A Divide-and-Conquer Algorithm for Betweenness Centrality *

Déra Erdés | Vatche Ishakian®

Azer Bestavros Evimaria Terzi

January 26, 2015

Abstract

Given a set of target nodes S in a graph G we define
the betweenness centrality of a node v with respect
to S as the fraction of shortest paths among nodes
in S that contain v. For this setting we describe
Brandes++, a divide-and-conquer algorithm that can
efficiently compute the exact values of betweenness
scores. Brandes++ uses Brandes— the most widely-
used algorithm for betweenness computation — as its
subroutine. It achieves the notable faster running times
by applying Brandes on significantly smaller networks
than the input graph, and many of its computations can
be done in parallel. The degree of speedup achieved by
Brandes++ depends on the community structure of the
input network as well as the size of S. Our experiments
with real-life networks reveal Brandes++ achieves an
average of 10-fold speedup over Brandes, while there are
networks where this speedup is 75-fold. We have made
our code public to benefit the research community.

1 Introduction

In 1977, Freeman [10] defined the betweenness centrality
of a node v as the fraction of all pairwise shortest paths
that go through v. Since then, this measure of centrality
has been used in a wide range of applications including
social, computer as well as biological networks.

A naive algorithm can compute the betweenness
centrality of a graph of n nodes in O(n?) time. This
running time was first improved in 2001 by Brandes [4]
who provided an algorithm that, for a graph of n
nodes and m edges, does the same computation in
O(nm+n2logn). The key behind this algorithm, which
we call Brandes is that it reuses information on shortest
path segments that are shared by many nodes.

This research was supported in part by NSF awards PFI
BIC #1430145, SaTC Frontier #1414119, CPS #1239021, CNS
#1012798, 111 #1218437, CAREER #1253393, 1IS #1320542 and
gifts from Google and Microsoft.

TBoston University, Boston
evimaria] @cs.bu.edu

fIBM T. J. Watson Research Center,
vishaki@Qus.ibm.com

MA [edori, best,

Cambridge MA

Over the years, many algorithms have been pro-
posed to improve the running and space complexity of
Brandes. Although we discuss these algorithms in the
next section, we point out here that most of them ei-
ther provide approximate computations of betweenness
via sampling [2, 6, 11, 23], or propose parallelization of
the original computation [3, 18, 27, 9.

While we consider the general problem of between-
ness centrality computation, we focus on a particular
setting where a target set of nodes S (subset of the nodes
in the graph) is given and the goal is to compute the be-
tweenness centrality of a node v with respect to S; i.e.,
the fraction of shortest paths containing v connecting
any two nodes in S. This setting arises in many appli-
cations where there is a set of prominent nodes in the
network and only the paths to these nodes are consid-
ered valuable. Clearly, the original Brandes algorithm
can be used for our setting and compute exactly the
betweenness scores in time O(|S|m + |S|nlogn).

The goal of our paper is to exploit the structure of
the underlying graph and further improve this running
time, while returning the exact values of betweenness
scores. We achieve this goal by designing the Brandes++
algorithm, which is a divide-and-conquer algorithm and
works as follows: first it partitions the graph into
subgraphs and runs some single-source shortest path
computations on these subgraphs. Then it deploys a
modified version of Brandes on a sketch of the original
graph to compute the betweenness of all nodes in the
graph. The key behind the speed-up of Brandes++ over
Brandes is that all computations are run over graphs
that are significantly smaller than the original graph.
Yet these speedups are only significant if the size of
target nodes is comparatively smaller than the number
of nodes in the input graph — otherwise Brandes and
Brandes++ are identical.

Our experiments with real-life networks suggest
that there are networks for which Brandes++ can yield
a 75-fold improvement over Brandes. Our analysis
reveals that this improvement depends largely on the
structural characteristics of the network and mostly on
its community structure.

Some other advantages of Brandes++ are the fol-

lowing: (i) Brandes++ can employ all existing speedups
for Brandes. (i¢) Many steps of our algorithm are eas-
ily paralellizable. (iii) Finally, we have made our code
public to benefit the research community.

2 Overview of Related Work

Perhaps the most widely known algorithm for comput-
ing betweenness centrality is due to Ulrik Brandes [4],
who also studied extension of his algorithm to groups
of nodes in Brandes et al. [5]. The Brandes algorithm
has motivated a lot of subsequent work that led to par-
allel versions of the algorithm [3, 18, 27, 9] as well as
classical algorithms that approximate the betweenness
centrality of nodes [2, 6, 11] or a very recent one [23].
The difference between approximation algorithms and
Brandes++ is that in case of the former a subset of the
graph (either pivots, shortest paths, etc. depending on
the approach) is taken to estimate the centrality of all
nodes in the graph. In contrary, Brandes++ computes
the exact value for every node with respect to the target
set S. Further, any parallelism that can be exploited by
Brandes can also be exploited by Brandes++.

Despite the huge literature on the topic, there has
been only little work on finding an improved centralized
algorithm for computing betweenness centrality. To
the best of our knowledge, only recently Puzis et
al. [21] and Sariyiice et al. [25] focus on that. In the
former, the authors suggest two heuristics to speedup
the computations. These heuristics can be applied
independent of each other. The first one, contracts
structurally-equivalent nodes (nodes that have identical
neighborhoods) into one “supernode”. The second
heuristic relies on finding the biconnected components
of the graph and contracting them into a new type
of “supernodes”. These latter supernodes are then
connected in the graph’s biconnected tree. The key
observation is that if a shortest path has its endpoints
in two different nodes of this tree then all shortest
paths between them will traverse the same edges of the
tree. Sariylice et al. [25] rely on these two heuristics
and some additional observations to further simplify the
computations.

The similarity between our algorithm and the algo-
rithms we described above is in their divide-and-conquer
nature. One can see the biconnected components of the
graph as the input partition that is provided to our al-
gorithm. However, since our algorithm works with any
input partition it is more general and thus more flexi-
ble. Indicatively, we give some examples of how our al-
gorithm outperforms these two heuristics by comparing
some of our experimental results to the results reported
in [21] and [25]. In the former, we see that the bi-
connected component heuristic of Puzis et al. achieves

a 3.5-times speedup on the WikiVote dataset. Our ex-
periments with the same data show that Brandes++ pro-
vides a 78-factor speedup. For the DBLP dataset Puzis et
al. achieve a speedup factor between 2 — 6 — depending
on the sample. We achieve a factor of 7.8. The best
result on a social-network type graph in [25] is a factor
of 7.9 speedup while we achieve factors 78 on WikiVote
and 7.7 on the EU data.

3 Preliminaries

We start this section by defining betweenness centrality.
Then we review some necessary previous results.

Notation: Let G(V, E, W) be an undirected weighted
graph with nodes V, edges F and non-negative edge
weights W. We denote |V| = n and |E| = m. Let
S C V be a subset of nodes. We call S the target
nodes and assume 2 < |S| < n. Let u,v € V. The
distance between u and v is the length of the (weighted)
shortest path in G connecting them, we denote this by
d(u,v). We denote by o(u,v) the number of shortest
paths between u and v. For s,t € S the value o(s, t|v)
denotes the number of shortest paths connecting s and ¢
that contain v. Observe, that o is a symmetric function,
thus o(s,t) = o(t, s).

The dependency of s and ¢t on v is the fraction of
shortest paths connecting s and t that go through v,
thus
o(s,t,|v)

o(s,t)
Given the above, the betweenness centrality C'(v) of node
v can be defined as the sum of its dependencies.

C(v)= > 8(s,t).

s#teS

d(s, tlv) =

(3.1)

Note, that in the original definition of betweenness (and
using our notation) S = V. Observe that the definition
in Eq. (3.1) covers this version of centrality as well.
Throughout the paper we use the terms betweenness,
centrality and betweenness centrality interchangeably.

A naive algorithm for betweenness centrality:
In order to compute the dependencies in Eq. (3.1) we
need to compute o(s,t) and o(s,t|v) for every triple s,t
and v. Observe that v is contained in a shortest path
between s and ¢ if and only if d(s,t) = d(s,v) + d(v, t).
If this equality holds, then any shortest path from s
to t can be written as the concatenation of a shortest
path connecting s and v and a shortest path from v
to t. Hence, o(s,t|v) = o(s,v) - o(v,t). If P, = {u €
V|(u,v) € E,d(s,v) = d(s,u) + w(u,v)} is the set of
parent nodes of v, then it is easy to see that

o(s,v) = Z o(s,u).

ueP,

(3.2)

We can compute o(s,v) for a given target s and all pos-
sible nodes v by running a weighted single source short-
est paths algorithm (such as the Dijkstra algorithm)
with source s. While the search tree in Dijkstra is
built o (s, v) is computed by formula (3.1). The running
time of Dijkstra is O(m + nlogn) per source using a
Fibonacci-heap implementation (the fastest known im-
plementation of Dijkstra). Finally, a naive computa-
tion of the dependencies can be done as

o(s,tlv) =

Even given if all o(s,t) values are given, this computa-
tions requires time equal to the number of dependencies,
i.e., O(|S)? - n).

The Brandes algorithm: Let §(s|v) define the depen-
dency of a node v on a single target s as the sum of the
dependencies containing s, thus

S(slv) = d(s,tv).

tesS

(3.3)

The key observation of Brandes is that for a fixed target
s we can compute §(s|v) by traversing the shortest-paths
tree found by Dijkstra in the reversed order of distance
to s using the formula:

(3.4)

S(slu) = > Z(&u) (Lves + d(s|v)).

v:u€ P, (871})

Where I,cs is an indicator that is 1 if v € S and
zero otherwise. This is used to make sure that we only
sum dependencies between pairs of target nodes. Using
this trick, the dependencies can be computed in time
O(|S|m), yielding a total running time of O(|S|m +
|S|nlogn) for Brandes.

4 The SKELETON Graph

In this section, we introduce the SKELETON of a graph
G. The purpose of the SKELETON is to get a simplified
representation of G that still contains all information on
shortest paths between target nodes in S.

Let G(V,E,W) be a weighted undirected graph
with nodes V, edges E and edge weights W : F —
[0,00). We also assume that we are given a partition
P of the nodes V into k parts: P = {P,..., Py} such
that U¥_, P, =V and P, N P; = for every i # j.

The SKELETON of G is defined to be a graph
GT, (Vak, Esk, Wa); its nodes Vg are a subset of V. For
every edge e € Fq, the function Wy represents a pair of
weights called the characteristic tuple associated with
e. All of Vi, Eg and Wy, depend on the partition P.
Whenever it is clear from the context which partition is

used we drop P from the notation and use Gg instead
of GT,. We now proceed to explain in detail how Vi,
FEq and Wy, are defined.

Supernodes: Given P, we define G; to be the subgraph
of G that is spanned by the nodes in P; C V, that is
G; = G[P;]. We denote the nodes and edges of G; by
V; and F; respectively. We refer to the subgraphs G;
as supernodes. Since P is a partition, all nodes in V'
belong to one of the supernodes G;.

Nodes in the SKELETON (Vg): Within every supern-
ode G;(V;, E;) there are some nodes F; C V; of special
significance. These are the nodes that have at least one
edge connecting them to a node of another supernode
Gj. We call F; the frontier of G;. In Figure 1(a) the su-
pernode G; consists of nodes and edges inside the large
circle. The frontier of G; is F; = {1,2,3}. Observe that
nodes a, b and ¢ are also frontier nodes in their respec-
tive supernodes. The nodes Vi of the SKELETON consist
of the union of all frontier nodes i.e., Vg = UleFZ—.

Edges in the SKELETON (FEg): The edges in Gy are
defined with help of the frontiers in G. First, in order
to see the significance of the frontier nodes, pick any
two target nodes s,t € S. Observe, that some of the
shortest paths between s and ¢ may pass through G;.
Any such path has to enter the supernode through one
of the frontier nodes f € F; and exit through another
frontier ¢ € F;. It is easy to check, whether there are
any shortest paths through f and g; given d(f, ¢), there
is a shortest path between s and t passing through f
and q if and only if

(4.5) d(s,t) =d(s, f)+d(f,q) +d(g,t).

Also the number of paths passing through f and q is:

(4.6) og(s,tlf,q) = o(s, f)-o(f,q) - o(g1).
Recall that the nodes Vg of the SKELETON are the union
of all frontiers in the supernodes. The edges Fgy serve
the purpose of representing the possible shortest paths
between pairs of frontier nodes, and as a result, the
paths between pairs of target nodes in G. The key
observation to the definition of the SKELETON is, that
we solely depend on the frontiers and do not need to
list all possible (shortest) paths in G. We want to
emphasize here that in order not to double count, we
only consider the paths connecting f and ¢ that do
not contain any other frontier inside the path. Paths
containing more than two frontiers will be considered
as concatenations of shorter paths during computations
on the entire SKELETON. The exact details will be clear
once we define the edges and some weights assigned to
the edges in the following paragraphs.

(a) original graph

(d(1,2),0(1,2))

(1.1

(b) SKELETON

Figure 1: Graph G(V,E) (Figure 1(a)) is given as input to Brandes++. The nodes and edges inside the circle
correspond to supernode G;. The set of frontier nodes in G; is F; = {1,2,3}. Supernode G; is replaced by a
clique on nodes {1, 2,3} with characteristic tuple (d;x,o;x) on edge (j,k) in the SKELETON (Figure 1(b)).

E consists of two types of edges; first, the edges
that connect frontiers in different supernodes (such as
edges (1,a), (2,b) and (3,¢) in Figure 1(a)). We denote
these edges by R. Observe that these edges are also
in the original graph G, namely R = E \ {U'_,E;}.
The second type are edges between all pairs of frontier
nodes f,q € F; within each supernode. To be exact,
we add the edges X; of the clique C; = (F;, X;) to the
SKELETON. Hence, the edges of the SKELETON can be
defined as the union of R and the cliques defined by the
supernodes, i.e., By = RU{UX_ X}

Characteristic tuples in the SKELETON (Wg,): We
assign a characteristic tuple Wy (e) = (d(e),o(e)),
consisting of a weight and a multiplicity, to every edge
e € Ey. For edge e(u,v) the weight represents the
length of the shortest path between w and v in the
original graph; the multiplicity encodes the number of
different shortest paths between these two nodes. That
is, if e € R, then Wy (e) = (w(e), 1), where w(e) is
the weight of e in G. If e = (f,q) is in X; for some 1,
then f,q € F; are frontiers in G;. In this case Wy(e) =
(d(f,q),0(f,q)). The values d(f,q) and o(u,v) are used
in Equations (4.5) and (4.6). While these equations
allow to compute the distance d(s,t) and multiplicity
o(s,t|f,q) between target nodes s and ¢, both values
are independent of the target nodes themselves. In fact,
d(f,q) and o(f,q) only depend and are characteristic of
their supernode G;.

We compute d(f,q) and o(f,q) by applying
Dijkstra — as described in section 3 — in G; using the set
of frontiers F; as sources. We want to emphasize here,
that the characteristic tuple only represent the shortest
paths between f and ¢ that are entirely within the su-
pernode G; and do not contain any other frontier node
in F;. This precaution is needed to avoid double count-
ing paths between f and ¢ that leave GG; and then come
back later. To ensure this, we apply a very simple mod-
ification to the Dijkstra algorithm; in equation (3.2)

we only sum over the set of parents P, of a node that
are not frontiers themselves, thus

(4.7) Pr={ucV;\ F |

(u,v) € By, d(s,v) = d(s,u) +w(u,v)}.

We refer to this modified version of Dijkstra’s algo-
rithm that is run on the supernodes as Dijkstra_SK.
For recursion (4.6) we also set o(f, f) = 1.

The SKELETON: Combining all the above, the SKELE-
TON of a graph G is defined by the supernodes generated
by the partition P and can be described formally as

Gh = (Va, B, Waie) = (VS Fy, RU {UE_ X3}, W)

Figure 1(b) shows the SKELETON of the graph from
Figure 1(a). The nodes in Gg are the frontiers of G
and the edges are the dark edges in this picture. Edges
in R are for example (1,a), (2,b) and (3, ¢) while edges
in X; are (1,2), (1,3) and (2, 3).

Properties of the SKELETON: We conclude this
section by comparing the number of nodes and edges
of the input graph G = (V,E,W) and its skeleton
Gsk = (Viak, Esk, Wsk). This comparison will facilitate
the computation of the running time of the different
algorithms in the next section.

Note that Gg has less nodes than G: the latter has
|V| nodes, while the former has only |Vi| = Zle | F5l.
Since not all nodes in Gy are frontier nodes, then
|[V| < |Vik|. For the edges, the original graph has |E]
edges, while its skeleton has |Eg| = |E| — Zle |E;| +
Sk (i), The relative size of |E| and |Eq| depends
on the partition P and the number of frontier nodes and
edges between them it generates.

5 The Brandes++ Algorithm

In this section we describe Brandes++, which leverages
the speedup that can be gained by using the SKELETON

of a graph. At a high level Brandes++ consists of
three main steps, first the SKELETON is created, then
a multipiclity-weighted version of Brandes’s algorithm
is run on the SKELETON. In the final step the centrality
of all other nodes in G is computed.

The pseudocode of Brandes++ is given in Alg. 1.
The input to this algorithm is the weighted undirected
graph G = (V, E, W), the set of targets S and partition
P. The algorithm outputs the exact values of between-
ness centrality for every node in V. Next we explain the
details of each step.

Algorithm 1 Brandes++ to compute the exact be-
tweenness centrality of all nodes.
Input: graph G(V, E, W), targets S, partition P =
{Py,..., P}
1: Gsk(‘/;‘lﬂ Fgy, <., >) = Build,SK(G,’P)
2: {C(Gy),...,C(Gy)} = Brandes_SK(Gy)
3: {C(v)|v € V} = Centrality({C(G1),...,C(Gk)})
return: C(v) for every v € V

Step 1: The Build SK algorithm: Build SK (Alg. 2)
takes as input G and the partition P and outputs the
SKELETON Gk (Vik, Fsk, Wsk). First it decides the set of
frontiers F; in the supernodes (line 1). Then the char-
acteristic tuples Wy, are computed in every supernode
by way of Dijkstra SK (line 3). Characteristic tuples
on edges e € R are (1,1) by definition.

Algorithm 2 Build_SK algorithm to create the SKELE-
TON of G.
Input: graph G(V, E, W), targets S, partition P.

1. Find frontiers {Fy, Fy, ..., Fi}
2: fori=1to k do
{<d(f7 q)ao—(fv q)> | for all faqv S Fz} =

Dijkstra_SK(F;)
4: end for
return: SKELETON Ggx(Vik, Fsk, Wsk)

Running time: The frontier sets F; of each su-
pernode can be found in O(|E|) time as it requires
to check for every node whether they have a neighbor
in another supernode. Dijkstra_SK has running time
identical to the traditional Dijkstra algorithm, that is
O(FN(|E:| + Vil log |Vil)).

Target nodes in the SKELETON: Note that since
we need to know the shortest paths for every target
node s € S, we treat the nodes in S specially. More
specifically, given the input partition P, we remove all
targets from their respective parts and add them as
singletons. Thus, we use the partition P’ = {P;\ S, P>\
Sy ..oy P\ S,Uses{s}}. Assuming that the number of

target nodes is relatively small compared to the total
number of nodes in the network, this does not have a
significant effect on the running time of our algorithm.

Observe that the characteristic tuples of different
supernodes are independent of each other allowing for
a parallel execution of Dijkstra SK.

Step 2: The Brandes_SK algorithm: The output of
Brandes_SK are the exact betweenness centrality values
for all nodes in Gy, that is all frontiers in G.

Remember from Section 3 that for every target
node s € S Brandes consists of two main steps; (1)
running a single-source shortest paths algorithm from
s to compute the distances d(s,v) and number of
shortest paths o(s,v). (2) traversing the BFS tree of
Dijkstra in reverse order of discovery to compute the
dependencies §(s|v) based on Equation (3.4). The only
difference between Brandes_SK and Brandes is that we
take the distances and multiplicities on the edges of
the SKELETON into consideration. This means that
Equation (5.8) is used instead of (3.2).

(5.8) o(s,v) = Z o(s,u)o(u,v).

u€Pgk

Here P3* = {u € Vi |(u,v) € Eg,d(s,v) = d(s,u) +
d(u,v)} is the set of parent nodes of v in Ggx. Observe
that o(s,v) in Equation (5.8) is the multiplicity of
shortest paths between s and v both in Gg, as well as
in G. That is why we do not use subscripts (such as
osk(s,v)) in the above formula.

In the second step the dependencies of nodes in G
are computed by applying Equation (5.9) — which is the
counterpart of Eq. (3.4) that takes multiplicities into
account — to the reverse order traversal of the BF'S tree.

o(s,u)

(5.9) d(slu) = Z m(u,v) - o(5.0)

v:u€P,

(Ives +(s|v))

Running time: Brandes and Brandes_SK have the
same computational complexity but are applied to dif-
ferent graphs (G and Gy respectively). Hence we get
that Brandes_SK on the skeleton runs in O(|S|Eg +
|S|Vik log Vi) time. If we express the same running time
in terms of the frontier nodes we get

0 <|S|<R +§j ('Zi|>)+ 1 (; |Fi> log (; |Fz-|)) .

Step 3: The Centrality algorithm: In the last
step of Brandes++, the centrality values of all remaining
nodes v € V; \ F; in G are computed. Let us focus on
supernode G;; for any node v € V; \ F; and s € S there
exists a frontier f € F; such that there exists a shortest

path from s to f containing v. Using Equation (5.9),
we can compute the dependency (s|v) as follows:

o(s,v)

(s, f)

(5.10) d(slv) =)

feF;

o(v, f) Tves +6(s[f)) -

Then, the centrality of v is C(v) = > ¢ d(s|v).

To determine whether v is contained in a path
from s to f we need to remember the information
d(f,v) for v and every frontier f € F;. This value
is actually computed during the Build SK phase of
Brandes++. Hence with additional use of space but
without increasing the running time of the algorithm
we can make use of it. At the same time with d(f,v)
the multiplicity o(f,v) is also computed.

Space complexity: The Centrality algorithm takes
two values — d(f,v) and o(f,v) — for every pair v €
Vi \ F; and f € F;. This results in storing a total of
S (IF||Vi \ Fy]) values for the SKELETON.

Running time: Since we do not need to allocate

any additional time for computing d(f,v) and o(f,v)
computing Equation (5.10) takes O(|F;|) time for ev-
ery v € V; \ F;. Hence, summing over all supern-
odes we get that the running time of Centrality is
O (S IEIIV.\ F)-
Running time of Brandes++: The total time that
Brandes++ takes is the combination of time required
for steps 1,2 and 3. The asymptotic running time is
a function of the number of nodes and edges in each
supernode, the number of frontier nodes per supernode
and the size of the SKELETON. To give some intuition,
assume that all supernodes have approximately 7 nodes
with at most half of the nodes being frontiers in each
supernode. Further, assume that R < . Substituting
these values into steps 1-3, we get that for a partition
of size k Brandes++ is order of k-times faster than
Brandes. While these assumptions are not necessarily
true, they give some insight on how Brandes++ works.
For k =1 (thus when there is no partition) the running
times of Brandes++ and Brandes are identical while for
larger values of k£ the computational speedup is much
more significant.

6 Experiments

Experimental setup: For all our experiments we
follow the same methodology; given the partition P,
we run Steps 1-3 of Brandes++ (Alg. 1) using P as
input. Then, we report the running time of Brandes++
using this partition. The local computations on the
supernodes G; (lines 1 and 3 of Alg. 2) can be done
in parallel across the G;’s. Hence, the running time we
report is the sum of: (i) the running time of Build_SK

on the largest supernode G; (i¢) running Brandes_SK on
the SKELETON and (4i7) computing the centrality of all
remaining nodes in G.

Implementation: In all our experiments we com-
pare the running times of Brandes++ to Brandes [4]
on weighted undirected graphs. While there are several
high-quality implementations of Brandes available, we
use here our own implementation of Brandes and, of
course, Brandes++. All the results reported here cor-
respond to our Python implementations of both algo-
rithms. The reason for this is, that we want to ensure
a fair comparison between the algorithms, where the
algorithmic aspects of the running times are compared
as opposed to differences due to more efficient mem-
ory handling, properties of the used language, etc. As
the Brandes_SK algorithm run on the SKELETON is al-
most identical to Brandes (see Section 5), in our imple-
mentation we use the exact same codes for Brandes as
Brandes_SK, except for appropriate changes that take
into account edge multiplicities. We also make our code
available!.

Hardware: All experiments were conducted on a
machine with Intel X5650 2.67GHz CPU and 12GB of
memory.

Datasets: We use the following datasets:

WikiVote dataset [16]: The nodes in this graph
correspond to users and the edges to users’ votes in the
election to being promoted to certain levels of Wikipedia
adminship. We use the graph as undirected, assuming
that edges simply refer to the user’s knowing each other.
The resulting graph has 7066 nodes and 103K edges.

AS dataset: [12] The AS graph corresponds to a
communication network of who-talks-to whom from
BGP logs. We used the directed Cyclops AS graph
from Dec. 2010 [12]. The nodes represent Autonomous
Systems (AS), while the edges represent the existence
of communication relationship between two ASes and,
as before, we assume the connections being undirected.
The graph contains 37K nodes and 132K edges, and has
a power law degree distribution.

EU dataset [17]: This graph represents email data
from a European research institute. Nodes of the graph
correspond to the senders and recipients of emails, and
the edges to the emails themselves. Two nodes in the
graph are connected with an undirected edge if they
have ever exchanged an email. The graph has 265K
nodes and 365K edges.

DBLP dataset [28]: The DBLP graph contains the co-
authorship network in the computer science community.
Nodes correspond to authors and edges capture co-
authorships. There are 317K nodes and 1M edges.

Tavailable at: http://cs-people.bu.edu/edori/code.html

For all our real datasets, we pick 200 nodes (uni-
formly at random) to form the target set S.

Graph-partitioning: The speedup ratio of Brandes++
over Brandes is determined by the structure of the
SKELETON(Gg) that is induced by the input graph
partition.

In practice, graphs that benefit most of Brandes++
are those that have small k-cuts, such as those that
have distinct community structure. On the other hand,
graphs with large cuts, such as power-law graphs do
not benefit that much from applying the partitioning of
Brandes++.

For our experiments we partition the input graph
into subgraphs using well-established graph-partitioning
algorithms, which aim to either find densely-connected
subgraphs or sparse cuts. Algorithms with the former
objective fall under modularity clustering [7, 19, 22, 24]
while the latter are normalized cut algorithms [1, 8, 13,
14, 15, 20, 26]. We choose the following three popular
algorithms from these groups: Mod, Gc and Metis.

Mod: Mod is a hierarchical agglomerative algorithm
that uses the modularity optimization function as a
criterion for forming clusters. Due to the nature of the
objective function, the algorithm decides the number
of output clusters automatically and the number of
clusters need not be provided as part of the input. Mod
is described in Clauset et al [7] and its implementation is
available at: http://cs.unm.edu/~aaron/research/
fastmodularity.htm

Gc: Ge (graclus) is a normalized-cut partitioning
algorithm that was first introduced by Dhillon et al. [8].
An implementation of Gc, that uses a kernel k-means
heuristic for producing a partition, is available at: cs.
utexas.edu/users/dml/Software/graclus.html. Gc
takes as input k, an upper bound on the number of
clusters of the output partition. For the rest of the
discussion we will use Ge-k to denote the Ge clustering
into at most k clusters.

Metis: This algorithm [15] is perhaps the most
widely used normalized-cut partitioning algorithm. It
does hierarchical graph bi-section with the objective
to find a balanced partition that minimizes the total
edge cut between the different parts of the partition.
An implementation of the algorithm is available at:
glaros.dtc.umn.edu/gkhome/views/metis. Similar
to Gc, Metis takes an upper bound on the number
of clusters k as part of the input. Again, we use the
notation Metis-k to denote the Metis clustering into at
most k clusters.

We report the running times of the three clustering
algorithms in Table 1. Note that for both Gc and
Metis their running times depend on the input number
of clusters k — the larger the value of k the larger

Table 1: Running time (in seconds) of the clustering
algorithms (reported for the largest number of clusters
per algorithm) and of Brandes (last column).

Mod Gc Metis ‘ Brandes
WikiVote 13 1.29 1.9 5647
AS 6780 256.58 9.5 606
EU 1740 2088 12.2 14325
DBLP 3600 109.22 5.5 28057

the running time. The table summarizes the largest
running time for each dataset (see Table 2 for the value
of k for each dataset). Note that the running times
of the clustering algorithms cannot be compared to
the running time of Brandes++ for two reasons; these
algorithms are implemented using a different (and more
efficient) programming language than Python and are
highly optimized for speed, while our implementation
of Brandes++ is not. We report Table 1 to compare the
various clustering heuristics against each other.

Results: The properties of the partitions produced for
our datasets by the different clustering algorithms, as
well as the corresponding running times of Brandes++
for each partition are shown in Table 2. In case of Gc and
Metis we experimented with several (about 10) values
of k. We report for three different values of k (one small,
one medium and one large) for each dataset. The values
were chosen in such a way, that the k-clustering with the
best results in Brandes++ is among those reported. As a
reference point, we report in Table 1 the running times
of the original Brandes algorithm on our datasets.

In Table 2 N and M refer to the number of nodes
and edges in the SKELETON. Remember, that the set of
nodes in the skeleton is the union of the frontier nodes in
each supernode. Hence, NNV is equal to the total number
of frontier nodes induced by P. Across datasets we can
see quite similar values, depending on the number of
clusters used. Mod seems to yield the lowest values of NV
and M. The third and fourth rows in the table contain
the number of clusters k (the size of the partition) for
each algorithm and the total number of nodes (from the
input graph) in the largest cluster of each partition.

The ultimate measure of performance is the running
time of Brandes++ in the last row of the table. We
compare the running times of Brandes++ to the running
time of Brandes in Table 1 — last column. On the
WikiVote data Brandes needs 5647 seconds while the
corresponding time for Brandes++ can be as small
as 72 seconds! Note that the best running time for
this dataset is achieved using the Metis-100 partition.
Suggesting that the underlying ”true” structure of the
dataset consists of approximately 100 communities of

Table 2: Properties of the partitions (N: number of frontier nodes in SKELETON, M: number of edges in SKELETON,
k: number of supernodes, LCS: number of original nodes in the largest cluster) produced by different clustering
algorithms and running time of Brandes++ on the different datasets.

WikiVote dataset
Mod Gec-100 Ge-1K Ge-2K Metis-100 Metis-1K Metis-2K

N 3833 5860 6365 6432 4920 5854 6181
M 26147 89318 96111 96743 91545 92091 97270
k 29 100 1000 2000 98 989 1927
LCS 3059 172 12 10 258 496 50
Brandes++ running time in seconds
209.43 75.27 90.23 96.65 71.59 73 77.71
AS dataset
Mod Ge-1K Gec-10K Ge-15K Metis-1K Metis-10K Metis-15K
N 14104 31139 34008 34418 25022 32572 35244
M 28815 111584 120626 121833 93989 117808 125556
k 156 1000 10000 15000 991 9966 14484
LCS 8910 732 10 10 1304 433 18
Brandes++ running time in seconds
1666 430.97 447.97 486.91 417 420.93 458.71
EU dataset
Mod Ge-1K Ge-3K Ge-BK Metis-1K Metis-3K Metis-bK
N 19332 143636 208416 215397 42333 54249 50171
M 45296 231089 208416 215397 117147 132573 129071
k 45296 231089 319006 327263 995 2996 4996
LCS 53224 7634 7633 7633 8917 7407 7271
Brandes++ running time in seconds
188.79 5670 7816.7 8291.3 3601 2101 1872
DBLP dataset
Mod Gc-100 Ge-1K Ge-5K Metis-100 Metis-1K Metis-HK
N 102349 98281 130643 141955 104809 119417 132661
M 146584 164989 267350 310472 203834 257383 318969
k 3203 100 1000 5000 100 1000 4999
LCS 55897 116252 26666 21368 3270 344 93

Brandes++ running time in seconds

3600 95982 16405 10335 13574 5805 5709

Wikipedia users. High speedup ratios are also achieved
on EU and DBLP. For those Brandes takes 14325 and
28057 seconds respectively, while the running time of
Brandes++ can be 189 and 3600 seconds respectively.
This is an 8-fold speedup on DBLP and 75-fold on EU.

If we compare the running time of Brandes++
applied to the different partitions, we see that the
algorithm with input by Metis is consistently faster
than the same-sized partitions of Gc. Further, on EU and
DBLP Brandes++ is the fastest with the Mod partition.
Note the size of Gy for each of these datasets. In
case of EU Mod yields a skeleton where N is only 7%
of the original number of nodes and M is 12% of the
edges. The corresponding rations on DBLP are 32%
and 14%. This is not surprising, as both datasets
are known for their distinctive community structure,
which is what Mod optimizes for. For AS, Brandes++
exhibits again smaller running time than Brandes, yet
the improvement is not as impressive. Our conjecture
is that this dataset does not have an inherent clustering
structure and therefore Brandes++ cannot benefit from
the partitioning of the data.

Note that the running times we report here refer
only to the execution time of Brandes++ and do not
include the actual time required for doing the clustering
— the running times for clustering are reported in in
Table 1. However, since the preprocessing has to be
done only once and the space increase is only a constant
factor, Brandes++ is clearly of huge benefit.

References

[1] R. Andersen. A local algorithm for finding dense
subgraphs. ACM Transactions on Algorithms, 2010.

[2] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating betweenness centrality. In WAW, 2007.

[3] D. A. Bader and K. Madduri. Parallel algorithms for
evaluating centrality indices in real-world networks. In
ICPP, 2006.

[4] U. Brandes. A faster algorithm for betweenness cen-
trality. Journal of Mathematical Sociology, 2001.

[6] U. Brandes. On variants of shortest-path betweenness
centrality and their generic computation. Social Net-
works, 2008.

[6] U. Brandes and C. Pich. Centrality estimation in large
networks. International Journal of Bifurcation and
Chaos, 2007.

[7] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, 2004.

[8] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted
graph cuts without eigenvectors: A multilevel ap-
proach. IEEE Trans. Pattern Anal. Mach. Intell, 2007.

[9] N. Edmonds, T. Hoefler, and A. Lumsdaine. A space-

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

24]

[25]

[26]
27]

28]

efficient parallel algorithm for computing betweenness
centrality in distributed memory. In HiPC, 2010.

L. C. Freeman. A Set of Measures of Centrality Based
on Betweenness. Sociometry, 1977.

R. Geisberger, P. Sanders, and D. Schultes. Better
approximation of betweenness centrality. In ALENEX,
2008.

P. Gill, M. Schapira, and S. Goldberg. Let the market
drive deployment: a strategy for transitioning to bgp
security. In SIGCOMM, 2011.

B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. Supercomputing, 1995.

R. Kannan, S. Vempala, and A. Vetta. On clusterings:
Good, bad and spectral. J. ACM, 2004.

G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. J. Parallel Distrib.
Comput., 1998.

J. Leskovec, D. Huttenlocher, and J. Kleinberg. Pre-
dicting positive and negative links in online social net-
works. In WWW, 2010.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evo-
lution: Densification and shrinking diameters. ACM
Trans. Knowl. Discov. Data, 2007.

K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. G. Chavarria-Miranda. A faster parallel algorithm
and efficient multithreaded implementations for evalu-
ating betweenness centrality on massive datasets. In
IPDPS, 2009.

M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
Review, E 69, 2004.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In NIPS, 2001.
R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and
U. Brandes. Heuristics for speeding up betweenness
centrality computation. In SocialCom/PASSAT, 2012.
F. Radicchi, C. Castellano, F. Cecconi, V. Loreto,
and D. Parisi. Defining and identifying communities
in networks. Proceedings of the National Academy of
Sciences, 2004.

M. Riondato and E. M. Kornaropoulos. Fast approx-
imation of betweenness centrality through sampling.
WSDM 14, pages 413-422, 2014.

R. Rotta and A. Noack. Multilevel local search algo-
rithms for modularity clustering. J. Exp. Algorithmics,
2011.

A. E. Sariyiice, E. Saule, K. Kaya, and U. V.
Catalyiirek. Shattering and compressing networks for
betweenness centrality. In SDM, 2013.

S. E. Schaeffer. Survey: Graph clustering. Comput.
Sci. Rev., 2007.

G. Tan, D. Tu, and N. Sun. A parallel algorithm for
computing betweenness centrality. In JCPP, 2009.

J. Yang and J. Leskovec. Defining and evaluating net-
work communities based on ground-truth. In ICDM,
2012.

