Design and Implementation of
Statistical Rate Monotonic Scheduling in KURT Linux*

Alia Atlas!
Dept of Internetwork Research
BBN Technologies
Cambridge, MA 02138

Azer Bestavros
Computer Science Department
Boston University
Boston, MA 02215

{akatlas, best}@cs.bu.edu

Abstract

We present the design and implementation of Statistical
Rate Monotonic Scheduling (SRMS) [1] on the KURT
Linuz Operating System [{, 10, 9]. We overview the
technical issues we had to address to integrate SRMS
into KURT Linux and present the API we have developed
for scheduling periodic real-time tasks using SRMS.

1. Introduction and Related Work

SRMS allows the scheduling of periodic tasks with highly
variable execution times and statistical QoS require-
ments. It enforces task isolation (the firewall property)
so that tasks cannot interfere with each other. SRMS
wastes no resource bandwidth on jobs that will miss
their deadlines due to overload conditions, resulting from
excessive variability in execution times. SRMS is cog-
nizant of the value of various tasks in the system; thus
under overload conditions, the deterioration in QoS suf-
fered by various tasks is inversely proportional to their
value. The SRMS scheduling algorithm and schedula-
bility analysis are computationally efficient. A detailed
description of SRMS is available in [1].

SRMS: The SRMS algorithm consists of two parts: a
job admission controller and a scheduler. Like RMS, the
SRMS scheduler is a simple, preemptive, fixed-priority
scheduler, which assigns the resource to the job with
the highest priority that is in need of the resource.
The SRMS job admission controller is responsible for
maintaining the QoS requirements of the various tasks
through admit/reject and priority assignment decisions.
In particular, it ensures the important property of task
isolation (temporal protection), whereby tasks do not
infringe upon each other’s guaranteed allowances. Job
admission control occurs at a job’s release time. All
admitted jobs are guaranteed to meet their deadlines
through a priority assignment that is rate monotonic.

*Partially supported by NSF research grant CCR-9706685.
TResearch completed while co-author was at Boston University.

Jobs that are not admitted may be either discarded, or
allowed to execute at a priority lower than that of all
admitted jobs.

OS Support for Real-Time Scheduling: A key
problem with priority-based algorithms is that there is
no temporal protection; a misbehaving task can damage
the performance of other tasks [6]. RMS was imple-
mented in RT-Mach using procesor capacity reserves [7]
and a policing mechanism. In the Rialto OS, a graph-
based scheduling algorithm was implemented to provide
guaranteed periodic CPU reservations as well as to guar-
antee aperiodic tasks [5]. Other efforts have focused on
guaranteeing CPU fairness, as defined by a proportional
share discipline. In [11], Yau and Lam introduced Adap-
tive Rate-Controlled Scheduling (RCS) and discussed an
implementation in the Solaris UNIX operating system.
A similar approach was given by Nieh and Lam [8].

Linux Real-Time Kernels: Linux is an increasingly
popular free Unix-clone OS. In [13, 12], Yodaiken and
Barabanov introduce Real-Time Linux, which supports
hard real-time applications. The implementation inserts
a small hard real-time kernel into the system, with the
normal Linux kernel running as the lowest priority task.
Interrupts are caught by the real-time kernel and are
passed to the Linux kernel. This insulates real-time
tasks from timing uncertainties caused by the Linux ker-
nel. However, it also means that real-time tasks have no
access to any Linux kernel services. A more general ap-
proach has been explored by Hill et al. in [4, 10, 9].
Their version of real-time Linux (called KURT Linux)
supports firm and soft deadlines. The kernel smoothly
transitions from (1) standard Linux scheduling to (2)
scheduling only real-time tasks or to (3) scheduling all
tasks. The scheduling of real-time tasks is done via a
table of timed events. KURT Linux allows real-time
tasks to access kernel functions and resources, but it
provides no support for scheduling, admission control,
or QoS specification/negotiation for periodic task sets.
As decribed later, we have implemented all of these ca-
pabilities for KURT Linux using SRMS.

2. Supporting SRMS on KURT Linux

KURT Linux is designed for non-hard-deadline (i.e. soft
or firm deadline) real-time tasks, which may require use
of kernel functions. KURT Linux provides microsecond
time resolution for event scheduling. It has an API for
transitioning into and out of real-time mode. To support
real-time tasks, it requires that real-time tasks register
and that periodic tasks undergo an admission test. The
extant of real-time scheduling in KURT Linux is table-
based. A file with a list of events is supplied and used
for scheduling; each event consists of the time it should
occur and the function which should be called at that
time.

2.1. Interrupt Handling in KURT Linux

KURT Linux presents some challenges to an implemen-
tation of any real-time scheduling algorithm. While
KURT Linux reduces the work done in an interrupt,’
it does not isolate tasks from the timing uncertainties
caused by such an interrupt. This is acceptable, since
it is targetted to support soft/firm real-time tasks. In
KURT Linux, interrupts are not delayed; they can occur
at any point.

When an interrupt occurs, most interrupt service
routines set a flag, indicating that work needs to be
done; the system must schedule it. This remaining work
is known as the bottom half of the ISR. In normal Linux,
the bottom halves are completed every time the sched-
uler is run. Clearly, intelligent scheduling of the bottom
halves of interrupts is necessary to minimize priority in-
version. This presented a serious implementation chal-
lenge that we had to address, as described later in this
section.

2.2. Assigning Overhead Coststo Tasks

SRMS as described in [1] does not consider any operat-
ing system or scheduling overheads. Operating system
overheads are due primarily to the management of in-
terrupts. As discussed above, interrupts consist of two
parts—the ISR and the bottom half. The overheads for
each one of these two parts must be treated in a dif-
ferent manner due to the asynchronous nature of ISR
overheads versus the synchronous nature of bottom-half
overheads. Scheduling overheads are due to the need of
SRMS to determine which task should be scheduled next
and to swap that task into the CPU.

Accounting for Scheduling Overhead: First, we
considered the scheduling overhead. We assumed that
a task cannot voluntarily suspend execution.? Each job
preempts the CPU exactly once and voluntarily releases
it once.

nterrupt overhead averages 7useconds.

2Not permitting a task to voluntarily suspend is a common
requirement in real-time scheduling; at the ready-time, the entire
job must be ready.

This observation provides a convenient method to
upper bound the scheduling overhead of each task.
When a task 7; preempts a lower priority task, which
it does once, the task 7; is charged with the scheduling
overhead. Similarly, when the task 7; releases the CPU
voluntarily to a lower priority task, task 7; is charged
with the scheduling overhead. Thus, the time it takes
to run the scheduler and to swap processes is always
charged to the higher priority process. If a task needs to
suspend (waiting for an interrupt) the extra preemption
overheads must be considered for calculation of the job’s
resource requirement.

Accounting for Interrupt Overheads: Certain
types of real-time tasks may require that interrupts be
used®, whether it be for disk I/O or network traffic.
While it is possible to mask off interrupts, it is not
desirable for long periods, since meaningful interrupts
may be missed. Therefore, a task will suffer overhead
from interrupts. To give some perspective on the size of
this overhead, the overhead of having an event timer go
off and call the correct process takes over 50 pseconds,
while an interrupt takes an average of 7 useconds. The
OS overhead due to interrupts can only be estimated
as a function of a given job’s expected execution time
and the system of tasks’ usage of interrupt-driven kernel
services.

Dealing with Priority Inversion Due to Schedul-
ing Interrupt Bottom Halves: When an ISR is run,
it may set a flag indicating the kernel should complete
some specific work, known as the interrupt’s bottom half.
Ideally, the bottom half of each interrupt would be run
by the task which required the services supplied by that
interrupt. We assume that each interrupt will wake up
a given task. When the scheduler determines if a task
is ready to be scheduled, it can also check if the task
is waiting on an interrupt whose ISR has been run,
but whose bottom half has not been scheduled. If so,
then the scheduler could run the appropriate bottom half,
which would wake up the task. That task would then be
charged with the overhead of running the bottom half.

Even with this ideal situation, the problems of prior-
ity inversion would not be eliminated. If a higher prior-
ity task’s interrupt occurs immediately after the sched-
uler has swapped in a lower priority task, then the higher
priority task must wait for the next scheduling event.
One could modify all ISRs such that the scheduler is
called if the ISR is associated with a higher priority task.
However, this would require modifications to all possible
drivers, and would still not eliminate all priority inver-
sion. Priority inversion is inevitable, because the higher
priority task is not scheduled while it is awaiting the
interrupt.

The above situation would be ideal in that each task
would be charged for the execution of the interrupt bot-

3Every 10 ms a heartbeat event interrupt is scheduled to main-
tain any kernel services which depend on that timer.

tom halves which it required. Unfortunately, there is no
support in the kernel to permit associating interrupts
with the tasks which are waiting upon them. Instead,
we chose a compromise design as follows.

Normally, the scheduler selects the highest priority
task with work to do. To do this, the scheduler checks
each task sequentially, from highest priority to lowest.
In this check, if the scheduler finds a task which is wait-
ing on an interrupt before it finds a task with work to
do, then the scheduler runs the bottom halves of the in-
terrupts. If the task which was waiting is awaken, then
the scheduler has its selection; otherwise it proceeds.
The bottom halves are run at most once every schedul-
ing event.

This solution bounds the potential priority inversion
to be the length of the shortest period in the system.
The time to run the bottom halves is considered to be
part of the scheduling overhead and is charged to the
higher priority task of those swapped out and in. The
waiting high priority task will frequently be charged the
cost of running the bottom halves.

2.3. Task Management and Control

Enforcing Resource Requirements through Polic-
ing: An assumption of SRMS is that the scheduler has
knowledge of a job’s resource requirement as soon as it is
released. In an actual operating system, this assumption
is usually false and potentially dangerous. Therefore,
rather than subtracting the job’s execution time from its
task’s budget when the job is released and admitted, the
actual execution time is subtracted from the budget once
it is spent. An accurate calculation of a job’s execution
time will require execution time to complete, and there-
fore this knowledge will not be available when the job is
released. The overhead to calculate the execution time,
if known, can be taken into account in calculating the
quality of service for the task. Malicious tasks may also
lie about a job’s expected execution time, in an attempt
to acquire more CPU time. To protect against malicious
tasks and tasks which cannot accurately compute their
execution times, a policing mechanism is necessary.

The policing mechanism we employ consists of set-
ting a scheduler event to occur immediately before the
task can spend more time than is available in its budget.
The delay from when the task is scheduled to this event
is the task’s budget minus the one scheduling overhead
for releasing the CPU to a lower priority task.

Scheduler Events: The job of the scheduler is to swap
in the chosen task and to set an interrupt for the next
time at which the scheduler should be run. It is only nec-
essary to specify the time of the next scheduling event.
The time of the next event can be determined simultane-
ously when deciding which task should be given the pro-
cessor. This decision is quite simple, namely the highest
priority task with work to do is scheduled and the next
scheduling event should occur at the earliest release time

/* returns the period of the server */
unsigned long get_server_period(void);

/* returns the utilization of the server */
float get_server_util(void);

/* returns old period if successful (else -1) */
long set_server_period(unsigned long new_period);

/* returns old utilization if successful (else -1) */
float set_server_util(float new_util);

Figure 1. API for conventional tasks

——————— | P - - - P o - === - —p - == o

1 Blocked 1 Blocked | R.T execution l Blocked |
(G 1 . (¢ I :
) L R R o
Submit Task et QoS Acceptance Wait for Added to Unregister | Confirm
and Get RT_id Agmission withQoS ~ Start Scheduler Task Unregistration

Figure 2. Timeline of a Periodic Task

of any equal- or higher-priority task.

That calculation for the scheduling event does not
consider the policing required. The policing mecha-
nism determines the time of the budget-constrained
scheduling event, as described above. The earlier of
the budget-constrained scheduling event and the release
time scheduling event is selected and set to trigger the
scheduler at that time, using KURT Linux’s built-in
event timing mechanism.

Recovery from Missed Deadlines: Some jobs will
not be allowed to run to completion under SRMS. This
may happen either because the job was rejected or be-
cause the job attempted to use more time than was avail-
able in its remaining budget. In both cases, the process
must be cleaned up so it is ready to run its next job.
This clean-up could occur either at the end of the missed
job or at the beginning of the next accepted job. If the
clean-up occurs at the end of the missed job, then the
execution time of the clean-up routine must be known.
Moreover, a job may fail due to the need to guarantee
the overhead to clean it up, if it fails. Therefore, we
choose to consider the time required to clean-up a previ-
ously failed job as part of the execution time of the next
job.

For a newly-released job, when it is scheduled for
the first time, if the previous job failed, the scheduler
will send the process a signal. The process will catch
this signal and clean up to prepare to run the next job.
When the signal handler exits, the process is manipu-
lated so that the signal handler exits to the beginning of
its periodic loop, where it will start executing the next
job.

3. The SRMS API

KURT Linux provides three different modes—normal
Linux, focused real-time, and mixed conventional and
real-time. In this API, we assume that the mixed
scheduling mode is in effect. All real-time tasks are as-
sumed to be periodic;* they may appear (i.e. be re-
leased) in the system at any time and they may be re-
moved (i.e. be terminated) from the system at any time.

To ensure that conventional tasks are not starved, a
periodic server is created to service conventional tasks.
By default, the server’s period is set to five times the
maximum real-time task period. The utilization of the
server is adjustable. The functions shown in Figure 1 al-
low access and modification of the period and utilization
for the conventional task server.

/* Returns granted QoS (0 if below min_QoS) */
float request_QoS_admission(desired_QoS,min_QoS);

/* Returns granted QoS or blocks until at least
min_QoS is guaranteed. */
float await_QoS_admission(RT_id,desired_QoS,min_QoS);

Figure 3. API for task admission with QoS

A real-time task has three basic stages. First, it must
register as a real-time task and request admission with
a given minimum QoS. Once admitted, the task must
execute periodically, as expected. Finally, the task must
unregister when it has completed execution. The time-
line of a task’s existence is illustrated in Figure 2.

Registration: The registration of a task as a real-time
task is a straightforward extension of what is supplied
by KURT Linux. As seen in Figure 4, the rtparams
structure is increased to include the task’s importance,
a pointer to an array of sample execution times, and the
number of samples in that array. Once a task has called
set_rtparams, its information is stored with the kernel.

Admission with QoS: No resources are given to a task
until it has been admitted to the system. To request
admission, there is a choice of a blocking call and a non-
blocking call, as shown in Figure 3. An example using
the non-blocking call is shown in Figure 4. The non-
blocking call request_QoS_admission checks if the task
can gain admittance with (at least) the specified min-
imum QoS. If this cannot be immediately guaranteed,
then no resources are allocated to the task, and a QoS
of 0 is returned. If a QoS between the minimum and the
requested QoS can be guaranteed, then the allowance
is set so as to allocate the appropriate resources to the
task and the promised QoS is returned. The blocking

4Dealing with aperiodic real-time tasks is possible by modeling
the aperiodic task as a periodic one and terminating it at the end
of its first period.

function await_QoS_admission does not return until at
least the minimum QoS has been guaranteed. If this is
not possible when the function is first called, then the
task is blocked. Whenever an admitted periodic task
leaves the system (or decreases its QoS), an effort is
made to admit such blocked tasks in order of impor-
tance. The await_QoS_admission function depends on
the assumption that some tasks will eventually complete
and unregister themselves.

void failedJob_handler(int jobnum)
{

/* Clean up from failed job and prepare for new one
* On return from this signal handler, process will
* wake up after await_scheduling() call. */

int main(int argc, char * argv[])
{
int num_samples = NUM_SAMPLE_EXEC_TIMES;
unsigned long sample_execs[NUM_SAMPLE_EXEC_TIMES];
struct rtparams myRTparams;
int myRT_id;
float myQoS;

/* Fill in sample_execs from a file or memory. */
myRTparams = {
/* RT id for this process */ ASSIGN_RT_ID,
/* rate-monotonic priority */ ASSIGN_RT_PRIORITY,
/* importance of task (1 - 99) */ 1,
/* array of sample exec times) */ sample_execs,
/* length of sample exec array */ num_samples,
/* period in microseconds */ 33000

};

/* Now, register with the kernel as a RT process */
myRT_id = set_rtparams(
/* pid, 0 if current process */ 0,
/* process type */ SCHED_KURT,
/* RT parameter info */ &myRTparams);
signal (RT_JOB_FAILED, failedJob_handler);
myQoS = await_QoS_admission(myRT_id, 80.0, 50.0);
while (haveWork) {
jobnum = await_scheduling();
/* The budget returned has scheduling/0S overheads
* subtracted for this job of the task. */
budget = get_RTbudget();
if (budget > CALCULATE_TIME)
execTime = myCalculateExec(jobnum);
/* Allow job admission control to set priority
* of job properly. admit_RTjob returns 1
* if the job is admitted and O otherwise. */
admitted = admit_RTjob(execTime);
/* If job was rejected, it runs at low priority */
haveWork = do_work();
}
unregisterRT (myRT_id) ;
exit (0);
}

Figure 4. Example real-time user process

Periodic Execution: Once a task has registered and
been admitted, it is ready to be scheduled. To support
periodic execution of a task, we designed a function call
await_scheduling which blocks the task until a new
job of that task is released and available for scheduling.
The number of the newly released job is returned. This

while (haveWork) {
jobnum = await_scheduling();
haveWork = do_work();

while (haveWork) {
jobnum = await_scheduling();
/* The budget returned has scheduling and 0S
* overheads subtracted for this job of the task. */
budget = get_RTbudget();
/* myPickAlgorithm selects which algorithm
* should be used and returns its required
* execution time. PICK_TIME is the time
* needed to run the myPickAlgorithm function. */
execTime = myPickAlgorithm(budget - PICK_TIME,
jobnum, &alg);
/* Allow job admission control to set priority
* of job properly */
admitted = admit_RTjob(execTime);
/* If job was rejected, the fastest algorithm was
* picked, so try at the low priority. */
do_work(alg);

Figure 5. APl use cases: Task ignorant of exec
times (top) and Design-to-time task (bottom)

function is used before any jobs are released and between
the completion of one job and the release time of the
next.

In addition to the proper use of await_scheduling,
a task must either catch an RT_JOB_FAILED signal
or use the void ignore_jobfail_ signal(/* int */
TRUE) function to report to the scheduler that job fail-
ures should be ignored and not reported. This option
is useful for a task with a soft deadline, which needs to
complete the work of a job even after its deadline.® The
signal handler should clean up any remnants of the failed
job and restore a pristine state, as expected by a newly
released job of that task.

There are three different possible task models which
we have designed APIs for. The first API is to sup-
port tasks which have no method of determining what
the execution time of a job will be. A sample loop for
the periodic execution is given in Figure 5 (top). The
second API is for a task which has accurate knowledge
of its jobs’ execution times and of the time it will take
to compute those execution times. An example of this
default API is shown in Figure 4. The third API is for
design-to-time tasks; such tasks can select which proce-
dure to use depending upon the time available for the
execution [3, 2]. An example task is shown in Figure 5
(bottom).

Unregistration: Once a task has completed its execu-

5The ignore_jobfail_signal is also used by the kernel during
the unregisterRT function.

tion, the task must notify the system. To do so, void
unregisterRT(int myRT_id) is used. It recalculates
the allowance of the next higher priority task and waits
until it is safe to have that allowance changed. Then it
changes the allowance of that next higher priority task
and removes the time allocation of the task which is un-
registering. Finally, it removes all information about the
task. Once unregisterRT returns, the task is no longer
considered a real-time task and is free to exit or continue
executing, as its application demands. A simple exam-
ple process, illustrating the registrating, QoS admission,
signal handling, periodic execution, and unregistering is
shown in Figure 4.

References

[1]
[2]
[3]

[4]

[5]

[9]

[10]

[11]
[12]

[13]

A. K. Atlas and A. Bestavros. Statistical rate monotonic
scheduling. In IEEE Real-Time Systems Symposium,

Dec. 1998.
P. Binns. Incremental rate monotonic scheduling for im-

proved control system performance. In Real-Time Tech-
no%z{_)gy and Apf)lications Symposium, June 1997.)

J.-Y. Chung, J. W. S. Liu, and K.-J. Lin. Scheduling
periodic jobs that allow imprecise results. IEEE Trans-

actions on Computers, 39%9):1156—1174, Sept. 1990.
R. Hill, B. Srinivasan, S." Pather, and D. Niehaus.

Temporal resolution and real-time extensions to linux.
Technical Report ITTC-FY98-TR-11510-03, Informa-
tion and Telecommunication Technology Center, De-
partment of Electrical Engineering and Computer Sci-

ences, University of Kansas, June 1998. .
M. B. Jones, D. Rosu, and M.-C. Rosu. Cpu reservations

and time constraints: Efficient, predictable scheduling of
independent activities. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles, Oct.

1997.
C. W. Mercer, R. Rajkumar, and J. Zelenka. Temporal

Protection in Real-Time Operating Systems. In Pro-
ceedings of the 11th IEEE Workshop on Real-Time Op-

erating 1\‘S/l‘i,lé;tems and Software, pages 79-83, May 1994.
C. W. Mercer, S. Savage, an . Tokuda. Processor

Capacity Reserves for Multimedia Operating Systems.
In Proceedings of the IEEE International Conference on

Multimedia Computing and Systems, May 1994.
J. Nieh and M. S. Lam. The design, implementation and

evaluation of smart: A scheduler for multimedia applica-
tions. In Proceedings of the Sizteenth ACM Symposium

on Operating S}yftems Principles, Oct. 1997. .
B. Srinivasan. A firm real-time system implementation

using commercial off-the-shelf hardware and free soft-
ware. Master’s thesis, Department of Electrical Engi-
neering and Computer Science, University of Kansas,

June 1998.
B. Srinivasan, S. Pather, R. Hill, F. Ansari, and

D. Niehaus. A firm real-time system implementation us-
ing commercial off-the-shelf hardware and free software.
In Real-time Technology and Applications Symposium,

ages 112-119, June 1998.
%gK Y. Yau and S. S. Lam. Adaptive rate-controlled

scheduling for multimedia applications. In ACM Multi-
media, 1996.

V. Yodaiken. The RT-Linux approach to hard real-
time. Paper available online on the web at URL:

htt ://rtlinux.cs.nmt.edu{)rtlinuwahitepaper/short.html.
V. Yodaiken and M. Barabanov. A real-time linux. On-

line at http://rtlinux.cs.nmt.edu/ rtlinx/u.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

