
In Proceedings of RTSS’94: The 14th IEEE Real-Time System Symposium, San Juan, Puerto Rico, Dec 1994.

Timeliness via Speculation for Real�Time Databases�

Azer Bestavros

�best�cs�bu�edu�

Spyridon Braoudakis

�sb�cs�bu�edu�

Department of Computer Science

Boston University

Abstract

Various concurrency control algorithms di�er in the
time when con�icts are detected� and in the way they are
resolved� Pessimistic �PCC� protocols detect con�icts
as soon as they occur and resolve them using blocking�
Optimistic �OCC� protocols detect con�icts at transac�
tion commit time and resolve them using rollbacks� For
real�time databases� blockages and rollbacks are hazards
that increase the likelihood of transactions missing their
deadlines� We propose a Speculative Concurrency Con�
trol �SCC� technique that minimizes the impact of block�
ages and rollbacks� SCC relies on added system re�
sources to speculate on potential serialization orders�
ensuring that if such serialization orders materialize� the
hazards of blockages and roll�backs are minimized� We
present a number of SCC�based algorithms that di�er in
the level of speculation they introduce� and the amount
of system resources �mainly memory� they require� We
show the performance gains �in terms of number of sat�
is�ed timing constraints� to be expected when a repre�
sentative SCC algorithm �SCC��S� is adopted�

� Introduction

Traditional concurrency control algorithms can be clas�
si�ed broadly as either pessimistic or optimistic� Pes�
simistic Concurrency Control �PCC� algorithms ���� ��	
avoid any concurrent execution of transactions as soon
as potential con
icts between these transactions are de�
tected� Optimistic Concurrency Control �OCC� algo�
rithms ��� ��	 allow such transactions to proceed at the
risk of having to restart them in case these potential
con
icts materialize� Most real�time concurrency con�
trol schemes considered in the literature and used in
commercial systems combine Two�Phase Locking ��PL��
which is a PCC strategy� with a priority scheme to guar�
antee that the more urgent transactions are not blocked
out waiting for less urgent ones ��� �
� ��� ��� ��� ��	�
Despite its widespread use� �PL has some properties
such as the possibility of deadlocks and long and un�
predictable blocking times that damage its appeal for
real�time environments� This led to a large body of re�
search on alternatives to �PL for RTDBS ��
	�

�This work has been partially supported by GTE Labs �fund
number ������� and by NSF �grant CCR������		�

For DataBase Management Systems �DBMS� with
limited resources� performance studies concluded that
PCC blocking�based policies result in throughputs
higher than those achievable by OCC restart�based poli�
cies ��	� For Real�Time DataBase Systems �RTDBS�
throughput �or maximum concurrency� ceases to be an
appropriate measure of performance� Rather� the num�
ber of transactions completed before their deadlines be�
comes the decisive performance measure ��	� Haritsa
et al� ���	 investigated the behavior of both PCC and
OCC schemes in a real�time environment and showed
that for a RTDBS with �rm deadlines �where late trans�
actions are discarded immediately� OCC outperforms
PCC� especially when resource contention is low�

The main disadvantage of classical OCC ���	 is that
transaction con
icts are not detected until the validation
phase� at which time it may be too late to restart� The
Broadcast Commit variant of the classical OCC �OCC�
BC� ���� ��	 attempts to solve this problem by requiring
that a committing transaction noti�es all uncommit�
ted� con
icting transactions for an immediate restart�
OCC�BC detects con
icts earlier than the basic OCC
algorithm resulting in less wasted resources and earlier
restarts� However� like the classical OCC approach� it
is not sensitive to transactions� priorities or deadlines�
This has been partially remedied by introducing waiting
���	 and blocking ���� ��	 to OCC�based algorithms�

Recently Bestavros proposed a categorically di�er�
ent approach to concurrency control for RTDBS ��	� His
approach relies on the use of standby processes to specu�
late on alternative schedules �serialization order of trans�
actions�� once con
icts that threaten the consistency of
the database are detected� These alternative schedules
are adopted only if suspected inconsistencies material�
ize� otherwise� they are abandoned� Due to its nature�
this approach has been termed Speculative Concurrency
Control �SCC�� SCC algorithms use added processes to
combine the advantages of both PCC and OCC algo�
rithms� while avoiding their disadvantages� SCC resem�
bles PCC in that potentially harmful con
icts are de�
tected as early as possible� allowing a head�start for al�
ternative schedules� thus increasing the chances of meet�
ing set timing constraints� should a rollback �as in OCC�
be needed� SCC resembles OCC in that it allows con�

icting transactions to proceed concurrently� thus avoid�
ing the unnecessary blocking delays �as in PCC��

The remainder of this paper is organized as fol�
lows� In section �� we overview the basic Order�Based
SCC algorithm� Despite its impracticality� this algo�
rithm serves as a reference point for subsequent SCC�
based algorithms� In section �� we describe the SCC�kS
class of algorithms� which restricts the number of pro�
cesses available for a transaction to a constant k� The
SCC��S�the simplest member of the SCC�kS class�is
presented as it is used in our simulation studies as a
representative of SCC algorithms� In section �� we com�
pare the performance of SCC��S to that of OCC�BC� We
describe the RTDBS and workload models used in our
experiments� and we discuss our simulation results� We
conclude in section � with a summary of our �ndings�

� Speculative Concurrency Control

Let T�� T�� � � �Tm be the set of active transactions in
the system� A transaction Ti consists of a sequence of
actions ai�� ai�� � � �ail� where each aij� j � �� �� � � � l� is
either a read or a write operation on one of the shared
objects of the database� Write and subsequent read op�
erations of an object x by an uncommitted transaction
Ti are performed on a private copy of x in the local
workspace of Ti� The updated value of object x is made
visible to other transactions �i�e� re
ected in the shared
database� only when Ti is committed� Each transaction
in the system is assumed to preserve the consistency of
the shared database� Therefore� any sequential �or seri�
alizable� execution of any collection of transactions will
also preserve the consistency of the database ���� �	�

Given a concurrent execution of transactions Ti and
Tj � action air of Ti con
icts with action ajs of Tj � if they
access the same object and either air is a read operation
and ajs is a write operation �read�write con
ict�� or air
is a write operation and ajs is a read operation �write�
read con
ict�� Write�write con
icts are treated using
the Thomas� Write Rule �TWR�� At validation� when
all database updates are made permanent� all write re�
quests are bu�ered by the data manager and serialized
according to transaction validation order ��	�

SCC algorithms allow several processes to coexist
on behalf of the same transaction� Each of these pro�
cesses makes di�erent assumptions regarding the Specu�
lated Order of Serialization �SOS�� For a transaction Ti�
we call each one of these processes a shadow of Ti� Simi�
lar to OCC�BC� we adopt a forward validation method�
in which validation is done against active transactions
only� When a transaction Tr enters its validation phase�
the algorithm checks that the ReadSets of all active
transactions do not intersect with the WriteSet of Tr�
otherwise any such transactions are aborted� This for�
ward validation method implies that transaction aborts
result from reading an object that a validating trans�
action wrote� This is why we shadow the reader of an
object and not the writer�

To illustrate the basic premise of SCC� we compare
it to OCC�BC using an example� Assume that we have

two transactions T� and T�� which �among others� per�
form some con
icting actions� In particular� T� reads
item x after T� has updated it� Adopting OCC�BC
means restarting T� when T� enters its validation phase
��gure ��a��� This restart may be too late for T� to meet
its deadline� The SCC approach remedies this hazard by
requiring T� to fork�o� a shadow transaction T �

� imme�
diately before reading item x �which has been modi�ed
by the uncommitted transaction T��� Two possible sce�
narios may develop depending on the time needed for
T� to reach its validation� If T� reaches its validation
phase before T�� then T� will be validated and commit�
ted without any need to disturb T�� Once T� commits�
the shadow T �

� is aborted� However� if T� reaches its val�
idation phase �rst� the SCC protocol� instead of restart�
ing T�� simply replaces T� by its shadow T �

� ��gure ��b���
From this example� we notice that the expected waiting
�due to blockages or rollbacks� is smaller than that re�
quired by either PCC or OCC�BC�

S Rx

T1
S Wx V/C

S Rx AT2

Time

V/C

Deadline

T2

�a�

T2
S Rx

Time

T1
S Wx

A

T2

V/C

Rx V/CBlocked

0

0

1

Deadline

T2

�b�

Rx Process reads object x

Wy Process writes object y

Process is blocked

S Process is starting

Blocked

A Process is aborted

V/C Process validates & commits

Rz

Process is forked off

�c�

Figure �� �a� OCC�BC �b� SCC �c� Legend

The basic idea of SCC is to keep enough shadows
�standby alternate processes� for each SOS� Such shad�
ows are blocked at appropriate points in time so as to be
ready to resume execution� if needed� Figure � demon�
strates this concept by showing all shadows and SOS�s
for a transaction T�� which con
icts with two other
transactions T� and T�� In ��	� an Order�Based SCC
�SCC�OB� algorithm� which generalizes this idea� is pro�
posed� The SCC�OB algorithm requires an exponential

number of shadows� namely
Pn

i��
�n����
�n�i�� � O ��n� �����

to account for all the possible orderings of any n uncom�
mitted� con
icting transactions� Fortunately� it can be

shown that
Pn

i���n � i� � n�n���
� shadows per trans�

action are actually su�cient� whereby each shadow ac�
counts for multiple SOS instead of a single one� Further�
more� at any point in time only a maximum of n such
shadows per transaction is necessary� This reduction in
complexity can be achieved by observing that standby
shadows do not read dirty data� and thus transactions
need not consider their relative position in the di�erent
serialization orders� The Con�ict�Based SCC �SCC�CB�
variant presented in ��	 makes use of the aforementioned
improvements over the SCC�OB algorithm�

3T 1 Blocked T1 < T3; T3 < T2

T2
S Wy

T1
S Wx

0

0

T3
0

S Rx Ry

T3
2 Blocked

T3 < T1; T3 < T2

3T 3 Blocked T1 < T3; T2 < T3; T1 < T2

T3 < T1; T2 < T3

Rz

Wz

3T 4 Blocked T1 < T3; T2 < T3; T2 < T1

Figure �� T� has �ve shadows each with a di�erent SOS�

� The SCC�kS Class of Algorithms

In this section� we describe a class of SCC algorithms
that operates under a limited resources assumption�
This assumption restricts to k the number of shadows
alloted for each uncommitted transaction� A formal de�
scription of the algorithm as well as a proof of its cor�
rectness can be found in ��	�

��� Algorithm Overview

Shadows executing on behalf of a transaction are ei�
ther optimistic or speculative� Optimistic shadows exe�
cute unhindered� whereas speculative shadows are kept
ready to replace defunct optimistic shadows� if neces�
sary� At any point during its execution� a transaction
Tr has exactly one optimistic shadow T o

r � and may have
i speculative shadows T i

r � for i � �� � � � � k� ��

Optimistic shadow behavior�
T o
r executes assuming that it will commit before all

uncommitted transactions with which it con
icts� T o
r

records any con
icts found during its execution and pro�
ceeds uninterrupted until one of these con
icts materi�
alizes �due to the commitment of a competing trans�
action�� in which case T o

r is aborted�or else until T o
r

reaches its validation phase� in which case it commits�

Speculative shadow behavior�
Each speculative shadow T s

r executes with the assump�
tion that it will �nish before all the other uncommitted

transactions in the system with which it con
icts� ex�
cept for one particular transaction Tu� which is specu�
lated to commit before Tr � T s

r remains blocked on the
shared object X� on which the con
ict with Tu devel�
oped� waiting to read the value that Tu will assign to
X when it commits� If T s

r �s speculation becomes true
�i�e� Tu commits before Tr�� T s

r will be unblocked and
promoted to become Tr �s optimistic shadow� replacing
the old optimistic shadow which will have to be aborted�
since it made the wrong assumption with respect to the
serialization order with Tu�

The number of speculative shadows maintained by
SCC�kS �namely k��� may not be enough to account for
all the con
icts that develop during a transaction�s life�
time� The selection of the con
icts to be accounted for
by speculative shadows is an interesting problem with
many possible solutions� In this paper we have adopted
a particular solution� which requires the speculative
shadows of SCC�kS to account for the �rst l � k � �
con
icts �whether read�after�write or write�after�read�
encountered by a transaction� This is implemented by
the Latest�Blocked�First�Out �LBFO� shadow replace�
ment policy� which replaces the shadow with the lat�
est blocking point� LBFO is one of several policies that
could be adopted� We are currently investigating alter�
natives to this policy� which utilize information about
deadlines and priorities of the con
icting transactions
to account for the most probable serialization orders ��	�

Figure � illustrates the LBFO shadow replacement
policy when only two speculative shadows are alloted for
transaction T�� The presumption that the �rst two con�

icts in which T� participated �by accessing objects Y
and Z�� is revised when transaction T� writes object X�
In this case� the newly detected con
ict �T�� X� becomes
the earliest con
ict of T�� T �

� � the latest shadow of T� is
aborted and replaced by a new speculative shadow� T �

� �
accounting for the new �T�� X� con
ict�

S RzRyRx

Time

S Wx
o

T2

T1
o

T
1

1 Blocked

2T1 Blocked A

3T1 S Blocked

Figure �� Example of LBFO shadow replacement�

��� Description of SCC�kS

Let T � T�� T�� T�� � � � � Tm be the set of uncommitted
transactions in the system� For each transaction Tr we
keep a variable SpecNumber �Tr�� which counts the num�
ber of the speculative shadows currently executing on
behalf of Tr� With each shadow T i

r of a transaction
Tr � whether optimistic� or speculative � we maintain
two sets� ReadSet �T i

r� and WriteSet�T i
r �� ReadSet �T i

r �

records pairs �X� tx�� where X is an object read by T i
r �

and tx represents the order in which this operation was
performed� WriteSet�T i

r � contains a list of all objects
X written by shadow T i

r � For each speculative shadow
T i
r in the system� we maintain a set WaitFor�T i

r �� which
contains pairs of the form �Tu� X�� where Tu is an un�
committed transaction and X is an object of the shared
database� �Tu� X� � WaitFor�T i

r � implies that T i
r must

wait for Tu before being allowed to read object X� The
SCC�kS algorithm is presented as a set of �ve rules�
which we describe below�

Start Rule�
The Start Rule is followed whenever a new transaction
Tr is submitted for execution� in which case an opti�
mistic shadow T o

r is created� In the absence of any con�

icts this shadow will run to completion �the same way
as with the OCC�BC algorithm�� The SpecNumber �Tr��
ReadSet �T o

r �� and WriteSet�T o
r �� are� also� initialized�

Read Rule�
The Read Rule is activated whenever a read�after�write
con
ict is detected� The processing that follows is
straightforward� In particular� if the maximum number
of speculative shadows of the transaction in question�
say Tr � is not exhausted� a new speculative shadow T s

r is
created �by forking it o� T o

r � to account for the newly de�
tected con
ict� Otherwise� this con
ict is ignored since
no more shadows for Tr could be created� The Commit
Rule �see below� deals with the corrective measures that
need to be taken� should this con
ict materialize�

Write Rule�
The Write Rule is activated whenever a write�after�read
con
ict is detected� Speculative shadows cannot be
forked o�� as before� from the transaction�s optimistic
shadow� This is because the con
ict is detected on some
other transaction�s write operation� Therefore� since its
optimistic shadow already read that database object�
we must either create a new copy of this transaction or
choose another point during its execution from which
we can fork it o� �
	�

When the new con
ict implicates transactions that
already con
ict with each other� some adjustments may
be necessary� In �gure �� the speculative shadow T

j
� of

transaction T�� accounting for the con
ict �T�� Z�� must
be aborted as soon as the new con
ict� �T�� X�� involv�
ing the same two transactions is detected� Since T� read
object X before object Z� �T�� X� is the �rst con
ict
between those two transactions� Therefore� the specu�
lative shadow accounting for the possibility that trans�
action T� will commit before transaction T� must block
before the read operation on X is performed� Specula�
tive shadow T k

� is forked o� T �
� for that purpose� All

other speculative shadows of T� remain una�ected�

Blocking Rule�
The Blocking Rule is used to control when a speculative
shadow T i

r must be blocked� This rule assures that T i
r

is blocked the �rst time it wishes to read an object X�

S RzRy RxT1
o

Blocked

Time

o
T2 S WxWz

jT1 Blocked A

kT1 BlockedRy

T1
i

Figure �� Example of multiply con
icting transactions�

when this read is in con
ict with any transaction that
T i
r must wait for according to its SOS�

Commit Rule�
Whenever it is decided to commit an optimistic shadow
T o
r on behalf of a transaction Tr� the Commit Rule is ac�

tivated� First� all other shadows of Tr become obsolete
and are aborted� Next� all transactions con
icting with
Tr are considered� For each such transaction Tu there
are two cases� either there is a speculative shadow� T i

u�
awaiting Tr �s commitment� or not� The �rst case is il�
lustrated in �gure �� where the speculative shadow T �

� of
transaction T��having anticipated the correct serializa�
tion order�is promoted to become the new optimistic
shadow of transaction T�� replacing the old optimistic
shadow which had to be aborted� Speculative shadow
T �
� � which like the old optimistic shadow exposed itself

by reading the old value of objectX had to be aborted as
well� On the contrary� the speculative shadow T �

� � which
did not read object X� remains unhindered� The second
case is illustrated in �gure
� where the commitment of
the optimistic shadow T o

� on behalf of transaction T�
was not accounted for by any speculative shadow�� In
this case� a shadow is forked o� T �

� � the latest shadow
of T�� to become the new optimistic shadow of transac�
tion T�� This is the best we can do in the absence of a
speculative shadow accounting for the �T�� Z� con
ict�

S RzRy Rx

T1
o

T
1

1 Blocked

Time

o
T2 S V/CWx

3T1 Blocked A

2T1 Blocked

Rx

P

A

Figure �� Applying the Commit Rule �case ���

�Figure � makes the implicit assumption that transaction T�
is limited to having at most two speculative shadows at any point
during its execution

S Rx Ry
T1
o

Rz

T
1

1 Blocked

2T1 Blocked

Time

o
T2 S V/CWz

Ry Rz

A

Figure
� Applying the Commit Rule �case ���

��� Two�Shadow SCC �SCC��S�

In this section� we present SCC��S� a member of the
SCC�kS class� which allows a maximum of two shad�
ows per uncommitted transaction to exist in the system
at any point in time� an optimistic shadow and a pes�
simistic shadow� In our simulations� SCC��S is used as
a representative of SCC algorithms�

The SCC��S algorithm resembles the OCC�BC al�
gorithm in that optimistic shadows of transactions con�
tinue to execute� either until they validate and commit
or until they are aborted �by a validating transaction��
The di�erence� however� is that SCC��S keeps a backup
shadow for each executing transaction to be used if that
transaction must abort� The pessimistic shadow is ba�
sically a replica of the optimistic shadow� except that it
is blocked at the earliest point where a Read�Write con�

ict is detected between the transaction it represents
and any other uncommitted transaction in the system�
Should this con
ict materialize into a consistency threat�
the pessimistic shadow is promoted to become the opti�
mistic shadow� and execution is resumed �instead of be�
ing restarted as would be the case with OCC�BC� from
the point where the potential con
ict was discovered�

To illustrate how SCC��S works� consider the sched�
ule shown in �gure ��b�� Both transactions T� and T�
start with one optimistic shadow� namely T �

� and T �
� �

When T �
� attempts to read object X� a potential con�

ict is detected� At this point� a backup shadow� T �
� �

is created� The optimistic shadows T �
� and T �

� execute
without interruption� whereas T �

� blocks� Later� if T �
�

successfully validates and commits on behalf of trans�
action T�� the optimistic shadow T �

� is aborted and re�
placed by T �

� � which resumes its execution� hopefully
committing before its set deadline�

It is possible that multiple con
icts develop between
executing transactions� Figure � illustrates the behavior
of SCC��S when a second con
ict develops between T�
and another transaction T�� In particular� the optimistic
shadow T �

� of T� attempts to write an object Y that both
shadows T �

� and T �
� had previously read� In this case�

T �
� proceeds without any interruption� whereas T �

� is
restarted and blocked as it attempts to read Y � Should
T �
� be aborted as a result of its con
ict with T�� T �

� is
promoted to become the optimistic shadow and is� thus�
allowed to resume�

Time

T1 S Wx V/C
0

T2
0

S Rx ARy

T3 S Wy V/C
0

T2
1

Blocked Blocked Ry RxS

Figure �� A pessimistic shadow restart and promotion�

The SCC��S algorithm allows at most two shadows
for the same transaction to co�exist at any given time�
It is possible� however� that more than two shadows will
be needed over a stretch of time� In Figure �� after T �

�
is promoted to become the optimistic shadow for T�� a
pessimistic shadow T �

� is forked o� to account for the
read�write con
ict between T �

� and T��

Time

T1 S Wx
0

T2
0

RxS Ry

T3 S Wy V/C
0

T2
1

Blocked Blocked RyS

A

V/C

Blocked

ARx

Rx V/CT2
2

Figure �� Schedule with two pessimistic shadows�

� Performance Evaluation

In this section� a comparative evaluation of the perfor�
mance of SCC��S �as a representative of SCC�based al�
gorithms� and OCC�BC �as a representative of OCC�
based algorithms� in RTDBS is presented�

��� The RTDBS and Workload Models

Being interested in measuring the overhead imposed on
the system by the implementation of each algorithm� we
built our Client�Server RTDBS model to closely resem�
ble a real system� In particular� the server�s Transaction
and Bu�er Manager constitute partial implementations�
whereas the Disk Manager is simulated� For the same
reason� actual rather than simulated time� is measured�
This includes the communication delays caused by the
messages exchanged between the server and the clients�

The database is modeled as a collection of pages
stored on a number of disks� The centralized server com�
municates with client transactions by exchanging mes�
sages� The Transaction Manager is responsible for keep�
ing track of pages used by transactions running on the

Parameter Meaning Setting

DBSize Database size in pages ���� pages
TRANSize Transaction size �pages accessed� �� pages
WProb Probability of updating a page �
��
SRatio Slack Ratio in deadline formula �
�
RTime Average time to read a page � msec
WTime Average time to update a page �� msec

Table �� The Workload Parameters

system� The Bu�er Manager is responsible for provid�
ing the pages requested by the transactions� as well as
storing into the bu�er pool the dirty pages received by
a committed transaction� Each transaction consists of a
number of read and write operations �no blind write op�
erations are allowed�� Local transaction managers keep
track of the pages accessed by their transactions� as well
as their access modes� If a page is not present in the
client�s local Pool� it is requested from the server� This
can cause up to two server I�O operations� At commit
time� all updated pages are sent to the server� For each
such updated page at most one I�O is performed�

The workload model characterizes the transactions
running in the system according to the number of pages
they access and their execution time� Table � summa�
rizes the key workload parameters used in our simulation
experiments�

The DBSize parameter �xes the number of pages
in the database� The number of pages accessed by a
transaction is given by the TRANSize parameter� Page
requests are generated from a uniform distribution span�
ning the entire database� The WProb parameter speci�es
the probability that a page which is already read will
also be updated� The SRatio parameter provides the
deadline slack factor in our simulations� By changing
its value we can smoothly vary the tightness of trans�
action deadlines� The value of SRatio ranges from zero
to in�nity� with zero meaning that transactions have no
laxity� The RTime and Wtime parameters are set to the
average time that a transaction needs to read and up�
date a page present in its client�s local Pool� respectively�

In addition� we denote byRsize� andWsize the num�
ber of pages that a transaction reads� and writes� re�
spectively� Tstart is the set�up time needed to start a
transaction� and AVGend is the time needed to commit
a transaction� The following formula for the average ex�
ecution time Tavg of a transaction can then be obtained�

Tavg � Rsize � RTime�Wsize �WTime� Tstart�AVGend

Knowing the average execution time for a transaction of
a given size� T � we can calculate the deadline assigned to
a transaction based on its Slack Ratio SRatio as follows�

DT � Tavg � Tavg � SRatio

��� Performance Measures

Two primary performance metrics are used in this
paper� the number of transactions that miss their
deadlines� Missed Deadlines� and the average time by
which late transactions miss their deadlines� Average
Tardiness�� Our experiments assume that transaction
deadlines are soft� This entails that late transactions
�those missing their deadlines� must complete with the
minimum possible delay� Even though transaction re�
sponse time was not explicitly measured in our simula�
tions� the Average Tardiness metric can be used as an
approximation� In particular� by reducing the SRatio

value to �� it can be shown that the transaction�s Av�
erage Tardiness and Response Times are related� This
observation coupled with our soft deadline assumption
allow our simulations to be useful in the evaluation of
SCC��S for conventional DBMS�

The simulations generated a host of statistical in�
formation� including CPU and disk utilizations� number
of transaction restarts� average wasted computations�
� � �etc� These secondary measures �although not pre�
sented in this paper for reasons of space� helped explain
the behavior of the algorithms under various loading
conditions�

��� Settings for the Baseline Model

We started our experiments by �rst developing a base�
line model around which we conducted further exper�
iments� varying a few parameters at a time� Table �
lists the values assigned to the workload parameters in
our baseline model� The database consisted of �����
pages from which each transaction accessed �� pages
randomly� The probability of a page been updated was
set at ���� These parameter settings are comparable to
those used in similar studies ���	� Figures ��a and ��b de�
pict the performance of SCC��S and OCC�BC under the
baseline model� The performance of both algorithms is
identical when the number of transactions in the system
is small� But� as the multiprogramming level increases�
the superiority of the SCC��S becomes evident� Not
only do transactions running under the SCC��S algo�
rithmmake most of their deadlines� but also the amount
of time by which late transactions miss their deadlines
is considerably smaller�

The reason that SCC��S outperforms OCC�BC can
be attributed to the fact that SCC��S manages to pre�
serve a large portion of the computation performed by
each individual transaction� More precisely� when a
transaction �say T � has to be aborted because of a con�

ict with another committing transaction� it does not
have to restart from the very beginning �as with OCC�
BC�� This means that some of the pages that were read
or updated by transaction T will not need to be read
or written again� This property of SCC��S is especially

�A transaction that commitswithin its deadline has a tardiness
of zero
 otherwise its tardiness is CT �DT
 where CT and DT are
the transaction�s completion time and deadline time
 respectively

advantageous when the number of data con
icts in the
system is high�

The performance gained by using SCC��S does not
come for free� The cost incurred to set�up speculative
shadows is translated to extra control messages that
have to be communicated with the server� Our simula�
tions con�rmed this fact� A ����increase in the average
number of messages exchanged with the server was ob�
served for our baseline model� However� it can be shown
that although the number of messages exchanged under
SCC��S increases� the total size of the exchanged mes�
sages is signi�cantly reduced� This is due to the fact
that under SCC��S the number of pages read or up�
dated decreases �as explained before�� and due to the
fact that control messages are much shorter than data
access messages�

��� Deadline Tightness

To study the e�ect of deadline tightness on the relative
performance of the two algorithms� we varied the Slack
Ratio while keeping all the other parameters the same
as those of the baseline model� We present here two ex�
periments for Slack Ratios of ��� and ���� respectively�
The corresponding graphs are shown in �gure �� and
�gure ��� respectively� At high Slack Ratios� both algo�
rithms miss very few deadlines � with SCC��S perform�
ing consistently better in all multiprogramming levels�
However� as the Slack Ratio value decreases� and the
system operates under very tight deadlines� the perfor�
mance of the OCC�BC algorithm degrades rapidly� while
the SCC��S algorithm remains quite stable� Analogous
results have been observed for Average Tardiness� with
the gap between the two algorithms being even bigger�

��� Data Contention

We have experimented with di�erent data contention
levels by varying the write probability� WProb� The
SRatio factor was �xed to ��� for all the measurements
taken� Figure ���a depicts the number of transactions
missing their deadlines when the database consists of
���� pages and each transaction updates half of the
pages it accesses �DBSize � ���� and WProb� ����� As
we can see� the OCC�BC algorithm missed almost ���
of its deadlines� whereas its SCC��S counterpart missed
only around ���� The results obtained with a DBSize

of ��� pages and a WProb of ��� �see Figure ���b� are
even more compelling as OCC�BC misses almost ��� of
its deadlines� whereas SCC��S appears more stable with
only ��� of the transactions missing their deadlines�

��	 Firm Deadlines

All of the previous experiments assumed a soft deadline
policy� where all transactions have to be run to comple�
tion� When a �rm deadline policy is adopted� whereby
late transactions are immediately discarded from the
system� both algorithms behaved considerably better
than before� However� their relative performance was

similar to that seen in the previous experiments� This
improved behavior is due to the fact that discarding
transactions that already missed their deadlines results
in the availability of more resources for the remaining
transactions in the system� This� also� has a positive
e�ect on the system load as well as the degree of data
contention exhibited in the system�

��
 Deadline�cognizant SCC��S

In RTDBS� traditional concurrency control algorithms
are often augmented with heuristics that make such al�
gorithms deadline� and�or priority�cognizant� We have
developed an extension of SCC��S that uses information
about transaction deadlines to decide whether a vali�
dating transaction should be committed immediately�
or whether its commitment should be delayed in favor
of more urgent� con
icting transactions� This delay is
similar to the waiting introduced in the Wait��� heuris�
tic ���	� except that we apply it to SCC��S instead of
OCC�BC� Initial investigation of this heuristic suggests
only minor improvement over the original SCC��S� The
insigni�cance of the improvement can be explained by
noticing that� thanks to speculation� the penalty in�
curred by a transaction as result of another transaction�s
commit is smaller� This results in a smaller payo� if de�
layed commitment is adopted� We are currently inves�
tigating other heuristics that combine deadline and pri�
ority information into value functions �similar to those
suggested in ���	� to be used in an integrated probabilis�
tic scheme for shadow allocation and delayed commit�
ment� The objective of this scheme is to maximize the
expected value�added to the system� and not necessarily
the number of satis�ed timing constraints ��	�

� Conclusion

SCC allows several shadow transactions to coexist on
behalf of a given uncommitted transaction so as to pro�
tect against the hazards of blockages and restarts� which
are characteristics of PCC�based and OCC�based algo�
rithms� respectively� In this paper� we reviewed a num�
ber of SCC�based protocols and described SCC�kS� a
protocol that limits the number of processes alloted per
transaction to a constant k� To evaluate the premise
of SCC�based algorithms� extensive experiments were
performed for two representative algorithms� OCC with
Broadcast Commit �OCC�BC� and Two�Shadow SCC
�SCC��S�� Our experiments indicate that SCC��S o�ers
signi�cant performance improvements over OCC�BC for
a wide range of system loads�� Therefore� from a perfor�
mance standpoint� we argue that SCC�based protocols
appear generally better suited than OCC�based proto�
cols for RTDBS�

�More experiments on the e�ects of write page probabilities

database and transaction sizes
 under conditions of heavy loading

high data contention
 and tight deadlines
 were conducted
 While
not discussed in this paper for space limitations
 these experiments
reinforced our conclusion regarding the superiority of SCC��S

Speculation can be viewed as a mechanism for the
distribution of risk� Instead of relying completely on
one serialization order assumption�be it pessimistic or
optimistic�a transaction is allowed to probe a host
of serialization orders so as to minimize the impact of
blockages and rollbacks� In this paper the distribution
of risk was done without regard to the probability of the
risks involved� In particular� if two transactions con
ict�
then the lower priority transaction has a larger risk of
being aborted by the higher priority transaction� Sim�
ilarily� a transaction with a loose deadline has a larger
risk of being aborted by a transaction with a tight dead�
line� Currently� we are investigating a framework that
would tie speculation to hazard probabilities�

Acknowledgment� We would like to thank Euthimios
Panagos for his help in coding and running the simula�
tion experiments�

References

��� Robert Abbott and Hector Garcia�Molina� Scheduling
real�time transactions� A performance evaluation� In
Prooceedings of the ��th International Conference on
Very Large Data Bases� Los Angeles� Ca� ��		�

�
� R� Agrawal� M� Carey� and M� Linvy� Concurency con�
trol performance modeling� Alternatives and implica�
tions� ACM Transaction on Database Systems� �
����
December ��	
�

��� A� Bernstein� A� Philip� V� Hadzilacos� and N� Good�
man� Concurrency Control And Recovery In Database
Systems� Addison�Wesley� ��	
�

��� Azer Bestavros� Speculative Concurrency Control� A
position statement� Technical Report TR��
����� Com�
puter Science Department� Boston University� Boston�
MA� July ���
�

��� Azer Bestavros� Speculative Concurrency Control�
Technical Report TR������
� Computer Science De�
partment� Boston University� Boston� MA� February
�����

��� Azer Bestavros and Spyridon Braoudakis� SCC�nS� A
family of Speculative Concurrency Control Algorithms
for Real�Time Databases� In Proceedings of the Third
International Workshop on Responsive Computer Sys�
tems� Lincoln� NH� September �����

�
� C� Boksenbaum� M� Cart� J� Ferri�e� and J� Francois�
Concurrent certi�cations by intervals of timestamps in
distributed database systems� IEEE Transactions on
Software Engineering� pages �������� April ��	
�

�	� Spyridon Braoudakis� Concurrency Control Proto�
cols for Real�Time Databases� PhD thesis� Computer
Science Department� Boston University� Boston� MA
�

��� expected June �����

��� A� P� Buchmann� D� C� McCarthy� M� Hsu� and
U� Dayal� Time�critical database scheduling� A frame�
work for integrating real�time scheduling and concur�
rency controls� In Proceedings of the �th International
Conference on Data Engineering� Los Angeles� Califor�
nia� February ��	��

���� K� P� Eswaran� J� N� Gray� R� A� Lorie� and I� L�
Traiger� The notions of consistency and predicate locks
in a database system� Communications of the ACM�
��������
������ November ��
��

���� J� N� Gray� R� A� Lorie� G� R� Putzolu� and I� L� Traiger�
Granularity of locks and degrees of consistensy in a
shared data base� In G� M� Nijssen� editor� Modeling in
Data Base Management Systems� pages �������� North�
Holland� Amsterdam� The Netherlands� ��
��

��
� Jayant R� Haritsa� Michael J� Carey� and Miron Linvy�
On being optimistic about real�time constraints� In
Prooceedings of the ���� ACM PODS Symposium� April
�����

���� Jayant R� Haritsa� Michael J� Carey� and Miron Linvy�
Data access scehduling in �rm real�time database sys�
tems� The Journal of Real�Time Systems� ��
���
���
���
�

���� J� Huang� J� A� Stankovic� D� Towsley� and K� Ramam�
ritham� Experimental evaluation of real�time transac�
tion processing� In Proceedings of the ��th Real�Time
Systems Symposium� December ��	��

���� Jiandong Huang� John A� Stankovic� Krithi Ramam�
ritham� and Don Towsley� Priority inheritance in soft
real�time databases� The Journal of Real�Time Systems�
��
���
�	� ���
�

���� Jiandong Huang� John A� Stankovic� Krithi Ramam�
ritham� and Don Towslwy� Experimental evaluation of
real�time optimistic concurrency control schemes� In
Prooceedings of the ��th International Conference on
Very Large Data Bases� Barcelona� Spain� September
�����

��
� H� Kung and John Robinson� On optimistic methods for
concurrency control� ACM Transactions on Database
Systems� ��
�� June ��	��

��	� Yi Lin and Sang Son� Concurrency control in real�time
databases by dynamic adjustment of serialization order�
In Proceedings of the ��th Real�Time Systems Sympo�
sium� December �����

���� D� Menasce and T� Nakanishi� Optimistic versus pes�
simistic concurrency control mechanisms in database
management systems� Information Systems�
���� ��	
�

�
�� Christos Papadimitriou� The serializability of concur�
rent database updates� Journal of the ACM�
���������
���� October ��
��

�
�� John Robinson� Design of Concurrency Controls for
Transaction Processing Systems� PhD thesis� Carnegie
Mellon University� Pittsburgh� PA� ��	
�

�

� Lui Sha� R� Rajkumar� and J� Lehoczky� Concurrency
control for distributed real�time databases� ACM� SIG�
MOD Record� �
����	
��	� ��		�

�
�� Lui Sha� R� Rajkumar� Sang Son� and Chun�Hyon
Chang� A real�time locking protocol� IEEE Transac�
tions on Computers� ���
��
���	��� �����

�
�� Mukesh Singhal� Issues and approaches to design
real�time database systems� ACM� SIGMOD Record�
�
���������� ��		�

�
�� Sang H� Son� Juhnyoung Lee� and Yi Lin� Hybrid pro�
tocols using dynamic adjustment of serialization order
for real�time concurrency control� The Journal of Real�
Time Systems� ��
���

�� ���
�

�
�� John Stankovic and Wei Zhao� On real�time transac�
tions� ACM� SIGMOD Record� �
�������	� ��		�

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 10.00 20.00 30.00 40.00

O
C

C
-B

C

SCC-2S

Missed Deadlines

Number of Transactions (Multiprogramming Level)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.00 10.00 20.00 30.00 40.00

Number of Transactions (Multiprogramming Level)

Average Tardiness

O
C

C
-B

C

SC
C-2

S

Figure �� OCC�BC vs SCC��S� Baseline Model �a� Missed Deadlines �b� Average Tardiness

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 10.00 20.00 30.00 40.00

Missed Deadlines

Number of Transactions (Multiprogramming Level)

SCC-2S

OCC-BC

 0

 200

 400

 600

 800

1000

1200

0.00 10.00 20.00 30.00 40.00

Average Tardiness

Number of Transactions (Multiprogramming Level)

O
C

C
-B

C

SCC-2S

Figure ��� Slack Ratio of ��� �a� Missed Deadlines �b� Average Tardiness

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 10.00 20.00 30.00 40.00

Number of Transactions (Multiprogramming Level)

Missed Deadlines

OCC-BC

SCC-2
S

0.00

5.00

10.00

15.00

20.00

25.00

0.00 10.00 20.00 30.00 40.00

Average Tardiness

Number of Transactions (Multiprogramming Level)

OCC-B
C

SCC-2
S

Figure ��� Slack Ratio of ��� �a� Missed Deadlines �b� Average Tardiness

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 10.00 20.00 30.00 40.00

SCC-2S

OCC-BC

Number of Transactions (Multiprogramming Level)

Missed Deadlines

0.00

5.00

10.00

15.00

20.00

25.00

0.00 10.00 20.00 30.00 40.00

Number of Transactions (Multiprogramming Level)

Missed Deadlines

OCC-BC

SCC-2S

Figure ��� Miss Ratio for WProb of ��� �a� DBSize � ���� �b� DBSize � ���

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

