled if the TRA enters in one of
the disabling states in ©; before it is satisfied. The
interval é; specifies upper and lower bounds on the
delay between the triggering and satisfaction (or
disabling) of the time constraint v;.

As an example of a TRA specification, consider the
the up/down counter whose state diagram is shown in
Figure-1. The counter accepts commands issued on the
input channel cmd to count up or down and signals the
value of the current count on the output channel cnt.
The counter starts executing once an action is fired on
the init channel. The value of the init signal deter-
mines the starting state of the counter. Thereafter, the
counter is constrained to produce a count every at least
1.9 and at most 2.1 time units. Figure-2 shows the TRA
specification of such a counter.

cnt(-2) cnt(-1) cnt(0) cnt(1)

cmd(U) cmd(V)

cmd(D)

init(-2) init(-1) init(2)

Figure 1: State diagram of up/down counter.

oY = Yy U Xout U Xing, where:
Yin = {cmd, init}, Zout = {cnt}, and iy, = ¢.
einit € &;; is the start channel.
oll, the signaling range function, is defined as follows:
II(init) = Z, II(cmd) = {Up,Down}, and II(cnt) = Z.
00, the set of states is given by: {§; :7 € Z}.
oA, the set of computational steps is given by:

A= (U, e (6 init(5),6,)}) U
(U o (8, cmd(UP), 6:41)}) U
(U;ez{(6:, cmd(Down), 8;_1)}) u
(Ui o (6, et (i), 6)3).

o1, the set of time constraints is given by:

T = {(init,cnt, [1.9,2.1], ¢), (cnt, cnt,[1.9,2.1],¢)}.

Figure 2: TRA-specification of up/down counter.

2.4 Space and Time aspects of TRAs

The behavior of a TRA is generally non-deterministic.
Three sources of non-determinism can be singled out.
In a given state there might be a number of choices
concerning the action to be fired. Each one of these
choices results in a different computational step, and
thus in a different execution. This gives rise to control
non-determinism. The TRA timing constraints specify
lower and upper bounds on the delay between causes
and effects, thus leaving the TRA with a potentially in-
finite number of choices concerning the exact delay to
be exhibited. Each one of these choices results in a dif-
ferent event, and thus in a different execution. This
gives rise to teming nondeterminism. Finally, the com-
putation associated with specific actions might be non-
deterministic. In this case, firing the same action from
the same state might result in different next states, and
thus in different executions. This gives rise to com-
putation non-determinism. Considered separately, each
one of the above forms of non-determinism is benign.
A combination thereof, however, deserves a closer at-
tention. In particular, the interplay between control
non-determinism and timing non-determinism is inter-
esting because it is related to the notions of space and
time. Control non-determinism refers to uncertainties
about the identity of the channel that will be fired; it
refers to a spacial uncertainty. As such, and to abide
by the spontaneity principle, it must reduce the range
of possible timing uncertainty.

Two actions of a TRA conflict if the occurence of
one of them enables, disables, or affects the occurence of
the other. We extend our notion of conflict to channels
as follows. Two channels o1 and o2 conflict if at least
one action from II(e1) and one action from II(o2) con-
flict. The formal definitions for “enables”, “disables”,
and “affects” were given in [8]. Obviously, each one of
these three relationships depicts one form of computa-
tional dependency that emerges due to sharing infor-
mation about state. For two local actions to conflict,
their respective channels must be under the control of a
single component of the TRA. The conflict relationship,



therefore, defines a partition on the locally-controlled
channels of a given TRA. Two local channels o7 and o5
belong to the same component (class) if they conflict.

The partition of the TRA’s locally-controlled chan-
nels into classes captures some of the structure of the
system the automaton is modeling or the set of require-
ments it is specifying. In particular, each class of chan-
nels is intended to represent the set of channels locally-
controlled by some system component. This partition-
ing retains the basic control structure of the system’s
primitive components and provides a concrete notion of
spacial locality.

The actions on the input channels of a given TRA
are not under its control; they can fire at any time.
To preserve the non-blocking (input-enabled) nature of
the TRA model, it is, therefore, necessary to insure that
input actions on different channels do not conflict. A
TRA A is improper if at least two of its input channels
conflict, otherwise it is proper. For the remainder of
this paper, it will be assumed that any TRA 1s proper
unless otherwise stated.

The notion of system components we are present-
ing here is novel and entirely different from that used
in untimed models to express fairness [21] by requir-
ing that, in an infinite execution, each of the system’s
components gets infinitely many chances to perform its
locally-controlled actions. In timed systems, the ma-
jor concern 1s safe and not necessarily fair executions
[29]. Even if required, fairness can be enforced by treat-
ing it as a safety property; liveness properties can be
handled in infinite execution by requiring time to grow
unboundedly.?. This led to the abandoning of the idea
of partitioning a system into components in our earlier
model proposed in [5]. Lynch and Vaandrager [22] fol-
lowed suit in their recent modification of the model pro-
posed in [32]. In the TRA model we use system compo-
nents to represent what can be termed as spacial local-
ity. Different actions can be signaled at the same “time”
only if they are not signaled from the same “place”; they
can be produced at the same “place” only if they do
not occur at the same “time”. This intuition is inspired
from physical systems, where events are characterized
and distinguishable by their time-space coordinates [15].

2.5 TRA Executions and Behaviors

In standard automata theory, there is no distinction be-
tween choosing a transition and firing it; both of them
occur instantaneously. In the TRA model, a distinction
is made whereby choosing (scheduling) a transition and
executing (commiting) that transition are not necessar-
ily instantaneous activities. They are “distinct” in that
they may be separated in time. As a matter of fact,
a scheduled transition does not necessarily have to be
committed; 1t can be abandoned due to unforeseable
conditions. The distinction between the two activities

2Such executions were called admissible in [22]

is also pronounced in the way the TRA model differen-
tiates between input and local events. Input events are
uncontrollable; they are not scheduled. Local events
are.

The state of a TRA at an arbitrary point in time is
not sufficient to construct its future behavior. To explain
why this is true consider the example shown in Figure-
3, where a TRA is known to be in some state s at time ¢;.
Assume that, due to a triggering event at some earlier
time fg, an action is scheduled to fire at some point in a
future interval given by [to+ 16, tp +thi]. Knowing only
the state of the TRA at time ¢; is obviously not sufficient
to predict future behaviors. In addition to the state, the
intervals of time where scheduled transitions might fire
have to be recorded. We encapsulate this knowledge in
our notion of intentions.

History Future
Intention
Trigger TRA in state s
r % 7 ‘
H H i
tD t1 -— Thi- Tio — me

Time-constraint Enabled
Figure 3: The notion of a TRA status.

Consider the time constraint v; = (o4, 0., 6;,0;) €
T. As we explained before, v; identifies a time-
constrained causal relationship between the events sig-
naled on o; and those signaled on ¢}. In particular,
the occurence of a triggering event on o; results in an
intention to perform an action on ¢} within the time
frame imposed by é;. The commitment or abandon-
ment of such an intention in due time is conditional on
the states assumed by the TRA from when the inten-
tion is posted until when 1t is committed or abandoned.
At any given point in time, a TRA might have several
outstanding intentions.

For a given TRA, we define the intention wvector

I = A to be a vector of r sets of intentions, where
r = |T|. Each entry in I is associated with one
of the TRA’s time constraints. In particular, if v; =
(05,00, 6;,0;) € T is one of the TRA’s time constraints,
then Ifv;] = {6i1, 62, .., 0ik, .. .bim | denotes a set of m
time intervals during which actions on the channel o}
are intended to be fired as a result of earlier triggers on
o;. Each one of the intervals in A; can be thought of as
an independent activation of the time constraint v;. An
empty intentions set, I[v;] = ¢, indicates the absence of
any activations of v;. The empty intention vector, Iy,
consists of r such empty sets.

At any point in time, the intention vector of a TRA
can be thought of as an extension of the TRA’s state.



We define the status of a TRA at any point in timet € &
to be the tuple (#,I), where @ and T are the TRA’s state
and intention vector at time ¢, respectively.

A TRA changes its status only as a response to the
occurence of an input or an intended local event. In
other words, the change in a TRA’s status is necessarily
a causal reaction to an input event or to an earlier trig-
gering event. Assume that the status (8, I) of a TRA was
entered at time ¢t as a result of an event (7 :¢), where
7 € ll(o}), 0} € X. Furthermore, assume that at time ¢’
(t" > 1), an action 7’ € TI(07) is fired, where o} € X, As
a result, the TRA will assume a new status (6, 1'). The
status (0',I') is called a successor of the status (6, 1)
due to the event (x’ : ¢'). Five conditions — namely, le-
gality, spontaneity, safety, causality, and consistency —
have to be met for such a succession to occur. These
conditions are formally defined in [8].

The legality condition insures that the computa-
tional step that changes the state of the TRA from 6 to
0" as a result of action 7' is defined. The spontaneity
condition allows the occurence of simultaneous events
only if they are independent; time has to ellapse for de-
pendencies to be manifested. In particular, two simulta-
neous input events can occur only if they are on different
channels, two simultaneous local events can occur only
if they are fired on channels belonging to different com-
ponents, and a local event cannot depend on an input
event fired simultaneously. The safety condition guar-
antees that no active time constraints expire. In other
words, outstanding intentions are either committed or
abandoned in due time. The causality condition necessi-
tates that local events be causal; they are signaled only
if intended due to an earlier trigger. The consistency
condition requires that the intentions in I continue to
exist in I’ unless otherwise dictated by the occurence of
the event (7' : ).

We use the notation (¢, 1) <fﬂ>) (0", 1) to denote
the direct status succession from (0,1) to (¢',I') due to
the firing of the event (a’ : ¢'). Furthermore, we use the
notation (A, 1) . (8',I') to denote the eztended status
succession from (0, 1) to (¢, I') due to the firing of the
sequence of events «.

A TRA is said to have reached a stable status (0, 1), if
all entries of the intention vector are empty sets. That
is I = I4. Obviously, a TRA will remain in a stable
status until it is excited by an external input event.
This follows directly from the causality requirement for
a status succession.

To start executing, a TRA (X, 09, 1,0, A, T) is put
in a stable status (g, Iy), where Iy = Iy and 6y € ©.
The status (0, Ip) is called an initial status. The execu-
tion is initiated at time ¢g with the firing of an action wg
on the start channel og, where 7y € I(0p). The event
(mg : o) is called the indtiating event.

An execution e of a TRA is a possibly infinite string
of alternating statuses and events, which starts with an

initial status followed by an initiating event, and which
contains an infinite number of status successions (infi-
nite execution), or terminates in a stable status (finite
execution). Since statuses and internal events are invis-
ible from outside a TRA, we will often be interested only
in external events. We follow an approach similar to
that adopted in [21] by defining 8 to be a behavior of a
TRA A, if it consists of all the external events appearing
in some execution e of A. We denote the set of all the
possible behaviors of a TRA A by behs(A). Obviously,
behs(A) describes all the possible interactions that the
TRA A might be engaged in, and, therefore, constitutes
a complete specification of the system that .4 models.

A TRA A is said to implement another TRA B if
A does not produce any behavior that 5 could have
produced. In other words, all of A’s behaviors (the im-
plementation) are possible behaviors of B (the specifi-
cation). The reverse, however, is not true. There might
exist behaviors of B that cannot be generated by A.
The notion of a TRA implementing another will be used
mainly in verification.

2.6 TRA Composition

A basic aspect of the TRA model is its capability to
model a complex system by operating on simpler sys-
tem components. In this section we examine such an
operation, namely composition. Other operations (for
example hiding and renaming) were presented in [8].

The composition of a countable collection of com-
patible TRAs, {A; :1€ T}, isanew TRA A= Ay x Ay x
coox Ay x o0 = Tliez A;. The execution of A involves
the execution of all its components A;c7, each start-
ing from an initial status and observing every external
event signaled by either the environment (input) or by
any TRA in the collection {A; : i € T}. The compat-
tbility condition for composition insures that, for each
channel in the composition, there is at most one writer,
a finite number of readers, and that the signaling ranges
of readers and writers are compatible.

The input signature of the composed TRA consists
of those channels that are inputs to one or more of the
component TRAs, and which are not outputs of any of
the component TRAs. The output signature of the com-
posed TRA consists of all the outputs of all the com-
ponent TRAs. Similarily, the internal signature of the
composed TRA consists of all the internal channels of all
the component TRAs. The start channel of the composed
TRA is the start channel of one or more of its compo-
nent TRAs.? The signaling range function of the com-
posed TRA is defined so as to preserve its input-enabled
property. In particular, the signaling range of an input
channel consists of only those actions that can accepted
by all readers of that channel. A computational step
of the composed TRA is necessarily a step of one of its

Without loss of generality, we assume that TRA to be
Ao.



components. Similarily the time-constrained causal re-
lationships of the composed TRA are exactly those of the
component TRAs.

In [8], the formal construction of the sextuple rep-
resentation of a composition is given. Also, the rela-
tionships between the behaviors and spacial properties
of the composed TRA and those of its constituent TRAs
are established. In particular, we prove that the sets of
proper, spontaneous, and causal TRAs are closed under
composition.

The TRA composition operation is more general
than those reported in [21, 32, 5] in that it allows the
specification of both parallel and sequential composi-
tion. In particular, the introduction of the start chan-
nel permits the execution of two TRAs to be concurrent
if they share the same start channel, or to be serialized
if the start channel of one (child) is an output of the
other (parent). Through appropriate composition, our
model is capable of representing all of the composition
operations in [23].

3 TRA-based Verification

Verification is the process of establishing the correctness
of a system by proving that it preserves certain desired
properties. In this section, we overview three verifica-
tion techniques based on modular, functional, and hier-
archical system decomposition.

3.1 Modular Decomposition

One common methodology for verifying properties of
a complex system is modular decomposition, in which
one reasons about each property of the entire system
separately.

The input enabling property of the TRA model for-
bids a system specification from controlling or con-
straining inputs it receives from its environment. As
a result, such a specification can only guarantee prop-
erties that are independent from the behavior of the
environment. In computer embedded applications, this
seems to be the only safe and realistic approach to be
adopted. In many circumstances, however, the correct
operation of a system is only expected under certain re-
strictions on its inputs. These restrictions may be guar-
anteed in the context of a known installation, where the
behavior of other parts of the environment is a priori
certified, or may be assumed by a problem statement,
whereby the correct behavior of a solution is required
only under a set of specific conditions.

For example, consider the up/down counter C of
Figure-2 and assume that, as a safety condition, C is
required to produce at least one output action in the
interval between any two inputs. Obviously, such a re-
quirement cannot be guaranteed without restricting the
behavior of the environment feeding the cmd signal to
the counter. In particular, it can be shown that an un-

safe behavior will result if two or more Up (or Down)
actions are fired on the cmd channel within less than 1.9
units of time. Now, assume that in a given installation,
C is composed with a subsystem X that generates cmd
actions at a slower rate, or a subsystem ) that issues
a new counting request only after it receives the re-
sponse of C to its previous request. Obviously, in these
restricted environments, the aforementioned safety con-
dition can be indeed certified.

A useful notion for discussing the aforementioned
restrictions is that of a TRA preserving a property. This
notion was introduced in [21] to study fair behaviors of
discrete event systems using the IOA model. In this
section we generalize this notion to suit the TRA model.

A property P defines a possibly infinite set of se-
quences over a given alphabet (or signature). Properties
can be defined by specifying them as TRAs, or, alter-
nately, by describing the set of behaviors they allow.*

A TRA P is said to define a property for a TRA A
if and only if o € ©7,. A TRA A is said to preserve
a property P if it is not the “first” to violate 1t. Once
the property P is violated, A is under no obligation to
behave in any specific way. That is, the TRA A behaves
according to the property P until the environment, or
possibly another TRA composed with A, violates that
property. In [8], this notion of property preservation is
formally defined by imposing restrictions on the set of
behaviors in behs(A) based on the set of behaviors in

behs(P).

The following Lemma establishes that property
preservation is closed under composition. Thus, if a
property is preserved by the constituent components of
a composition, then it is preserved by the composition.

Lemma 1 Let {A; : i € T} be a collection of compati-
ble TRAs. If A; preserves property P for all i € T, then
the composition [ [, Ai preserves P.

The notion of a system preserving a property is
a weak version of the implementation relationship be-
tween TRAs. In particular, a TRA A implements a prop-
erty P if A preserves P in all possible behaviors — inde-
pendently from the environment’s behavior. The follow-
ing lemma establishes sufficient conditions for a compo-
sition of TRAs to implement a property.

Lemma 2 A set of sufficient conditions for the com-
position A = [[;c7 Ai to implement the property P is
that:

1. A CyP.
2. A; preserves P, for alli € T.

*Defining a property by specifying it as a TRA has been
termed in [34] as the functional specification approach, as
opposed to the conventional black-box approach.



A special case of particular interest occurs when the
composition in Lemma-2 is closed. A TRA 1s closed if it
has no input channels except the start channel. A closed
TRA can be thought of as specifying a system that is
environment independent. In particular, if § is the TRA
representing an embedded system, and £ is a compatible
TRA, where: X5 = %8 | U{Ug} Eg = Y5, U{of}, then

the comp051t10n S x & 18 closed, and the TRA £ is said
to define an installation for §.

In the counting example presented in Figure-2, let
P be the property depicting the requirement that any
two events on cmd will be separated by at least one event
on cnt. Figure-4 shows a possible sextuple specification

of P.

oYy = {init}, Yous = {cmd, cnt}, and iny = ¢.
ooy = init € X.

oll(init) = Z, II(cmd) = {Up, Down}, and II(cnt) = Z.
O = {Go,Wait}.
oA = {(6,init(),0), (Go, cmd( ),Wait), (6, cnt(7),Go)},

where § € ©, c € l_[(cmd))7 and ¢ € [I(cnt).
T = {(init, cnt, [0, 0], ¢), (init, cmd, [0, 0], @),
(ent, ent, [0, 0], ¢), (cnt, cmd, [07 oo],{Wait})}.

Figure 4: TRA-specification of the property P.

It can be easily shown that both the counter C
and the installation ) preserve the property P. From
Lemma-2, it follows that the closed system resulting
from embedding C in Y, namely the composition Y x C,
implements P. The same conclusion, although correct,
cannot be reached for the composition A’ x C since, in
general, X' does not preserve P. This stems from the
fact that the conditions in Lemma-2 are sufficient and
not necessary conditions. In particular, Lemma-2 can-
not be used for properties that emerge from a composi-
tion (emergent properties).

3.2 Hierarchical Decomposition

Another methodology for the verification of complex
systems is hierarchical decomposition, in which one rea-
sons about the entire system at varying levels of ab-
stractions and details. This verification approach 1s
analogous to the stepwise refinement implementation
approach.

The idea behind hierarchical decomposition is to
prove that a given TRA implements a second, that the
second implements the third, and so on until the final
TRA is shown to implement the required specifications.
The transitivity of the implementation relation guaran-
tees that the first TRA, indeed, implements the specifi-
cations.

In the remainder of this section, we derive a set
of sufficient conditions for the (strong) implementation
of a TRA by another. The idea is to come up with a
mapping ¥ between the states and intentions of the

two TRAs and show that any possible status succession
in the implementing TRA corresponds to some possible
succession in the specification TRA. Figure-5 illustrates
that correspondence.

Our approach in establishing a mapping between
a specification and its 1mplementation is similar to
the possibilities mappings proposed in [21, 20] and the
prophecy mappings proposed in [25], except that it is
complicated here by the need to preserve the timing con-
straints of the specification TRA. The following lemma
establishes the required sufficient conditions.

Lemma 3 A sel of sufficient conditions for a TRA A to
implement another TRA B is that both of the following
conditions are satisfied:

]. - Eé = EIBH = Ein; and
VYo, €Y, : HA(O'Z') = HB(O'Z').

2. There exist two mappings: Vg : OA — 265, from
the set of states of A 1o the power set of states of
B, and ¥y : [ — 218, from the set of intentions
of A to the power set of intentions of B, such that
the following conditions hold:

a. Wr(I3) = {15},

b. Let (0;,1;) be a reachable status of the TRA
A, and let (0;,I!) be a reachable status of
the TRA B, where 0, € Ue(6;), and I} €
Ur(L). If(HZ,I) {r1) (6;,1;) is a possible sta-
tus succession of.A then there exists an ex-
tended status succession® for B of the form
(07, 1}) = (05, 17), such that:

4’ a|Eext = <7T t>|Eext

i € \If@(g ), and I/ S \IJI(I]').

As an example, let us focus once more on the count-
ing example of Figure-2 and the installation A’ that we
described before. Recall that, using modular decompo-
sition, we were unable to verify that the composition
X x C preserves the property P stating that any two
events on cmd are separated by at least one event on
cnt. Using the sufficient conditions of Lemma-3, such
a proof can be constructed.

In particular, consider the TRA sextuples for the
installation X and the closed system A x C shown in
Figure-6 and Figure-7, respectively.

Now, consider the mappings ¥e : OY*C — 20”

and ¥y : [¥*xC — 9I” given below:

o ¥o((Q,0;)) = {Go,Wait}, where { € Z.

®See Figure-5 for an illustration.



Specification

<m,T>

Implementation

Figure 5: ¥-mapping.

oYy = {init}, Tous = {cmd}, and Tint = ¢.
o0y = init.
oll(init) =
©=1{Q).
oA = {(Q,1init(),Q), (Q,cmd(c), Q) },

where ¢ € II(cmd).
oT = {(init, cmd, [4.9,5.1],), (cmd, cmd, [4.9,5.1], &) }.

Z, II(cmd) = {Up, Down}.

Figure 6: TRA-specification of the installation X'

o Wr([{éo}, {61}, {[tr, ta]}, {167, 1h1}]) =
{[{éo}, {61}, {{tr, t} €], [{o o}fifS
{[{80}, {61}, {é2}, {[tr, ta] 1},

otherwise.

1}
> iy,

The mapping ¥g reflects the fact that there is no
direct correspondence between the states of ' x C and
those of P; any state of X' x € maps to any state of P.
The mapping ¥y, however, reflects how the combined
time constraints of X and C interrelate to guarantee
the satisfy the emergent property P. In particular, the

i, = {11111:} Yout = {cmd, cnt}, and Tiny = ¢.
o0y = init

oll(init) = Z II(cmd) = {Up, Down}, and (cnt) = Z.
00 = {(Q, 0):162}

oA = (U, ;e=1(Q, 0:), init(j), (@, 6;))})U
(Uie21(Q, 8:), cmd(Up), (@, Bi41)) U
(UzGZ{((Q’ 6;), cmd(Down), (@, 8;—1)) })U
(Uiez{((Q, 8:), ent(4), (@, 6:))}).

oY = {(init, cnt,[1.9,2.1],¢), (cnt, cnt, [1.9,2.1], ¢),

(init, cmd, [4.9,5.1], ¢), (cmd, cmd, [4.9,5.1],¢)}.

Figure 7: TRA-specification of the composition X" x
C.

[ty ta]}, A1 )3,

mapping ¥; implies that in the composition A x C, an
intention to fire an action on the cmd channel neces-
sitates a similar intention in P only if cnt cannot be
guaranteed to fire before cmd. The proof is established
by checking that the mappings ¥g and ¥ satisfy the
conditions of Lemma-3.

3.3 Functional Decomposition

System verification using functional decomposition is
strongly tied to system implementation using the
divide-and-conquer approach. In particular, one way
of verifying an implementation is by dividing the prob-
lem to be solved into independent sub-problems, and
verifying the implementation (or preservation) of each
sub-problem separately. The following Lemma formal-
1zes this concept.

Lemma 4 Let {A; : ¢ € I} and {P; : i € I} be
two collections of compatible TRAs. If A; implements
(preserves) Py, for every i € I, then the composition
A = [liez Ai implements (preserves) the composition

P= HiEI Pi.

The TRA formalism admits only one combinator for
TRAs, namely the composition operation. While such
a combinator 1s adequate for the specification of sys-
tems out of their components, other combinators, like
conjunction and disjunction, might prove useful for the
description of properties. More work needs to be done
to formally define such combinators.

4 TRA-based System Design

The rational behind proposing the TRA formalismis that
it can serve as the backbone of a development method-
ology for embedded real-time applications. To achieve
that goal, we have developed CLEOPATRAS — a con-
venient language for the specification of embedded sys-
tems under the TRA formalism. CLEOPATRA spec-
ifications can be compiled and executed efficiently in
simulated time. Also, they can be transformed, me-
chanically and unambiguously, into formal TRA objects
for verification purposes.

In  CLEOPATRA, systems are specified as in-
terconnections of objects which are instantiations of
parametrized TRA-classes. For example, Figure-8 shows
the CLEOPATRA specification of three TRA-classes,

integrate, constant, and ramp.

The header of a TRA-class determines its external
signature and its signaling range function. For exam-
ple, any TRA from the class integrate has a signature
consisting of an input channel in and an output channel

A Cbased Langunage for the Event-driven Object-
oriented Prototyping of .Asynchronous 7ime-constrained
Reactive Automata.



out. Both in and out carry actions whose values are
drawn from the set of reals. The body of a TRA class de-
termines the behavior of objects from that class. Such
a behavior can be either basic or composite.

The description of a basic behavior involves the
specification of a state space in the state: section,
the specification of an initialization of that space in the
init: section, and the specification of a set of causal,
time-constrained reactions in the act: section. For ex-
ample, the behavior of an object belonging to the TRA-
class integrate is basic. It consists of two reactions.
The first specifies the reaction of the integrator to events
on the input channel in(). The second specifies a pe-
riodic signaling on the output channel out (). Compos-
ite behaviors are specified by composing previously de-
fined, simpler TRA-classes together in the include: sec-
tion. For example, in Figure-8, the class ramp is defined
by composing the integrate and constant classes to-
gether.

TRA-class integrate(double TICK, TICK_ERR)
in(double) -> out(double)

state:
double x0 = 0, x1 = 0, y = 0;

act:
in(x1) -> :

init(),out() -> out(y):
within [TICK-TICK_ERR"TICK+TICK_ERR]
commit { y=y+TICK*(x0+x1)/2; x0=x1; }
}

TRA-class constant(double VAL,TICK,TICK_ERR)
-> out(double)

act:
init(), out() -> out(VAL):
within [TICK-TICK_ERR TICK+TICK_ERR]

TRA-class ramp
-> y(double)
{
internal:
x(double) -> ;
include:
constant -> x() ;
integrate x() -> yO ;

Figure 8: Integrations using trapezoidal approxi-
mation.

We have used CLEOPATRA to study a range of
real-time digital systems. In particular, we used it to
specify and verify asynchronous circuits [4] and to spec-
ify, analyze and simulate behaviors of autonomous crea-

tures [6, 7].

To close up the gap between formality and prac-
ticality, the development cycle of embedded applica-
tions has to be supported in its entirety. This requires
that systems implementation — and not only specifica-

tion, validation and verification — be addressed. We
are currently developing a compiler that would make of
CLEOPATRA a real-time programming language. The
testbed for our methodology is a robotic experiment,
which involves the coordination of motor requests to
perform manipulative tasks using directed-vision feed-
back. An initial report on that experiment can be found

in [9].

5 Conclusion

Previous studies in modeling real-time computing have
focussed on adding the notion of time to formal mod-
eling techniques of traditional systems without regard
to the physical realities of the modeled systems. In this
paper, we propose the TRA model as an attempt at ad-
dressing some of the issues involved therein.

The TRA model is a physically sound formalism for
real-time embedded computations. Among its salient
features is a fundamental notion of space and time that
restricts the expressiveness of the model in a way that
allows the specification of only reactive, spontaneous,
and causal computations. Using the TRA model, an
embedded system is viewed as a set of asynchronously
interacting automata (TRAs), each representing an au-
tonomous system entity. TRAs are input enabled; they
communicate by signaling events on their output chan-
nels and by reacting to events signaled on their input
channels. The behavior of a TRA is governed by time-
constrained causal relationships between computation-
triggering events. The TRA model is compositional
and allows benign time, control, and computation non-
determinism.

We envision the TRA model as the backbone of a
methodology for the development of real-time embed-
ded systems. In addition to specification and verifi-
cation, such a methodology would support validation,
prototyping, and implementation. To that end, we
have developed CLEOPATRA, a TRA-based specifica-
tion language. CLEOPATRA specifications can be
compiled and executed in simulated time for valida-
tion purposes. We are currently working on a com-
piler that would allow the real-time execution of real-
izable CLEOPATRA specifications, thus making of it a
programming language for embedded real-time systems.
The testbed for our experiments is a robotic application,
in which the real-time management of sensori-motor ac-
tivities of an industrial robot arm will be developed us-

ing CLEOPATRA.
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