
Statistical Rate Monotonic Scheduling�

Alia Atlasy Azer Bestavros
Dept of Internetwork Research Computer Science Department

BBN Technologies Boston University
Cambridge, MA 02138 Boston, MA 02215

fakatlas, bestg@cs.bu.edu

Abstract

Statistical Rate Monotonic Scheduling (SRMS) is a general-
ization of the classical RMS results of Liu and Layland [10]
for periodic tasks with highly variable execution times and
statistical QoS requirements. The main tenet of SRMS is
that the variability in task resource requirements could be
smoothed through aggregation to yield guaranteed QoS. This
aggregation is done over time for a given task and across
multiple tasks for a given period of time. Similar to RMS,
SRMS has two components: a feasibility test and a schedul-
ing algorithm. SRMS feasibility test ensures that it is possible
for a given periodic task set to share a given resource with-
out violating any of the statistical QoS constraints imposed
on each task in the set. The SRMS scheduling algorithm con-
sists of two parts: a job admission controller and a scheduler.
The SRMS scheduler is a simple, preemptive, fixed-priority
scheduler. The SRMS job admission controller manages the
QoS delivered to the various tasks through admit/reject and
priority assignment decisions. In particular, it ensures the
important property of task isolation, whereby tasks do not in-
fringe on each other.

1. Introduction

Traditional scheduling and resource management algorithms
devised for periodic real-time task systems have focused on
strict “hard” deadline semantics, whereby a set of periodic
tasks is deemed schedulable if every instance of every task in
the set is guaranteed to meet its deadline. An optimal fixed-
priority algorithm is the classical Rate Monotonic Schedul-
ing (RMS) algorithm of Liu and Layland[10]. To ensure the
satisfaction of the hard deadlines imposed on periodic tasks,
RMS requires that either the periodic resource requirement
of each task be constant, or the periodic worst-case resource
requirement of each task be known a priori. Given such
knowledge, RMS guarantees the satisfaction of all deadlines,
provided that a simple schedulability condition is satisfied.
Using RMS on an unschedulable task system will improve

�This work was partially supported by NSF grant CCR-9706685.
yResearch completed while co-author was at Boston University.

utilization, but will not provide clear predictability of which
tasks will miss their deadlines. Indeed, because RMS cou-
ples period and priority, tasks with longer periods will miss
deadlines more frequently than tasks with shorter periods—
the criticality of the tasks is ignored.

There are many real-time, periodic applications in which
(1) tasks have highly variable utilization requirements, and
(2) deadlines are firm. For such applications, RMS is too re-
strictive in assuming a constant resource requirement, and it
provides a more stringent guarantee on deadlines than is nec-
essary. In particular, for such applications missing a deadline
may be acceptable, as long as (say) a specified percentage of
the deadlines are met. This flexibility—coupled with the vari-
ability in resource utilization—suggests that the worst-case
resource requirement need not be planned for. An impor-
tant class of such applications is the multiplexing of real-time
multimedia streams on a shared fixed-bandwidth channel.
For such an application, it is obvious that (1) the individual
streams may have highly variable bandwidth requirements,
and (2) missing deadlines, while not desirable, is not fatal.
Using RMS for arbitrating a shared communication channel
amongst the various streams is impractical, as it would result
in very poor utilization.

This paper presents Statistical Rate Monotonic Schedul-
ing (SRMS), a generalization of RMS that allows the
scheduling of periodic tasks with highly variable execution
times and statistical QoS requirements. SRMS maximizes
the utilization of the resources being managed. In particular,
it wastes no resource bandwidth on jobs that will miss their
deadlines, due to overload conditions, resulting from exces-
sive variability in execution times. SRMS is cognizant of the
value of the various tasks in the system. Thus, it ensures that
under overload conditions, the deterioration in QoS suffered
by the various tasks is inversely proportional to their value.

2. Related Work

SRMS uses a schedulability analysis similar to that of RMS.
This makes many of the schedulability results obtained for
RMS applicable to SRMS as well. Examples of such re-
sults include the less restrictive, though more complex, ex-

act schedulability test by Lehoczky, Sha and Ding [9] and the
less accurate but faster polynomial-time schedulability test
by Han and Tyan [7].

SRMS relaxes the pivotal assumption of RMS—namely
that the resource requirement of a periodic task is fixed. Sev-
eral other relaxations of this assumption have been explored
in the literature. The execution time of real-time tasks has
been examined and modeled [21, 5]. In [6], Chung, Liu and
Lin defined incremental tasks, where the value to the system
increases with the amount of time given to the task, until the
deadline occurs. In [12], Mok and Chen presented the mul-
tiframe model, where each task has a sequence of resource
requirements which it iterates through. In [18], Tan and Hsu
used feedback to control the resource requirements of tasks
and admission control to prevent overload.

When a system has variable resource requirements, over-
load is expected to occur. When a system is in overload,
the goal of the scheduling algorithm must be revisited since
meeting all deadlines becomes impossible. Possible system
goals include maximizing the number of deadlines met [3],
maximizing the effective processor utilization [3], and com-
pleting all critical work [18, 8]. In [11], Marucheck and
Strosnider provided a taxonomy of scheduling algorithms
with varying levels of overload and criticality cognizance. To
deal with overload, Koren and Shasha introduced the skip
factor in [8], where occasionally a job can be skipped. This
was expanded to (n m)-hard deadlines by Bernat and Burns
in [4], where the relaxed deadline requirement allowed in-
creased responsiveness for aperiodic tasks.�

Dealing with variable execution requirements introduces
an unpredictability akin to that introduced when aperiodic
tasks are to be executed along with RMS-scheduled periodic
tasks. This latter problem has been examined in a number of
studies. Proposed solutions include the polling server [14],
the deferrable server [17], the sporadic server [15], the ex-
tended priority exchange algorithm [16], and slack stealing
[13]. The latter keeps exact track of the slack available in the
system at every priority and reclaims unused execution time.

The work of Tia et al. [20] is most closely related to
SRMS in that it considered the problem of scheduling peri-
odic tasks with variable resource requirements and soft dead-
lines. In their study, Tia et al. presented the transform-task
method, which uses a threshold value to separate jobs guar-
anteed under the RMS schedulability condition from those
which would require additional work. Jobs that fall under
the threshold are guaranteed to meet their deadlines by RMS.
The other jobs are split into two parts. The first part is con-
sidered as a periodic job with a resource requirement equal
to the threshold; the second part is considered to be a spo-
radic job and is scheduled via the sporadic server when the
periodic part has completed. In [20], an analysis was given
for the probability that the sporadic job would meet its dead-
line. However, the sporadic jobs are served in FIFO order,

�Out of any consecutive m jobs, at least n must meet their deadlines.

disregarding any sort of intertask fairness. Finally, no jobs
are ever rejected, because the deadlines are soft and all work
must be completed.

Motivated by the work in [20], we considered a similar
approach, Slack Stealing Job Admission Control (SSJAC)
[2], where tasks have firm deadlines and slack stealing was
used to admit or reject jobs. Associated with each task is a
threshold. Jobs with resource requirements below the thresh-
old were automatically admitted. Jobs with resource require-
ments above that threshold were considered for admittance
based upon the slack in the system at their priority level. SS-
JAC is discussed in more detail in section 5.2 as we pit it
against SRMS for performance comparison purposes.

3. Statistical Rate Monotonic Scheduling

3.1. SRMS Task Model
The SRMS task model we use in this paper extends the

RMS's task model and the semiperiodic task model given by
Tia et al. [20]. We start with the following basic definitions.
Definition 1 A periodic task, �i, is a three-tuple, (Pi, fi�x�,
Qi), where Pi is the task's period, f i�x� is the probability
density function (PDF) for the task's periodic resource uti-
lization requirement, and Qi is the task's requested Quality
of Service (QoS).

Without loss of generality, we assume that tasks are or-
dered rate monotonically. Task 1, ��, is the task with the
shortest period, P�. The task with the longest period is �n,
where n is the total number of tasks in the system. The
shorter the period, the higher the task's priority. � At the start
of every Pi units of time, a new instance of task �i (a job of
task �i) is available and has a firm deadline at the end of that
period. Thus, the jth job of task i—denoted by �i�j—is re-
leased and ready at time �j����Pi and its firm deadline is at
time j � Pi. Its ready time is denoted by ri�j and its deadline
is denoted by di�j .�

Definition 2 The superperiod of �i is Pi��, the period of the
next lower priority task, �i��.

We assume that the resource requirements for all jobs of
a given task are independent and identically distributed (iid)
random variables. The distribution is characterized using the
probability density function (PDF), f�x�. Obviously, it is im-
possible for a job to require more than 100% of the resource.
Thus, x � P � f�x� � �. We assume that the resource
requirement for a job is known when the job is released and
that such a requirement is accurate.� The resource require-
ment for the jth job of the ith task is denoted by ei�j .

�It is important to note that the “priority” of a task is not (and should
not) be mistaken for the “value” (or importance) of a task. In particular, the
manner in which a resource is allotted to various tasks depends on both task
priority and value.

�While this model does not include non-zero task phases, the small mod-
ification necessary to support them is described in subsection 3.3.

�If this assumption cannot be ensured, then a policing mechanism could
be employed, whereby when a task is given the resource, an interrupt is set
so that the task is interrupted at the end of its “requested” time to ensure that
it does not use more than what it had requested upon its release.

The third element of a task specification under the SRMS
paradigm is its requested Quality of Service (QoS). For
the purpose of this paper, we restrict QoS to the following
definition.�

Definition 3 The quality of service QoS��i� for a task �i is
defined as the probability that in an arbitrarily long execution
history, a randomly selected job of �i will meet its deadline.

To enable tasks to meet their requested QoS, SRMS as-
signs to each task �i an allowance, which is replenished pe-
riodically (every superperiod) to a preset value ai. Task al-
lowances are set through the QoS negotiation process (i.e.
SRMS schedulability analysis). In particular, as we will
show later in this section, there is a one-to-one correspon-
dence between the allowance extended to a task and the QoS
it achieves. A task set is schedulable under SRMS if the QoS
of every task in the task set is satisfied through a feasible as-
signment of allowances.

Definition 4 A set of tasks ��� ��� ���� �n is said to be schedu-
lable under SRMS, if every task �i is guaranteed to receive
its allowance ai at the beginning of every one of its superpe-
riods. Thus, a schedulable task set is one in which every task
achieves its specified/negotiated QoS.

3.2. Overview of SRMS Scheduling Algorithm

The SRMS algorithm consists of two parts: a job admission
controller and a scheduler. Like RMS, the SRMS scheduler
is a simple, preemptive, fixed-priority scheduler, which as-
signs the resource to the job with the highest priority that is
in need of the resource. The SRMS job admission controller
is responsible for maintaining the QoS requirements of the
various tasks through admit/reject and priority assignment
decisions. In particular, it ensures the important property
of task isolation, whereby tasks do not infringe upon each
other's guaranteed allowances. Job admission control occurs
at a job's release time. All admitted jobs are guaranteed to
meet their deadlines through a priority assignment that is rate
monotonic (similar to RMS). Jobs that are not admitted may
be either discarded, or allowed to execute at a priority lower
than that of all admitted jobs.�

SRMS consists of an analyzable core and several exten-
sions to optimize performance. In the remainder of this sec-
tion we consider each of these components, starting with
SRMS core, which we henceforth term Basic SRMS.

3.3. Basic SRMS with Harmonic Task Sets

One of the main tenets of SRMS is that the variability in task
resource requirements could be smoothed through aggrega-
tion. To simplify the analysis of the gains possible through
such aggregation, we start with an examination of Basic
SRMS for harmonic task sets. We consider non-harmonic
task sets later in subsection 3.4.

�Other definitions which allow for closed-form schedulability analysis
include (for example) restricting the execution history to a finite window.

�This is discussed in more details in section 4.

Definition 5 A task set is harmonic if, for any two tasks �i
and �j , Pi � Pj � PijPj .

Basic SRMS is based upon the following task transfor-
mation. A task, �i, with period, Pi, is transformed into a
task with a longer period, Pi��. If the original task was as-
sumed to have a fixed resource requirement, ti, then the new
resource requirement is ti �

Pi��
Pi

� ai.

Lemma 1 If a task system, ��P�� t��� ���� �Pi� ti��
�Pi��� ti���� ����Pn� tn��, is schedulable according to RMS,
then the transformed task system ��P�� t��� ���� �Pi��� ti �
Pi��
Pi

�� �Pi��� ti���� ����Pn� tn�� is also schedulable.

This task transformation depends upon the ability to ar-
bitrarily break ties between two tasks with the same period,
so that either can be given the higher priority. Therefore, it
is possible to transform task �i to have the same period as
task �i�� and still maintain a higher priority. If task �i were
transformed to have a period longer than Pi��, then either it
would have a lower priority than �i�� and miss deadlines, or
it would have a higher priority and could cause �i�� to miss
deadlines. Therefore, the maximum interval over which jobs
can be aggregated is the period of the next lowest priority
task.

In the SRMS model presented, task phases are not consid-
ered, but little modification is necessary to support them. The
task transformation is valid with non-zero task phases. The
sole difference is that with phases, the start of a task's su-
perperiod does not align with the release of a job of the next
lower priority task. That is the start of the first superperiod
for task �i occurs at ri��, not at ri����.

The task transformation above is meaningless for the last
task in the system, �n. The goal of the task transformation is
to aggregate as many jobs as possible without causing lower
priority jobs to miss their deadlines. Task �n has no lower
priority jobs to be concerned over and can therefore have an
arbitrarily large superperiod. To visualize this, imagine that
there is a task �n�� with no resource requirement and an ar-
bitrarily large period.

In SRMS job admission control is used to ensure that: (1)
no task is using more of the resource than it has been guaran-
teed, and (2) no task is admitted if it cannot be guaranteed to
meet its deadline. The first of the above two goals prevents
higher priority tasks from infringing on the QoS promised to
lower priority ones. The second goal maximizes the useful
utilization of the resource by disallowing the use of the re-
source by any job that cannot be guaranteed to finish by its
firm deadline.

SRMS job admission control works as follows. At the
beginning of each superperiod, a task �i has its budget bi
replenished up to its allowance ai. When a job �i�j is ad-
mitted to the system, its resource requirement ei�j is debited
from the task's current budget. A job � i�j released at time
ri�j and requesting ei�j units of resource time is admitted if
the following two conditions (corresponding respectively to
the two goals explained above) hold: (1) ei�j is less than bi,

and (2) ei�j is less than the time remaining in the period after
all higher priority tasks have claimed their allowances. This
leads to the following admissibility condition for a job �i�j :

�ei�j � bi� � �ei�j � Pi �

i��X
j��

aj � Pi
Pj��

�

Schedulability Analysis: In SRMS, each task is assigned
an allowance, ai, which is the amount of time the resource is
assigned to that task during its superperiod.� For schedula-
bility analysis purposes, the allowance takes the place of the
constant resource requirement in RMS. Thus, under SRMS,
a necessary and sufficient condition for a harmonic task set
to be schedulable is that:

nX
i��

ai
Pi��

� �

Moreover, according to RMS and Lemma 1, a transformed
task is guaranteed to receive at least its allowance every su-
perperiod. To be able to relate the QoS achieved by a given al-
lowance, it is necessary to determine how many jobs available
during a superperiod can be completed, given that allowance.
Recall, that under Basic SRMS, periods are harmonic and
thus no overlap jobs exist. For our calculations, we will as-
sume that the probability distribution function is truncated,
so that no impossible jobs are submitted to the system.	

As illustrated in figure 1, a job �i�j can fall into Pi��
Pi

dif-
ferent phases within the superperiod Pi��. The probability
that �i�j will be admitted is dependent on the phase in which
it falls. To explain this, it suffices to observe that the first job
in the superperiod has a replenished budget and has the best
chance of making its deadline, while the last job in the super-
period has a smaller chance, because the budget is likely to
have been depleted.

t = 8
t = 10

t = 16

t = 18 t = 20 t = 22t = 12 t = 14

Phase

2

Phase

1

Phase

4

Phase

3

Phase

2

Phase

1

Phase

4

Phase

3

P
1

= 2 P
2

= 8

t = 24

Figure 1. Sample Task with Four Phases

An arbitrary job �i�j has an equal probability of being in
any given phase out of the possible Pi��

Pi
phases within the

superperiod Pi��. To explain this, it suffices to note that in
an infinite execution of task �i, there will be an equal number

�The superperiod of the last task, which would be Pn��, is not defined.
It can be specified by the user. In practice, we have used ��Pn successfully.
If all tasks in the system are expected to be in overload, then the superperiod
of the last task should be shorter.

�In practice, if a job with an infeasible resource requirement is submitted,
it must automatically be rejected.

of jobs in each phase, and thus a uniform distribution for the
phase of a randomly selected job is reasonable.

Let Si�k � � (Si�k � �) denote the event that a job �i�j re-
leased at the beginning of phase k of a superperiod of task �i
is admitted (not admitted) to the system. Now, we proceed to
compute P �Si�k � ��—the probability of admitting a job in
the kth phase of a superperiod of task �i (i.e. the probability
of success).

Recall that ai is the allowance made available to task �i at
the start of its superperiod Pi��, which is the start of the first
phase. Obviously, a job �i�j released in this first phase (i.e.
k � �) will be admitted only if its requested utilization is less
than or equal to ai. This leads to the following relationship.

P �Si�� � �� � P �ei�j � ai�

For a job �i�j released in the second phase (i.e. k � �), two
possibilities exist, depending on whether the job released in
the first phase was admitted or not admitted. This leads to the
following relationship.

P �Si�� � �� � P �ei�j�� � ai� � P �ei�j�� � ei�j � ai�

� P �ei�j�� � ai� � P �ei�j � ai�

� � � � � � �

Obviously, each P �Si�k � �� can be calculated as the sum
of �k�� different terms, where each term expresses a par-
ticular history of previous jobs being admitted and/or re-
jected (i.e. deadlines met and/or missed). Thus, to calculate
P �Si�� � ��, the sum of the probabilities of all possible his-
tories, where the job in the third phase meets its deadline,
must be calculated. The set of possible histories are ((1,1,1),
(1,0,1), (0,1,1), (0,0,1)), where 1 represents a met deadline
and 0 represents a missed deadline.

We are now ready to define the QoS guarantee that SRMS
is able to extend to an arbitrary set of tasks with harmonic
periods.

Theorem 1 Given a task set with harmonic periods, the
probability that an arbitrary job �i�j of task �i will be ad-
mitted is the QoS function of �i.

QoS��i� �
Pi
Pi��

�

Pi��

PiX
k��

P �Si�k � ��

Theorem 1 follows from the assumption that an arbitrary
job has an equal probability of being in any given phase. The
value thus calculated, QoS��i�, is the statistical guarantee
which harmonic RMS provides on the probability that an ar-
bitrary job will not miss its deadline.

3.4. Basic SRMS with Arbitrary Periods

Previously, we assumed that the task set is harmonic. When
task periods are harmonic, it is impossible for the release time
and deadline of a job to be in different superperiods. When
task periods are not harmonic, this situation is possible—a

P = 12
2

P = 5
1

t=0
t=5 t=10

t=36 t=48 t=60t=12 t=24

Phase

1 2

Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase Phase

31 2 1 2 3 1 2 1 2

Figure 2. Phases for Task with Overlap Jobs

job could overlap two superperiods.
 To generalize Basic
SRMS to schedule task systems with arbitrary periods, we
must determine how overlap jobs should be treated.
Definition 6 A job �i�j whose release time is in one superpe-
riod and whose deadline is in the next superperiod is called
an overlap job.

First, we explain the subtlety involved in dealing with
overlap jobs. The primary purpose of job admission control
in Basic SRMS is to prevent the variability in resource utiliza-
tion by a high priority task from disturbing other lower prior-
ity tasks. This is done by ensuring that the high priority task
does not consume more than its allocated budget within each
of its superperiod. Now consider the advent of an overlap job.
By definition, an overlap job is one that is released in one su-
perperiod (the release superperiod) and whose deadline is in
the next (the deadline superperiod). Figure 2 shows a task
which has overlap jobs. The difficulty in making admission
decisions for overlap jobs is due to the simple fact that any
resource use charged to a given budget must be completed
within the superperiod of that budget. The fact that overlap
jobs span two superperiods complicates that process. There
are three possibilities for admitting an overlap job, which we
consider below.

If the overlap job is to be admitted based on the available
budget in the release superperiod, then (in order not to disturb
lower priority tasks) the overlap job must complete its execu-
tion before the end of the release superperiod. This may or
may not be possible. If possible, the overlap job is admitted
and the budget of the release superperiod is debited.

If the overlap job is to be admitted based on the avail-
able budget in the deadline superperiod, then (in order not to
disturb lower priority tasks) the execution of the overlap job
must be delayed until the beginning of the deadline superpe-
riod, or at least until the job of the next lower priority task
has finished its execution and thus is not subject to being in-
fringed upon by the overlap job. Again, this may or may not
be possible. If possible, the overlap job is admitted, but not
permitted to run until after some delay, and the budget of the
deadline superperiod is debited.

Finally, for the purpose of admission control and debit-
ing the appropriate budgets, it would be possible to combine
the above two possibilities by splitting the overlap job into
two components. The first would be admitted at release time
and allowed to execute against the budget available in the re-
lease superperiod. The second would be delayed until the

	Again, if task �i has a non-zero phase, the start of the first superperiod
is aligned with the release time of the first job �i��, not with the release of
job �i���� .

beginning of the deadline superperiod and allowed to exe-
cute against the budget available in that deadline superperiod.
Again, this may or may not be possible. If possible, the over-
lap job would be admitted, otherwise it would be rejected.
We did not implement this in SRMS due to the additional
complexity required in the scheduler.

Schedulability Analysis: The evaluation of the feasibility
of achieving the requested QoS for a SRMS task system with
arbitrary periods is an elaboration of the schedulability anal-
ysis for a harmonic task system presented in subsection 3.3.
The additional complexity is caused by an analysis of the be-
havior for overlap jobs. Due to space limitations, we do not
include this analysis here. Interested readers are referred to
the derivations and formulae in [1].

4. Extensions to Basic SRMS

In this section we examine a number of extensions that op-
timize the performance of the Basic SRMS algorithms pre-
sented in the previous section. For the remainder of this pa-
per, we use SRMS to refer to the Basic SRMS algorithm
(whether or not the task set is harmonic) when augmented
with all of the extensions presented in this section.

Time Inheritance: At the start of each superperiod, a
task's budget is replenished. However, that task (say � i) may
have time leftover in the budget of its previous superperiod.
In Basic SRMS, this unused budget is simply discarded. But,
does it have to be? To answer this question, we first note that
such leftover time can only be spent by a task with priority
lower than that of �i. Task �i can't use the leftover allowance
because such use may adversely affect �i��. In particular, us-
ing this leftover time by �i may result in tasks of priority i and
higher getting more than their fair share (i.e. reserved per-
centage) of the resource during the superperiod Pi��. How-
ever, if �i�� is not also ending a superperiod, then �i�� can
spend this leftover time. Such use won't affect � i�� because
it will not result in exceeding the percentage of the resource
reserved for tasks with priority higher than that of �i��.��

Time inheritance is another instance of the SRMS concept
of “smoothing the variability in resource usage through ag-
gregation”. In Basic SRMS, this aggregation was done over
time for a single task (see Lemma 1). Using the time inher-
itance extension of SRMS, this aggregation is done across
tasks. Figure 3 shows an example where time inheritance oc-
curs twice.

�
Clearly, the last task in the system merely discards any unused allowance
when it replenishes its budget.

1a = 4 a = 41b = 1

a = 62
2

1

2L = 1

1b = 1

b = 3
b = 4

2b = 0 2L = 1

1b = 2

a = 8

2

b = 3

τ3

3

1τ

2

3

τ

time units

1b = 3

L = 133b = 2

1 1

3

1

2 2

43

2

Figure 3. Illustration of Time Inheritance

Second Chance Priorities: In Basic SRMS, it is possi-
ble to reject a job (1) because its budget is depleted, or
(2) because the admission controller cannot guarantee that
such job (if scheduled) will have enough time (leftover from
higher priority tasks) to meet its deadline. The above two
conditions—while sufficient to satisfy the task isolation and
efficient resource utilization properties of SRMS—may be
unnecessarily stringent. Namely, it is possible that a job
may be rejected and still be allowed to use the resource with-
out jeopardizing the task isolation and efficient resource uti-
lization properties of SRMS. The admission controller pes-
simistically assumes that other tasks in the system will use
their maximum allowances. If the other tasks do not, then
“idle times” may be available to complete the job despite the
job's failure to satisfy one (or even both) of the above con-
ditions. Thus, rather than simply discarding rejected jobs,
it would may be advantageous to give those jobs a second
chance. This is the motivation for the following extension.

Each task has two possible priorities, either HIGH (and
admitted) or LOW (and rejected). If a job is admitted, then
the priority is set to HIGH and the allowance is debited. Oth-
erwise, the priority is set to LOW and the allowance is un-
changed. This splits the tasks into two RM-ordered priority
bands. First, the HIGH priority tasks are scheduled; then,
if there is time, the LOW priority tasks are scheduled. This
gives guaranteed jobs highest priority, and still permits a best-
effort attempt on the rejected jobs. For example, given two
tasks with periods of 5 and 8 respectively, a HIGH priority
job with period 8 is scheduled after a HIGH priority job with
period 5 and before a LOW priority job with period 5.

5. Performance Evaluation of SRMS

To evaluate the performance of SRMS, we developed a sim-
ulator to run a periodic task system subject to the model and
assumptions discussed in section 3.1.

5.1. Simulation Model and Performance Metrics

In our experiments, we made a number of simplifying as-
sumptions. These assumptions were necessary to allow for a
more straightforward interpretation of the simulation results,
by eliminating conditions or factors that are not of paramount
interest to the subject matter of this paper (e.g. effects of
task criticality). First, we assumed that all tasks demand
the same average percentage utilization of the resource be-

ing managed. In other words, the ratio E�ei�k
Pi

for all tasks is
constant. Second, the probability distributions used to gen-
erate the resource requirements were of the same type�� (but
with different parameters) for each task in the system. Also,
these distributions were truncated so that no infeasible jobs
were submitted to the system. Third, we assumed that all
tasks were of equal criticality/importance, which implies that
the assignment of allowances (a�� a�� � � �) to the tasks in the
system should not reflect any preferability due to the task's
“value” to the system.

To compare algorithms and discuss their characteristics,
we define a few performance measures. In the following def-
initions, the number of tasks in the system is n.

Definition 7 The job failure rate (JFR) is the average per-
centage of missed deadlines.��

JFR �
�

n
�

nX
i��

�i missed jobs

�i jobs

We chose to use the job failure rate because it gives all
tasks equal priority. Using a completion count gives unfair
importance to tasks with shorter periods, because in any time
interval, those tasks will release more jobs than tasks with
longer periods. Naturally, this job failure rate assumes that
all tasks are of equal criticality and require the same QoS.

With the assumption that all tasks require the same perfor-
mance, there is a need to describe how fair the system is. For
example, in RMS it is quite possible that the highest priority
task meets all its deadlines and the lowest priority task meets
none. Intertask unfairness describes how unfair the schedul-
ing algorithm is.

Definition 8 The intertask unfairness is a measure of how
unfair the scheduling algorithm is to the different tasks. It is
the standard deviation of the percent of missed jobs.

Intertask Unfairness �

sPn

i���
�i missed jobs

�i jobs
� JFR��

n

Finally, we consider the average utilization requested of
the system and the average useful utilization achievable by a
scheduling algorithm. Note that the achievable utilization is
an average, and some overloaded intervals may occur even
when the requested utilization is within the schedulability re-
quirement of RMS.

Definition 9 The requested utilization is the sum of all jobs'
resource requirements divided by the time interval during
which scheduling occurs.

Definition 10 The achievable utilization is the sum of all
successful jobs' resource requirements divided by the time
interval during which scheduling occurs.

��We considered a variety of such distributions as will be evident later in
this section.
��This is the opposite of the job completion rate used in [11], which is

the average percentage of met deadlines.

5.2. Algorithms Considered for Comparison

To evaluate the performance of SRMS, it was necessary
to identify algorithms against which SRMS should be com-
pared. This was challenging, as there are no algorithms in
the literature addressing the problem of scheduling periodic
tasks with highly-variable resource requirements under firm-
deadline semantics, subject to minimal QoS requirements.
We decided to use three algorithms: RMS, SSJAC, and an
Oracle. We justify these choices below.

Rate Monotonic Scheduling: SRMS and RMS are alike
in many aspects. Both employ a fixed priority preemptive
scheduler, with priorities being assigned in a rate monotonic
fashion. Despite the fact that RMS was designed for hard
deadlines (as opposed to firm) and constant (as opposed to
highly variable) resource requirements, we decided to use it
to provide a baseline (a performance lower bound) of what is
readily achievable using RMS.

Slack Stealing Job Admission Control: As described in
section 2, SSJAC [2] uses slack-stealing to determine whether
to admit jobs with resource requirements above a set thresh-
old. Like SRMS, when a job is released, it must undergo
admission control. If the job's resource requirement is below
the threshold, then it is automatically admitted. Otherwise, it
is conceptually “split” into two parts. The first has a resource
requirement equal to the allowance and the second part has
a resource requirement equal to difference between the orig-
inally requested resource requirement and the threshold. The
second part is treated as a sporadic task with the same prior-
ity, release time, and deadline; it is considered for admittance
using the slack in the system. If there is adequate slack to ad-
mit such a sporadic task, then the job (with both of its parts)
is admitted to the system. Otherwise, the job is rejected. For
SSJAC, we chose to calculate the available slack myopically
so that no aperiodic servers are necessary. Once a job is ad-
mitted to the system, it runs completely at its original priority.
To reclaim unspent resource time, we used Thuel's slack re-
claimer [19].

SSJAC could be considered as an evolution of the
transform-task method introduced by Tia et al. in [20]. For
this problem, the performance of SSJAC subsumes that of the
transform-task method. In SSJAC, any job which is not guar-
anteed to meet its deadline is discarded. This is the correct
approach when dealing with firm deadlines—in contrast to
the transform-task method's approach of completing all jobs,
even if the deadline is missed, which is useful for soft (but
not firm) deadlines. Second, rather than using the sporadic
server, which has no guarantees, SSJAC uses slack stealing
enabling the use of accurate job admission control with im-
mediate results at a job's release time. The main drawback
of SSJAC (when compared to the transform-task method) is
the high overhead of slack stealing. However, in our experi-
ments, we completely neglected overhead, thus giving SSJAC
(as a representative of competing algorithms) a tremendous
advantage over SRMS which has a constant overhead.

Oracles for Establishing Performance Upper Bounds:
We found it interesting to consider, not merely how SRMS
performed against RMS and SSJAC, but also how close is
SRMS' performance to the “best possible” performance. To
this end, we developed an omniscient oracle for systems with
harmonic periods. The oracle accepts different value func-
tions for each job, and will optimize the schedule accord-
ingly. Three value functions are particularly useful. First,
the optimal completion count is determined by assigning an
equal value to each job of each task. We denote by OPT-J the
oracle under this “all-jobs-are-equal” value function. Second,
the optimal JFR is determined by using a function that values
tasks equally by assigning to each job a value equal to its pe-
riod. Thus, in any interval of time, each task has the same
total value assigned to its jobs. We denote by OPT-T the or-
acle under this “all-tasks-are-equal” value function. Finally,
the optimal effective processor utilization is determined by
setting a job's value equal to its resource requirement. We
denote by OPT-U the oracle under this “all-resource-cycles-
are-equal” value function.

5.3. Simulation Experiments:

We will discuss two of the sets of simulation experiments
that we conducted. The first set, harmonic 5-Tasks, contained
five periodic tasks with harmonic periods.�� The first period
was fixed, and the remaining periods were chosen randomly,
so that the ratio between adjacent periods was an integer uni-
formly distributed between two and four. The second set, ar-
bitrary 5-Tasks, contained five periodic tasks with arbitrary
(i.e. non-harmonic) periods. The first period was fixed, and
the remaining periods were randomly chosen, with the ratio
between adjacent periods being a real number uniformly dis-
tributed between two and six.

For our experiments, we pre-determined the resource re-
quirement of each job, so that all algorithms were run on the
identical scheduling problem. While we ran sets of different
random systems, the results presented below show one run of
a given set of randomly generated systems and are represen-
tative. We have also run experiments for significantly longer
and shorter simulation periods, with comparable results.

Our experiments were run with different probability dis-
tributions used to generate the variable resource requests. We
considered exponential, gamma, poisson, normal, uniform,
and pareto distributions, as well as constant resource require-
ments, to determine if the gross behavior of the algorithms
changed. We found that it did not. In this paper we restrict
our presentation to the results we obtained for the poisson
distribution. The poisson distribution was chosen because it
is frequently used to model data arrivals. In real-time sys-
tems, a periodic task may well be responsible for processing
all events that arrive within a period of time (hence the vari-
ability in execution requirements).

��The small size of our task sets was chosen to permit comparison against
the optimal oracles discussed earlier.

Experiments with Harmonic Task Sets: First, we com-
pare the performance of the various algorithms to those of
the oracles we developed for harmonic task sets. Figure 4
shows that OPT-J forms a clear performance upper bound for
RMS. This is expected since OPT-J maximizes the comple-
tion count. RMS attempts to maximize the completion count
by giving preference to tasks with shorter periods (i.e. those
likely to contribute “more” to the completion count due to
their frequent jobs).

RMS
OPT−J

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Utilization Requested

Jo
b

Fa
ilu

re
 R

at
e

Figure 4. JFR of RMS vs OPT-J for harmonic 5-
Tasks with poisson PDFs.

While RMS attempts to optimize the completion count,
both SRMS and SSJAC do not. With all tasks given the same
percentage utilization (and requesting the same percentage
utilization), both SRMS and SSJAC attempt to fairly dis-
tribute the resource among all tasks. This is similar to the
function maximized by OPT-T, which gives each task equal
value. Figure 5 shows that OPT-T forms a clear performance
upper bound for both SRMS and SSJAC.

OPT−T

SRMS

SSJAC

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Utilization Requested

Jo
b

Fa
ilu

re
 R

at
e

Figure 5. JFR of SRMS/SSJAC vs OPT-T for har-
monic 5-Tasks with poisson PDFs.

We also compared the performance of SRMS, RMS and
SSJAC, as shown in Figures 4 and 5. As expected, SRMS
outperformed both RMS and SSJAC by a wide margin. Two
factors contribute to SRMS superiority. First, SRMS attempts
to assign the resource fairly to all tasks. Thus, no outlier
tasks significantly reduce the job failure rate, and deadlines
are missed fairly by the different tasks. Second, the ratio be-
tween adjacent periods is guaranteed to be at least two. This
permits aggregation of at least two jobs, which increases the
smoothing gained (we will discuss the significance of the ra-
tio between adjacent periods at the end of this section).

As mentioned previously, RMS attempts to maximize the
completion count which does not result in the maximization
of the job failure rate. However, when the system is not
in overload RMS may have performance superior to SRMS.
This is because SRMS is pessimistic and more reactive to po-
tential overload than RMS; SRMS may reject a job that could
actually make its deadline without damaging effects if it were
scheduled at an accepted priority. This can occur if one task
in the system is in overload, but the others are not, and the
overall system is not in overload.

SSJAC gains most of its advantage by scheduling the ex-
tra one third of the utilization which SRMS and RMS cannot
guarantee. However, with harmonic periods, full utilization
can be auctioned by both RMS and SRMS. Therefore, SSJAC
edge is not likely to be evident when the task set is harmonic.
Additionally, SSJAC can only acquire extra slack from the
past. It cannot schedule an extra long job with the assump-
tion that it can steal that time from the future, as SRMS
does. Nonetheless, it does succeed in preventing one task
from harming a guaranteed job of another task. In serious
overload, SSJAC does perform better than RMS.

RMS

SRMS

SSJAC

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

Utilization Requested

St
an

da
rd

 D
ev

ia
tio

n
fro

m
 J

ob
 F

ai
lu

re
 R

at
e

Figure 6. Intertask Unfairness for harmonic 5-
Tasks with poisson PDFs.

Looking at the intertask unfairness shown in Figure 6,
similar patterns apply. RMS is completely fair until it be-
comes overloaded. This is the case because no jobs miss
their deadlines! However, as soon as deadlines are missed,
the intertask unfairness for RMS rises rapidly, because RMS
is extremely unfair in penalizing lower priority tasks. As the
system becomes more overloaded, SRMS' intertask unfair-
ness increases, but still manages to be the least of all three al-
gorithms. SRMS' unfairness increases because of time inher-
itance; tasks with shorter periods will have jobs rejected. The
unspent budgets of those tasks are added to the budgets of
lower-priority (longer-period) tasks, thus improving the out-
look for those tasks, and hence increasing SRMS' intertask
unfairness. SSJAC exhibits an intertask unfairness between
RMS and SRMS. SSJAC is better than RMS, because a set
percentage of jobs for every task are admitted, since their re-
quirements are below the threshold. However, SSJAC per-
forms worse than SRMS because it distributes its slack on a
FCFS basis.

Experiments with Arbitrary (non-harmonic) Task Sets:
The results for task sets with arbitrary (non-harmonic) pe-

riods were similar to those obtained for harmonic task sets.
As evident in Figure 7, RMS performs best before overload.
As soon as overload occurs, SRMS has the best job failure
rate throughout most of the overloaded area. However, when
the overload becomes severe, SSJAC occasionally does better
than SRMS. We believe that this is due to two factors. First,
SSJAC usually has significant slack to distribute, which is the
unguaranteed time, nearly a third of the resource. Second, in
overload, SSJAC will reclaim even more time to redistribute,
because more jobs will be rejected and not take any of their
guaranteed allowances.

RMS

SRMS

SSJAC

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

Utilization Requested

Jo
b

Fa
ilu

re
 R

at
e

Figure 7. JFR for arbitrary 5-Tasks with poisson
PDFs.

Figure 8 shows that the intertask unfairness observed for
task sets with arbitrary periods is also similar to that observed
for harmonic task sets. The main difference is that SSJAC
may have better performance than SRMS under serious over-
load. For a few experiments, even RMS achieved lower un-
fairness.

RMS

SRMS

SSJAC

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50

Utilization Requested

St
an

da
rd

 D
ev

ia
tio

n
fro

m
 J

ob
 F

ai
lu

re
 R

at
e

Figure 8. Intertask Unfairness for arbitrary 5-
Tasks with poisson PDFs.

Figure 9 shows the achievable utilization for arbitrary task
sets. Until overload is reached, RMS (again) delivers the best
utilization with SRMS a close second. In overload, SRMS is
a clear winner. This result is somewhat surprising. Although
SSJAC can distribute nearly an extra one third of the utiliza-
tion, it does not do better than SRMS.

5.4. Effect of Aggregation

As we iterated several times in this paper, one of the main
tenets of SRMS is that the variability in periodic resource
utilization for a given task can be smoothed through aggre-

RMS

SRMS

SSJAC

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization Requested

U
til

iz
at

io
n

Pr
ov

id
ed

Figure 9. Resource Utilization for arbitrary 5-
Tasks with poisson PDFs.

gation over time (see Lemma 1) and across tasks (see the ex-
tensions in section 4). Such an aggregation is most (least)
effective when the ratio of adjacent periods (i.e. Pi���Pi) is
large (small).

Although we could not include them in this paper (for
space limitations), we have conducted extensive experiments
to study the sensitivity of SRMS to the ratio of adjacent peri-
ods. We found that SSJAC does slightly better than SRMS in
overload as long as the ratio of adjacent periods is less than
two. The regions and shape of the intersection varies depend-
ing upon the probability distribution examined. While this
is interesting for characterizing the algorithms, the overhead
needed for SSJAC is significantly higher than that of SRMS,
making SRMS much more attractive even when the ratio of
adjacent periods is less than two.

6. The SRMS Workbench

For demonstration purposes, we have packaged: (1) the
SRMS schedulability analyzer (QoS negotiator), and (2) our
SRMS simulator (Basic SRMS + all extensions) into a Java
Applet that can be executed remotely on any Java-capable
Internet browser. For comparison, a RMS simulator and a
SSJAC simulator are included.

Through a simple GUI, the SRMS Workbench allows users
to specify a set of periodic tasks, each with (a) its own pe-
riod, (b) the distributional characteristics of its periodic re-
source requirements (e.g. Poisson, Pareto, Normal, Expo-
nential, Gamma, etc.), (c) its desired QoS as a lower bound
on the percentage of deadlines to be met, and (d) a critical-
ity/importance index indicating the value of the task (relative
to other tasks in the task set). Once the task set is specified,
the SRMS Workbench allows the user to check for schedula-
bility under SRMS. If the task set is schedulable, the SRMS
Workbench generates the appropriate allowance for each task
and allows the user to create an animated simulation of the
task system, which can be executed and profiled. If the task
set is not schedulable, the SRMS Workbench informs the user
of that fact and suggest (as part of the QoS negotiation) an
alternative set of feasible QoS requirements that reflects the
specified criticality/importance index of the tasks in the task
set.

The SRMS Workbench is available at: http://www.
cs.bu.edu/groups/realtime/SRMSworkbench

7. Conclusion and Future Work

In this paper, we have introduced Statistical Rate Mono-
tonic Scheduling (SRMS)—an algorithm that schedules firm-
deadline periodic tasks with variable resource requirements.
In addition to providing a predictable scheduling algorithm
for this type of periodic task, SRMS is value-cognizant,
overload-cognizant, predictable, configurable and enforces
task isolation. The job admission control used in SRMS in-
troduces a low overhead of constant complexity. SRMS max-
imizes useful system utilization by not wasting resources on
jobs which will fail. The SRMS enforces task isolation, so
that no task can adversely affect another task. This permits
SRMS to be overload-cognizant on an individual task basis;
the responses caused by the overload only affect the misbe-
having task. Additionally, quality of service (QoS) guaran-
tees can be specified for each task[1]. SRMS also permits in-
tratask fairness; a job with a large resource requirement can
still be admitted, and a job with a small resource requirement
can be rejected.

Our current work focuses on deploying SRMS in work-
ing real-time environments. In particular, we are examing a
framework where the task set is allowed to change dynam-
ically (i.e. new periodic tasks can enter the system and old
ones can leave). To that end, we are designing an API suit-
able for SRMS, which would allow for QoS specification,
negotiation, and for on-line task admission control, including
notification of job admission or rejection decisions.

We plan to analyze the case of tasks where the deadlines
are either shorter or longer than their periods. The former
case for hard deadlines has been solved using deadline mono-
tonic scheduling. We believe that a similar approach will
work for SRMS; the key detail is defining the correct task
transformation. The case of deadlines longer than their dead-
lines is more easily solved; the solution for RMS involves
different priority bands of rate-monotonically ordered tasks.
SRMS already has such bands for accepted and rejected jobs.
To transform SRMS to have more bands would not be diffi-
cult. The complexity will come from determining when and
which budgets should be debited to support a given job.

References

[1] A. K. Atlas and A. Bestavros. Multiplexing vbr traffic flows
with guaranteed application-level qos using statistical rate
monotonic scheduling. Technical Report BUCS-TR-98-011,
Boston University, Computer Science Department, 1998.

[2] A. K. Atlas and A. Bestavros. Slack stealing job admission
control. Technical Report BUCS-TR-98-009, Boston Univer-
sity, Computer Science Department, 1998.

[3] S. Baruah, J. Haritsa, and N. Sharma. On line schedul-
ing to maximize task completions. In Real-Time Sys-
tems Symposium, pages 228–237, Dec. 1994. URL is
http://www.emba.uvm.edu/ sanjoy/Papers/cc-jnl.ps.

[4] G. Bernat and A. Burns. Combining (n m)-hard deadlines and
dual priority scheduling. In Real-Time Systems Symposium,
pages 46–57, 1997.

[5] K. Bradley and J. K. Strosnider. An application of complex
task modeling. In Real-Time Technology and Applications
Symposium, pages 85–90, June 1998.

[6] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin. Scheduling periodic
jobs that allow imprecise results. IEEE Transactions on Com-
puters, 39(9):1156–1174, Sept. 1990.

[7] C.-C. Han and H. ying Tyan. A better polynomial-time
schedulability test for real-time fixed-priority scheduling al-
gorithms. In Real-Time Systems Symposium, pages 36–45,
1997.

[8] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. In Real-Time
Systems Symposium, 1995.

[9] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic schedul-
ing algorithm: Exact characterization and average case behav-
ior. In Real-Time Systems Symposium, pages 166–171, 1989.

[10] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the
ACM, 20(1), 1973.

[11] M. Marucheck and J. Strosnider. An evaluation of the
graceful degradation properties of real-time schedulers. In
The Twenty Fifth Annual International Symposium on Fault-
Tolerant Computing, June 1995.

[12] A. K. Mok and D. Chen. A multiframe model for real-time
tasks. In Real-Time Systems Symposium. IEEE Computer So-
ciety Press, Dec. 1996.

[13] S. Ramos-Thuel and J. P. Lehoczky. Algorithms for schedul-
ing hard aperiodic tasks in fixed-priority systems using slack
stealing. In Real-Time Systems Symposium. IEEE Computer
Society Press, Dec. 1994.

[14] K. G. Shin and Y.-C. Chang. A reservation-based algorithm
for scheduling both periodic and aperiodic real-time tasks.
IEEE Transactions on Computers, 44:1405–1419, Dec. 1995.

[15] B. Sprunt. Aperiodic task scheduling for real-time systems.
PhD thesis, Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA, Aug. 1990.

[16] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting unused pe-
riodic time for aperiodic service using the extended priority
exchange algorithm. In Real-Time Systems Symposium, 1988.

[17] J. K. Strosnider. Highly responsive real-time token rings. PhD
thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, Aug. 1988.

[18] T. G. Tan and W. Hsu. Scheduling multimedia applications
under overload and non-deterministic conditions. In Real-
Time Technology and Applications Symposium, June 1997.

[19] S. R. Thuel. Enhancing Fault Tolerance of Real-Time Sys-
tems through Time Redundancy. PhD thesis, Carnegie Mellon
University, May 1993.

[20] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu,
and J. W.-S. Liu. Probabilistic performance guarantees for
real-time tasks with varying computation times. In Real-
Time Technology and Applications Symposium, pages 164–
173, May 1995.

[21] M. Woodbury. Analysis of the execution time of real-time
tasks. In Real-Time Systems Symposium, pages 89–96, 1986.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

