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Abstract

Admission control and overload management techniques
are central to the design and implementation of Real-
Time Database Systems. In this paper, we motivate
the need for these mechanisms and present protocols for
adding such capabilities to Real-Time Databases. In par-
ticular, we present a novel admission control paradigm,
we describe a number of admission control strategies
and contrast (through simulations) their relative perfor-
mance.

1 Introduction

The main challenge involved in scheduling transac-
tions in a Real-Time DataBase (RTDB) management
system is that the resources needed to execute a trans-
action are not known a priori. For example, the set
of objects to be read (written) by a transaction may
be dependent on user input (e.g. in a stock market
application) or dependent on sensory inputs (e.g. in
a process control application). Therefore, the a priori
reservation of resources (e.g. read/write locks on data
objects) to guarantee a particular Worst Case Execu-
tion Time (WCET) becomes impossible—and the non-
deterministic delays associated with the on-the-fly acqui-
sition of such resources pose the real challenge of inte-
grating scheduling and concurrency control techniques.

Current real-time concurrency control mechanisms
resolve the above challenge by relaxing the deadline se-
mantics (thus suggesting best-effort mechanisms for con-
currency control in the presence of soft and firm, but not
hard deadlines), or by restricting the set of acceptable
transactions to a finite set of transactions with execu-
tion requirements that are known a priori (thus reduc-
ing the concurrency control problem to that of resource
management and scheduling).!

Consider the huge body of research on real-time
concurrency control, where complex time-cognizant con-
currency control techniques are proposed for the sole
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In this paper, we do not consider approaches that attempt to
relax ACID properties—serializability in particular.

purpose of maximizing the number of transactions that
meet their deadlines (or other metrics thereof). A care-
ful evaluation of these elaborate techniques reveals that
their superiority is materialized only when the RTDB
system is overloaded. However, when the system is
not overloaded, the performance of these techniques be-
comes comparable to that of much simpler techniques
(e.g. 2PL-PA). Tt is important to observe that when a
RTDB system is overloaded, a large percentage of trans-
actions end up missing their deadlines. This observation
leads to the following question: How better would be
the performance of the system if these same transactions
(that ended up missing their deadlines) were not allowed
into the system in the first place? The answer is obvi-
ously “much better” because with hindsight, the limited
resources in the system would not have been wasted on
these transactions to start with. While such a clairvoy-
ant scheduling of transactions is impossible in a real sys-
tem, admission control and overload management tech-
niques could be used to achieve the same goal. In this
paper, we introduce and evaluate such techniques.

Admission control and overload management tech-
niques preserve system resources by minimizing the like-
lihood of a transaction being accepted for execution, and
later not being able to meet its deadline. Obviously,
such a situation cannot totally be eliminated in a system
where the execution requirements of transactions are not
known a priori. Therefore, missing a deadline is always
a possibility, with which the system must contend. For
transactions with firm deadlines, such a situation is tol-
erable because commitment past a firm deadline is of no
value. However, for transactions with hard (soft) dead-
lines, such an abortion is disastrous because missing a
hard (soft) deadline results in an (eventual) infinite loss.?
Thus, to support transactions with hard deadlines with-
out a priori knowledge of their execution requirements,
there must exist some compensating actions that, when
executed in a timely fashion, would allow the system
to be “bailed out” from the disastrous consequences of
missing a hard deadline.

2Most RTDB systems avoid dealing with the consequences of
missing a hard deadline by restricting the class of transactions
they manage to those with either firm or soft deadlines.



Our research is motivated by research problems in
application areas such as the stock market and robotics.
Consider, for example, industrial automation processes
which commonly employ robots, typically in a hazardous
environment. Here, a real-time database is used to repre-
sent the state of the world, i.e. the location of the robot
arms and of the physical components which are manip-
ulated by the robot’s arms. The robot may be required
to complete a transaction (an atomic set of actions) by a
specified time before proceeding to the next one. Com-
pensating actions are needed, for example, if a trans-
action that is about to miss its deadline must be termi-
nated safely (requiring the clearing of the workspace, for
example).

We start in section 2 with an overview of our trans-
action processing model and the different components
therein. Next, in section 3 we describe the various Ad-
mission Control Strategies to be used in our simulations.
Next, in section 4 we present and discuss our simula-
tion baseline model and results as well as results of our
value-cognizant protocol. In section 5, we review previ-
ous research work and highlight our contributions. We
conclude in section 6 with a summary and a description
of future research directions.

2 System Model

Each transaction submitted to the system consists
of two components: a primary task and a compensating
task. The execution requirements for the primary task
are not known a priori, whereas those for the compensat-
ing task are known a priori.> Figure 1 shows the various
components in our RTDB system.
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Figure 1: Major System Components

When a transaction is submitted to the system, an
Admission Control Mechanism (ACM) is employed to
decide whether to admit or reject that transaction. Once
admitted, a transaction is guaranteed to finish execut-
ing before its deadline. A transaction is considered to

3While the execution time of a transaction’s primary task is
not known a priori, we assume that this execution time cannot
exceed the difference between the transaction’s deadline and its
submission time.
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have finished executing if exactly one of two things oc-
cur: Either its primary task is completed, in which case
we say that the transaction has successfully committed,
or its compensating task is completed, in which case we
say that the transaction has safely terminated. A com-
mitted transaction brings a positive profit to the system,
whereas a terminated transaction brings no profit. The
goal of the admission control and scheduling protocols
employed in the system is to maximize profit.

When submitted to the system, each transaction is
associated with a deadline and a value. The value of a
transaction represents the profit that the system makes
if the transaction is successfully committed (i.e. its pri-
mary task is committed by its deadline). In this paper
we consider only hard deadlines and thus assume that no
transaction will finish (é.e. successfully commit or safely
terminate) past its deadline.? We initially assume that
all transactions bring in equal profit when committed
on time, and then consider the case where the profits of
transactions differ. Moreover, once admitted to the sys-
tem, a transaction is absolutely guaranteed (as opposed
to conditionally guaranteed) to finish and cannot now
be rejected in order to accommodate a newly submitted
transaction.

The ACM consists of two major components: a Con-
currency Admission Control Manager (CACM) and a
Workload Admission Control Manager (WACM). The
CACM is responsible for ensuring that admitted trans-
actions do not overburden the system by requiring a level
of concurrency that is not sustainable. The WACM is re-
sponsible for ensuring that admitted transactions do not
overburden the system by requiring computing resources
(e.g. CPU time) that are not sustainable.

Compensating tasks are executed when a transac-
tion with a hard deadline is deemed incapable of commit-
ting by its deadline. Due to the urgency associated with
the execution of such compensating tasks, we assume a
2-tier priority scheme for CPU scheduling purposes. In
particular, all compensating tasks are assumed to have
a higher priority than primary tasks. Thus a primary
task may be preempted (or aborted) by a compensating
task, whereas a compensating task cannot be preempted
by either a primary task or another compensating task
under any condition. Notice that this 2-tier priority as-
sumption still allows primary tasks (compensating tasks)
to be prioritized amongst themselves.

In this paper we study our admission control mech-
anism in conjunction with two types of concurrency con-
trol protocols, namely Optimistic Concurrency Control
with forward validation (such as OCC-BC [20] or SCC-
nS [3]), or Pessimistic Concurrency Control with Priority
Abort (such as 2PL-PA [1]).

Workload Admission Control Manager: The
source contains a set of transactions which are generated

4Qur current research involves extending our results to soft and
firm deadline systems by allowing for a profit/loss past a transac-
tion’s deadline. This is similar to our work in [4].



off-line. Each enters the system at a random time and is
first processed by the ACM. The decision of whether to
admit or reject a transaction submitted for execution is
based upon a feedback mechanism that takes into con-
sideration the current demand on the resources in the
system. This decision is motivated by the overall goal for
maximizing profit by maximizing the number—or sum
of the values—of successful commitments (when primary
tasks finish) and minimizing the number of safe termina-
tions (when compensating tasks finish). For example, if
the percentage of the CPU bandwidth already commit-
ted to compensating tasks (of admitted primary tasks),
within the interval from the current time to the deadline
of the submitted transaction is high, it may be prudent
for the WACM to reject the submitted transaction. For
transactions which successfully pass through the admis-
sion control process, the WACM attempts to schedule
the compensating task in the Compensating Task Queue
(CTQ) whose organization is discussed later in this sec-
tion. Even if the current demand on the system’s re-
sources is low, a transaction is rejected if it is not feasi-
ble to schedule its compensating task (e.g. it cannot be
accommodated in the CTQ).

Concurrency Admission Control Manager: In
order to ensure that compensating tasks can execute un-
hindered (and thus complete within their WCETSs) the
CACM must guarantee that the admission of a trans-
action into the system does not result in data conflicts
between the compensating task of that transaction and
other already admitted transactions. In a uniprocessor
system employing an Optimistic Concurrency Control
(OCCQC) algorithm with forward validation (e.g. OCC-
BC), compensating tasks (which cannot be preempted)
are guaranteed to finish execution without incurring any
restart delays. The same is true of a uniprocessor system
employing a Pessimistic Concurrency Control (PCC) al-
gorithm with priority abort (e.g. 2PL-PA) because com-
pensating tasks execute at a higher priority than primary
tasks and, thus, are guaranteed to finish execution with-
out incurring any blocking delays. This is not true in
a multiprocessor system, where multiple compensating
tasks may be executing concurrently. In such a system,
the CACM ensures that only those compensating tasks
that do not conflict with each other are allowed to over-
lap when executed.

Processor Scheduling Algorithm: There are two
queues managed by the processor scheduler: the Pri-
mary Task Queue (PTQ) and the Compensating Task
Queue (CTQ). Each admitted transaction contributes
one entry in each of these queues. A primary task is
ready to execute as soon as it is enqueued in the PTQ),
whereas a compensating task must wait for its start time,
specified by the ACM. As indicated before, compensat-
ing tasks execute at a priority higher than that of the
primary tasks. Thus, the scheduling algorithm will al-
ways preempt a primary task in favor of a compensating
task which is ready to execute.

Since all tasks in the PTQ are ready to execute,

a scheduling algorithm must be used to apportion the
CPU time amongst these tasks. We use the Farliest
Deadline First algorithm (EDF) [17], which is optimal
for a uniprocessor system with independent, preemptible
tasks having arbitrary deadlines [9].

The CTQ is organized as a series of slots, one for
each compensating task. Each slot contains the compen-
sating task id as well as its start and end times. Slots are
order according to ascending start time. The CPU con-
tinues to service primary tasks until all are finished or
a compensating task must begin executing, i.e. its start
time has arrived. In the later case, the primary task cur-
rently using the CPU is preempted and enqueued back
into the PTQ where it awaits further processing, if the
compensating task is associated with a different primary
task. Otherwise, the primary task is aborted and its
compensating task executes.

Concurrency Control Manager The function of
the CCM is to enforce the concurrency control proto-
col in use. For OCC techniques, this enforcement is
done at the time a transaction finishes its execution, ei-
ther by the commitment of its primary task or by the
safe termination of its compensating task. In the case
of OCC-BC, conflicting (primary tasks of) transactions
are restarted, whereas in the case of SCC-nS, conflicting
(primary tasks of) transactions are rolled back to a point
preceding the conflicting action. For PCC techniques,
this enforcement is done at the time of each read/write
request. For compensating tasks, which execute at a
higher priority, such a request is always granted. This
may result in aborting/restarting conflicting primary
tasks. Notice that it is impossible for two compensating
tasks to conflict since the processor scheduler guaran-
tees that compensating tasks do not overlap.® For pri-
mary tasks, such a request may result in blocking (if the
read/write lock is not available).

3 Optimizing Profit through ACM

In order to maximize the value added to the sys-
tem from the successful commitment of transactions,
the ACM must admit “enough” transactions—but not
too many—to make use of the system capacity. Admit-
ting too many transactions results in the system being
overloaded, which results in having to be content with
most transactions safely terminating (i.e. not success-
fully committing), which minimizes the profit to the sys-
tem. We use the term thrashing to coin this condition
(i.e. the system is busy, yet doing nothing of value).

As indicated before, the main determinant of
whether transactions are admitted into the system is the
schedulability of compensating tasks. In this section we
present a number of techniques that could be used by
the WACM and contrast their performance.

First-Fit (FF) Using this technique, the compensat-
ing task of a transaction is inserted in the CTQ at the

5This condition is true in any uniprocessor system where com-
pensating tasks cannot be preempted.



latest slot that satisfies its WCET. If no slot is big
enough to fit the compensating task, then the transac-
tion is rejected, otherwise it is admitted.

Latest-Fit (LF) Using this technique, the compen-
sating task of a transaction is inserted in the CTQ at
the latest slot. If the slot is not large enough, then the
compensating tasks preceding that slot are rescheduled
to start at earlier times so as to “make room” for the new
compensating task. If this rescheduling is not possible—
because it leads to a compensating task having to be
rescheduled before the current time—then the transac-
tion is rejected, otherwise it is admitted.

Latest-Marginal-Fit (LMF) This technique is iden-
tical to Latest-Fit, except that the scheduling of a com-
pensating task—and, if necessary, the ensuing reschedul-
ing of other compensating tasks—is conditional on
whether or not the percentage of CPU time allotted to
compensating tasks® is below a preset margin or thresh-
old. If compensating tasks scheduled so far utilize CPU
bandwidth above that margin, then the transaction is
rejected, otherwise Latest-Fit (as described before) is
attempted.

Latest-Adaptable-Fit (LAF) This technique is
identical to Latest-Marginal-Fit, except that the thresh-
old used to gauge the CPU bandwidth allotted to com-
pensating tasks is set dynamically, based on measured
variables, such as arrival rate of transactions, distribu-
tion of computation times for successfully committed
primary tasks as it relates to the distribution of compu-
tation times for compensating tasks, probability of con-
flict over database objects (e.g. transaction read/write
mix).

Both FF and LF continue to admit transactions into
the system as long as compensating tasks are schedula-
ble. In other words, there is no feedback mechanism
(admission control) that would prevent thrashing. LMF
implements such a mechanism by refraining from admit-
ting new transactions, once the percentage of CPU band-
width allocated to compensating tasks reaches a preset
static threshold. LAF does the same, but allows that
threshold to be determined dynamically using a table
lookup procedure. The table is computed off-line (using
simulations) to determine the optirnum quiescent value
for the threshold under a host of other parameters.

Both LMF and LAF, however, do not take into con-
sideration transactions’ values during the admission con-
trol process. When transactions return different prof-
its to the system upon their successful completion, the
ACM must be value-cognizant. We describe below VAF,
a value-cognizant admission control protocol. Like LAF,
VAF utilizes a threshold to estimate the CPU band-
width allocated to compensating tasks, but VAF allows
that threshold to be adjusted according to the submitted
transaction’s value.

6within a window of time determined by the current time and
the deadline of the submitted transaction

Value-Adaptable-Fit (VAF) Given no a priori
knowledge of primary tasks’ WCET and read/write sets,
and that only (1) the accumulated CPU time used by
each transaction and (2) the execution requirements of
the compensating tasks are known, the admission con-
trol mechanism must use a heuristic to guide it in de-
termining whether to admit or reject a transaction. In
using a heuristic, we attempt to predict the likelihood
of a newly submitted transaction being able to success-
fully commit by its deadline, given the competition for
system resources with previously admitted transactions
(with both their primary and compensating tasks). Ini-
tially, we consider the CPU resource only.

Specifically, our technique consists of a 2-tiered ad-
mission control decision based on: (1) the profit-margin
for the submitted transaction, and (2) the bandwidth-
margin for the system.

The profit-margin component evaluates the expected
profit from admitting a transaction into the system.
This is done by weighing the potential gain achievable by
admitting the transaction against the potential loss in-
curred by previously admitted transactions as a result of
such an admission. To estimate the potential gain (loss)
for a transaction T;, we introduce the Commit Likeli-
hood Index, CLI(T;), which reflects the confidence of
the system in being able to successfully commit transac-
tion 7; by its deadline.

The CLI(T;) is composed of the product of two in-
dicators. The first indicator is the Accumulated Pri-
mary Task execution time (APT) and the second indi-
cator is the Expected Compensating Task execution time
(ECT). The APT(T;) measures the CPU bandwidth ac-
cumulated so far in the original window utilized by T;. A
value close to 1 is indicative of a transaction that is likely
to have already executed most of its primary task, while
a value close to 0 is indicative of a transaction that is
not likely to have already executed much of its primary
task. The ECT(T;) anticipates the effect of the future
execution of compensating tasks of other transactions on
the execution of T;. Specifically,

CLI(T;) = APT(T;)*ECT(T)) (1)
APT(T)) = 7014/?%3@ (2)
ECT(T;) = (1—1”%) (3)

where

e C'W; is the current window of T, i.e. the difference
between the current starting time of the compensat-
ing task for T; and the current time,”

e OW; is the original window of T7, i.e. the difference

"The compensating task for T; may have been rescheduled in
the CTQ after 7; is admitted.



between the original starting time of the compen-
sating task for T; and its admission time,

e PT;is the CPU time used so far by the primary task
of Ti;

e (CTj is the future CPU time reserved for the com-
pensating task of transaction T}, and

e [ is a parameter that speculates as to the likeli-
hood of an admitted transaction having to execute
its compensating task. In particular, we set k = 0 if
we adopt the optimistic assumption that all admit-
ted transactions will successfully commit, and we set
k = 1if we adopt the pessimistic assumption that no
admitted transactions will successfully commit. A
value of 0 < k < 1 denotes a speculative assumption
that only a fraction k£ of all admitted transactions
will successfully commit.

With regard to the APT(T;), as the CW; shrinks
with the passage of time, either the PT; steadily
increases—17; is being serviced by the CPU and hence we
are more confident that T; will finish by its deadline—or
PT; remains constant (or increases rather slowly)—T;
is receiving little, if any, CPU time and hence we are
less confident that T; will finish by its deadline. Con-
cerning the ECT(T;), an optimistic assumption that all
admitted transactions will successfully commit results
in the ECT(T;) not having any effect on the CLI(T;)
while pessimistic and speculative assumptions decrease
the CLI(Ty), i.e. as a result of the compensating tasks
of admitted transactions executing, we are less confident
that the newly submitted transaction 7; will be able to
successfully commit by its deadline.

During the admission control process, for each sub-
mitted transaction T}, we compute the value of CLI(T}).
In addition, we compute C'LI(T}) for each previously ad-
mitted T; whose current window C'W; would intersect
CT;. These indices, which incorporate transactions’ val-
ues, are used to estimate the potential profit (loss) from
admitting 7; as follows:

VGain = CLI(T;) = V(Ty) (4)
VLoss = Y (CLI(T;)— CLI*(T})) xV(I}) (5)
JJ#e
where

e V(T;) is the profit (value) gained by the system if
T; successfully commits, and

e CLI*(Tj) is the new commit index of T} if T is
admitted.

In computing the V Loss, we take into consideration
the difference between the previous value of CLI(T;) and
the current value of CLI*(Tj), i.e. is the likelihood of T}

successfully committing less now than previously as a re-
sult of (possibly) admitting a new transaction 737 If the
V Loss > VGain, we reject T; since it doesn’t promise a
positive overall profit to the system if admitted. Alter-
nately, transactions that successfully pass through this
profit-margin component of VAF admission control are
deemed useful to the system (since they promise a pos-
itive profit if admitted) and thus are moved on to the
bandwidth-margin component of VAF, which is presented
below.

Similar to LAF, the threshold of CPU bandwidth
allocated to compensating tasks is obtained using a ta-
ble lookup procedure. However, unlike LAF, VAF takes
OriginalT hreshold, returned by the table lookup pro-
cedure, and dynamically computes NewT hreshold ac-
cording to V(T;), as follows:

if (V(T;)/MeanV alue > 1.0)
NewT hreshold = 1.0
else
NewT hreshold = OriginalT hreshold

where MeanValue is the average value (profit) of the
transaction mix.

For those transactions which are not rejected by
the profit-margin component and have higher value with
respect to the transaction set (are more profitable to
the system), we raise NewThreshold to 1.0, i.e. ad-
mit this transaction. Transactions which pass through
the profit-margin component but are less profitable use
OriginalT hreshold.

For less profitable transactions, in computing
NewT hreshold, we use the OriginalT hreshold making
it more difficult for these transactions to be accepted.
On the other hand, we raise OriginalT hreshold to 1.0
for more profitable transactions as we stand to gain more
by successfully completing these transactions. If com-
pensating tasks scheduled so far utilize CPU bandwidth
above NewT hreshold, then the transaction is rejected.
Otherwise LF scheduling is attempted.
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Figure 2: VAF example

Figure 2 shows how the VAF admission control pro-
tocol works. Suppose that A; is the arrival time of trans-
action T;, and L; is the latest time at which CT; can
begin its execution (so as to complete by the deadline
of T;). Three transactions are submitted to the system:
T1 with value 1 at time 0, 7% with value 10 at time 2
and T3 with value 1 at time 3. Note that although their
compensating tasks, CTy, CTs, and CTj3, are all shown
in the figure, each would be added at the time of the cor-
responding primary task’s arrival. We assume that £ is



set to 1, i.e. pessimistic VAF, and that EDF scheduling
is followed.

Time T; CW OW PT Z CT CLI CLI®* VGainV Loss
0 n 8 8 0 0 0 1 1 0
2 T 6 8 2 0 1 1
> 8 8 0 1 0 0.875 875 0
3 n 5 8 3 2 1 0.6
> 7 8 0 3 0.875 0.5
Ty 2 2 0 0 0 1 1 4.15

Both 77 and T3 pass through the profit-margin com-
ponent of VAF since VGain is greater than the V Loss.
However, T3 is rejected from the system basically due to
its compensating task’s effect on higher valued transac-
tion T5. Consider, however, T3 to have value 10 like T5.
VGain would now be 10 resulting in 75 proceeding to
the bandwidth-margin component of VAF.

Techniques other than the one above could also
be used to calculate NewThreshold. For example,
instead of using V(T;), we could factor in the net
profit, i.e. the differential between the the VGain
and the VLoss. In situations where the difference is
large (i.e. VGain > V Loss), NewT hreshold would be
raised, while when the difference is small (i.e. VGain ~
V Loss), NewT hreshold would be lowered.

4 Performance Evaluation

We have implemented the above ACM policies for a
uniprocessor system using either OCC-BC or 2PL-PA. In
the first part of this section, we show the value of admis-
sion control by comparing the performance achievable
through FF, LF, LMF, and LAF. Since we assume that
all transactions bring in equal profit when committed be-
fore their deadlines, we desire to maximize the number
of primary task completions while minimizing the num-
ber of compensating task completions (i.e. primary task
abortions). In the second part of this section, we show
the performance of the value-cognizant VAF technique
in comparison to the non-value-cognizant technique of
LAF. The superior results of VAF demonstrate the ad-
vantage of utilizing the value of a transaction in the ad-
mission control process and as well as in the computation
of the CPU bandwidth threshold. For all simulation ex-
periments performed, we assumed the existence of a sec-
ond CPU dedicated to supporting the admission control
and concurrency control protocols.

4.1 Baseline Experiments

Table 1 shows the baseline parameters for our sim-
ulations. We assume a 1000-page memory-resident
database. The primary task of each transaction reads
16 pages (Xsize) selected at random with a 25% update
probability. The CPU time needed to process a read
or a write is 2.5 ms. Thus, in the absence of any data
or resource conflicts, the primary task of each transac-
tion would need a serial evecution time of 50 ms CPU
time.® The compensating task of each transaction fol-

8Notice that these figures (i.e. number of pages accessed and
serial execution time) are only needed to generate the workload
fed to the simulator. They are not known to the ACM.

| Parameter | Value |
ArrivalRate | 5 - 100 TPS
DBsize 1,000
Xsize 16
CPUTime 2.5 ms
UpdateProb 0.25
CTCompTime 10 ms
CTStdDev 0.5 CTCompTime

SlackFactor | 2

TaskSchd EDF

CTSchd FF, LF, LMF
Thrsh 0.125

CCntrl OCC-BC

Table 1: Baseline Workload Parameters

lows a normal distribution with a mean (CTCompTime)
of 10 ms and standard deviation (CTStdDev) of 5 ms.’
Transaction deadlines were related to the serial ezecu-
tion time through a slack factor, such that (deadline time
- arrival time) = SlackFactor X serial execution time.

The transaction inter-arrival rate, which is drawn
from an exponential distribution, is varied from 5 trans-
actions per second up to 50 transactions per second
in increments of 5, which represents a light-to-medium
loaded system. We used two additional arrival rates of
75 and 100 transactions per second to experiment with
a very heavy loaded system. TaskSchd, the primary
task scheduling protocol, was EDF while CTSchd, the
compensating task scheduling protocol was FF, LF, and
LMF. The threshold used with LMF, Thrsh, was 0.125.
Each simulation was run four times, each time with a
different seed, for 200,000 ms. The results depicted are
the average over the four runs.
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Figure 3: Performance of FF, LF, and LMF

Figure 3 shows the absolute number of successfully
committed transactions, which is a measure of the value-

9This amounts to an average of 4 page accesses.



added to (or profit of) the system, under the baseline pa-
rameters shown in table 1. Under light-to-medium loads
(arrival rates < 15 TPS), the performance of FF and that
of LF are identical. Under medium-to-heavy (arrival
rates > 15 TPS) loads FF performs slightly better. This
is expected due to LF’s tighter packing of compensating
tasks via rescheduling, which results in the admission of
more transactions, thus resulting in a more pronounced
thrashing behavior. Under light-to-medium loads, the
performance of LMF is indistinguishable from that of
FF or LF, but under medium-to-heavy loads LMF man-
ages to avoid thrashing, thus keeping the system’s profit
in check with its capacity.

We performed three simulations under the LMF pol-
icy. In the first, we used OCC-BC as the concurrency
control protocol. In the second, we used 2PL-PA as
the concurrency control protocol. In the third, we set
the write probability to 0 (i.e. read/write mix = 1; all
transactions are “read-only”), thus simulating the per-
formance of LMF in the absence of data conflicts. These
simulations, illustrated in Figure 3, show that LMF is
most beneficial when data conflicts are least. Also, it
shows that LMF is more beneficial with OCC-BC than
it is with 2PL-PA. This could be explained by noting
that OCC techniques are better suited for systems with
controllable utilization [11], which is the case in a system
with admission control like ours.

The value of the threshold to be used in LMF is
key to its performance. As we explained before, the
optimal value for this threshold depends on many pa-
rameters, most of which cannot be estimated a priori.
One such parameter is the arrival rate of transactions.
To demonstrate this, we ran a set of experiments us-
ing LMF, in which we varied the value of the thresh-
old and the transaction arrival rates. Our results show
that for lightly-loaded systems (arrival rates less than 10
TPS), the performance is unimodal, thus any threshold
less than 1 is not optimal. This implies that at such
low loads all transactions should be admitted, making
the performance of LMF identical to that of LF. For
moderately-loaded and heavily-loaded systems, our re-
sults indicate that an optimum threshold exists for each
arrival rate. Setting the threshold to that optimal value
yields the highest percentage of successful commitments,
and thus yields the highest possible profit. The sensitiv-
ity of the profit to the value of that threshold is much
more pronounced under heavy loads (e.g. 30-100 TPS)
than it is under more moderate loads (e.g. 15-25 TPS).

To evaluate the effect of dynamically changing the
threshold in LAF, we ran a simulation of the system, in
which we varied the arrival rate. The parameters used
were identical to those in table 1, except that the update
probability was set to zero (thus making these results
independent of the concurrency control protocol in use).
Our simulation consisted of 5 consecutive epochs, each
running for 50,000 ms, for a total of 250 seconds. The
arrival rate of transactions in these epochs was set to 15,
25, 35, 45, and 75 TPS, respectively.

Figure 4 shows the performance of LAF against that
of LMF for two threshold values: 0.125 and 0.250. For
each one of the three mechanisms, we plotted the mean
number of successful commitments observed over peri-
ods of 10,000 ms, thus yielding five measurements per
epoch for each mechanism (shown in Figure 4 as a scat-
ter plot). These data points were used to fit a curve
to characterize the performance of each mechanism over
the full 250 seconds of simulation. Overall, the perfor-
mance of LAF is better than both LMF (@ 0.125) and
LMF (@ 0.25). As expected, when the system is lightly
loaded, the performance of LMF (@ 0.25) is close to that
of LAF, whereas the performance of LMF (@ 0.125) is
meager as a result of its unduly restrictive admission
control. When the system is heavily loaded, the perfor-
mance of LMF (@ 0.125) is close to that of LAF, whereas
the performance of LMF (@ 0.25) is meager as a result
of its excessively lax admission control. When the sys-
tem is moderately loaded, the performance of all three
techniques is similar.
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Figure 4: Dynamic Performance of LMF and LAF

In the above experiment, only the arrival rate of
transactions changes from one epoch to the other, and
as a result, LAF was allowed to adapt its threshold value
to a single parameter, namely the arrival rate of trans-
actions. In other words, LAF optimized the value of its
threshold along a single dimension.

In a typical system, more than one parameter is
likely to change over time. LAF could be easily used in
such systems by allowing it to optimize the value of its
threshold along multiple dimensions. In particular, as-
suming n different dimensions (e.g. observed average ar-
rival rate, average slack factor, average read/write mix,
and average compensating task length, among others),
then using off-line simulation experiments, the optimum
threshold value for each node in an n-dimensional mesh
could be evaluated for later use by LAF in a manner
similar to that shown in figure 4. The identification of
the appropriate dimensions for this optimization process
is an interesting research problem.



To illustrate the above process, consider the case
in which three parameters—namely, the arrival rate,
the slack factor and the compensating task computa-
tion time—are likely to change and that LAF has to
adapt to these changes dynamically.'® The first step in-
volves the evaluation of the optimum threshold value for
each node in a 3-dimensional mesh. Table 2 shows the
different values we considered along each one of these di-
mensions. All other parameters were identical to those
in table 1 except that the update probability was set to
zero, i.e. all transactions were “read-only”.

[ Parameter | Value |
ArrivalRate | 5 - 50 by 5’s, 60, 80, 100 TPS
CTCompTime 4,8, 20, 40 ms
SlackFactor | 1.5, 2.0, 3.0, 4.0

Table 2: Parameters’ Ranges for 3-dimensional mesh

We ran 4 simulations for each setting of
ArrivalRate, CTCompTime, and SlackFactor—a total
of 208 combinations, or 832 simulations. This process
was repeated for a number of threshold values in order
to compute the optimal value per setting. The bisection
method [15] was used in order to determine the opti-
mal threshold value for each ArrivalRate, CTCompTime,
SlackFactor triplet.

To evaluate the relative performance of LAF, we ran
a set of experiments in which LAF optimized the value
of its threshold along all 3 dimensions using the results
from the above experiments. The workload for each ex-
periment was constructed by fixing the value along one
dimension to emulate a different workload (wrkld) as
described in table 3.

[ Wrkld | Description | Constant Parameter |
Wrkld O | Random none
Wrkld 1 | Lax Deadlines SlackFactor - 4.0
Wrkld 2 | Tight Deadlines SlackFactor - 1.5
Wrkld 3 | High ArrivalRate | ArrivalRate - 100 TPS
Wrkld 4 | Low ArrivalRate | ArrivalRate - 10 TPS
Wrkld 5 | Long CTCompTime CTCompTime - 40 ms
Wrkld 6 | Short CTCompTime | CTCompTime - 4 ms

Table 3: Workload Descriptions

Each experiment consisted of 20 consecutive epochs
of 4 sec each for a total running time of 80 sec. At the
beginning of each epoch, the values of the parameters
were set according to the specifications above. For ex-
ample, under Wrkld 3, at the beginning of each epoch,
the SlackFactor and CTCompTime were chosen at ran-
dom and used for transactions generated during that
epoch, while the ArrivalRate remained at 100 TPS. All

100ne could also vary other parameters, such as the transaction
length (i.e. number of pages read), or the write probability.

workloads were run 4 times—once for each of LMF (@
0.1), LMF (@ 0.3), LMF (@ 0.8), and LAF. The prof-
its achievable by each one of these compensating task
scheduling techniques, for each workload is shown in fig-
ure d.
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Figure 5: Profits achievable by LMF and LAF in a dy-

namic environment

Figure 5 shows that LAF achieves the most profit
when all 3 parameters are allowed to change (wrkld 0).
Under all other workloads, LAF achieved either the best
profit or the second best profit. More importantly, un-
like the other LMF techniques, LAF shows consistent
performance.

4.2 Value-cognizant Results

The baseline parameters used for the value-
cognizant VAF simulation experiments are identical to
those in table 1 with the exception of two additional
higher ArrivalRates of 200 and 300 TPS. Moreover, for
this set of experiments, transactions were grouped into
two different classes based on their relative value. Trans-
actions in the first (less critical) class have a value of 1,
whereas those in the second class (more critical) have a
value of 10. Transactions in Class-I made up 90% of the
load while transactions in Class-II made up the remain-
ing 10% of the load.

Figure 6 shows the results of our baseline simu-
lations for VAF. Two sets of curves are shown. The
first shows the profit realized using Pessimistic VAF and
using LAF. The second shows the unrealized profit—
profit that had to be given up by the admission con-
trol protocol—for Pessimistic VAF and for LAF. The
results clearly show that VAF outperforms LAF, espe-
cially when the system is not underutilized. For exam-
ple at an arrival rate of 100 TPS, the Pessimistic VAF
admission control results in 55% more profit when com-
pared to LAF admission control. The difference between
the unrealized profits of VAF and LAF is even more com-
pelling. In particular, VAF seems to be able to choose



the right transactions to admit so as to maximize the re-
alized profit (and thus minimize the unrealized profit).
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Figure 6: VAF versus LAF - Baseline

We have performed other experiments in which the
differential between the value of transactions in Class-I
and Class-II is increased to 100-fold (instead of 10-fold).
In other words, 90% of the workload consisted of trans-
actions with value 1 and 10% of the workload consisted
of transactions with value 100. These experiments indi-
cated that the increase in profit achievable through the
use of VAF over LAF is larger (more than 100% greater
profit in heavily-loaded systems).

5 Related Work

Our work differs from previous research in that our
system model incorporates not only primary tasks, with
unknown WCET, but also compensating tasks. There
have been a number of similar models suggested in the
literature.

Liu et al. [18] developed the imprecise computation
model which decomposes each task into two subtasks,
a mandatory part and an optional part. Audsley et al.
[2] and Davis et al. [8] developed mechanisms whereby
mandatory, hard deadline tasks are given off-line guar-
antees of minimum quality of service while associated
optional tasks are guaranteed on-line, if sufficient re-
sources are available. Our model differs from the im-
precise computation model in that the WCET require-
ments for the mandatory and optional parts are assumed
in [18, 2, 8], whereas they are assumed only for the com-
pensating tasks in our model. Also, unlike the impre-
cise computation model, we start off with the execution
of the optional component (the primary task), leaving
the mandatory component (the compensating task) to
a later time (if needed). In a sense, our paradigm is
complementary to the imprecise computation paradigm.

A similar model was also considered by Liestman
and Campbell [16] and by Chetto and Chetto [7]. In
[16] primary tasks provide good quality of service and are

preferable to alternative tasks which produce acceptable
quality of service and handle timing faults. Our notion
of a compensating task is indeed similar to that of an al-
ternative, with one major difference. Alternative tasks
in [16] are not subject to timing failures, whereas in our
model compensating tasks have hard deadlines. In [7],
alternative tasks are periodic in nature, unlike compen-
sating tasks which are not.

Admission control protocols and feedback mecha-
nisms have been employed in a variety of RTDB sys-
tem components: transaction scheduling [12], memory
allocation for queries [21], and B-tree index concurrency
control [10]. Haritsa et al. [12] incorporate a feedback
mechanism into an Adaptive Earliest Deadline (AED)
and Hierarchical Earliest Deadline (HED) scheduling
strategies for transactions in a firm deadline environ-
ment. Both AED and HED attempt to stabilize the
overload performance of EDF. The focus of Pang et al.
[21] is on admission control and memory management of
queries requiring large amounts of computational mem-
ory in a firm RTDB system. The admission control com-
ponent of their Priority Memory Management algorithm
dynamically sets the target MPL by using a feedback
process based upon information from previously com-
pleted queries. Goyal et al. [10] describe an approach
that allows transactions to be rejected as part of an opti-
mization of the Load Adaptive B-link algorithm, a real-
time version of index (B-tree) concurrency control algo-
rithms in firm-deadline RTDB systems.

In many systems, the assumption that all transac-
tions are of equal value is not valid, making it necessary
to consider the worth of a transaction, when making
resource allocation and conflict resolution decisions. In
such systems, the performance objective becomes that of
maximizing the system profit. The notions of transaction
values and value functions [14, 19] have been utilized in
both general real-time systems [5, 6] as well as in RTDB
[4, 12, 13, 22]. In [5, 6], the value of a task is evalu-
ated during the admission control process. Huang et al.
[13] use transactions’ values to schedule system resources
(e.g. CPU) and in conflict resolution protocols in a soft
real-time environment. Extending their AED schedul-
ing algorithm to be value-cognizant, Haritsa et al. [12],
developed Hierarchical Earliest Deadline (HED) for firm
RTDB systems. All of the aforementioned research make
use of transactions’ values which are time-invariant.

A different approach is taken by Bestavros and
Braoudakis [4] and Tseng et al. [22]. In [4], value func-
tions are employed in a soft real-time system to deter-
mine whether it is more advantageous to commit a trans-
action or to delay that commitment for a period of time.
Like [4], Tseng et al. use time-variant value functions in
their Highest Reward First (HRF) scheduling algorithm
for firm RTDB systems.

6 Summary and Future Work

In this paper, we proposed a new paradigm for
the execution of transactions in a RTDB system. Our



paradigm allows the system to reject a transaction that is
submitted for execution, or else admit it and thus guar-
antee that one of two outcomes will occur by the trans-
action’s deadline: either the transaction will successfully
commit through the execution of a primary task, or the
transaction will safely terminate through the execution
of a compensating task. The system assumes no a priori
knowledge of the execution requirements of the primary
task, but assumes that the WCET and read/write sets
of the compensating task are known. Through the use
of appropriate admission control policies, we show that
it is possible for the system to maximize its profit dy-
namically.

In this paper, we considered only hard-deadline
transactions. This implied that once admitted, a trans-
action must be successfully committed, or else safely ter-
minated by its deadline (due to the prohibitive loss to
be incurred if that deadline is missed). If soft-deadline
transactions are to be managed, then it is possible for the
system to finish (commit/terminate) a transaction past
its deadline, which makes the problem of compensating
task scheduling much harder.

The interaction between concurrency control and
admission control is one of the main themes of this pa-
per. Yet, many facets of this interaction have not been
addressed. For example, the CCM could use informa-
tion provided to the CACM to make better concurrency
control decisions. Conversely, the CACM could use in-
formation about the read/write sets of primary tasks to
determine whether or not to accept a particular com-
pensating task.
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