
Amorphous Placement and Informed Diffusion
for Timely Field Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

HANY MORCOS AZER BESTAVROS IBRAHIM MATTA

hmorcos@cs.bu.edu best@cs.bu.edu matta@cs.bu.edu

Computer Science Department
Boston University

Abstract—Personal communication devices are increasingly
equipped with sensors for passive monitoring of encounters and
surroundings. We envision the emergence of services that enable a
community of mobile users carrying such resource-limited devices
to query such information at remote locations in the field in which
they collectively roam. One approach to implement such a service
is directed placement and retrieval (DPR), whereby readings/queries
about a specific location are routed to a node responsible for that
location. In a mobile, potentially sparse setting, where end-to-end
paths are unavailable, DPR is not an attractive solution as it would
require the use of delay-tolerant (flooding-based store-carry-forward)
routing of both readings and queries, which is inappropriate for ap-
plications with data freshness constraints, and which is incompatible
with stringent device power/memory constraints. Alternatively, we
propose the use of amorphous placement and retrieval (APR), in
which routing and field monitoring are integrated through the use
of a cache management scheme coupled with an informed exchange
of cached samples to diffuse sensory data throughout the network,
in such a way that a query answer is likely to be found close
to the query origin. We argue that knowledge of the distribution
of query targets could be used effectively by an informed cache
management policy to maximize the utility of collective storage of
all devices. Using a simple analytical model, we show that the use
of informed cache management is particularly important when the
mobility model results in a non-uniform distribution of users over
the field. We present results from extensive simulations which show
that in sparsely-connected networks, APR is more cost-effective than
DPR, that it provides extra resilience to node failure and packet
losses, and that its use of informed cache management yields superior
performance.

I. INTRODUCTION

Motivation: Advances in the manufacturing and miniaturiza-
tion of sensors of various modalities are making it possible
for such sensors to be embedded in mobile devices such as
cellular phones, handheld computers, and automotive naviga-
tional systems. Sensors are even expected to be embedded in
future wearable computers to monitor vital signs [1], [19].
The communication capabilities of these devices open up
the possibility of using a set of (possibly large number of)
mobile devices in a given field as constituting a distributed
repository of spatio-temporal sensory data. Thus, in this paper
we consider parasitic applications that enable a community
of mobile users carrying such devices to form ad-hoc overlay
networks to query remote locations in the field in which they

§ This work has been partially supported by a number of National Sci-
ence Foundation grants, including CISE/CSR Award #0720604, ENG/EFRI
Award #0735974, CISE/CNS Award #0524477, CNS/NeTS Award #0520166,
CNS/ITR Award #0205294, and CISE/EIA RI Award #0202067.

collectively roam – e.g., allowing a spectator in a baseball
game to query the number of cell-phones (which is an estimate
of the number of people) at a concession stand, or allowing
a traveller to query the availability and strength of public
wireless networks at various airport locations. We describe
our target applications as parasitic to delineate them from
the primary applications of the mobile communication device.
While it is conceivable to assume that such devices may
have plenty of memory and (renewable) power in support of
their primary functions, it is not acceptable to assume that
such resources could be tapped to support the parasitic field
monitoring applications we envision. Rather, it is only prudent
to assume that the resources available to such applications are
quite constrained – e.g., the application is limited to using a
small memory attached to the sensor. In this paper, and through
efficient management of this limited memory, we show that the
mobility of a set of sparsely deployed nodes could be leveraged
to improve the recall rates for locally issued queries, posed
over the field in which the nodes are roaming.
Directed versus Amorphous Placement: An important ques-
tion here is related to the placement and storage of spatio-
temporal samples – specifically, should each sensor node be
assigned a spatiotemporal subspace for which it is responsible,
or should the responsibility of the entire spatio-temporal
space be shared across all nodes? We use the term “directed
placement and retrieval” (DPR) to refer to the former of these
approaches and the term “amorphous placement and retrieval”
(APR) to refer to the latter.

DPR-like approaches have been proposed and evaluated in
a number of studies in P2P networks [29], [24] as well as in
sensor network (SN) settings [2], [22], [25], where they are
termed as Data Centric Storage (DCS) approaches [27]. DPR
simplifies query processing significantly, since a well-defined
“home” for a spatio-temporal subspace makes it straightfor-
ward to route future queries over that space. In our context,
using DPR, once a sample is obtained by a mobile node,
storage of this sample requires its transport to the node (or
locale of nodes) responsible for the spatio-temporal subspace
to which this sample belongs. This could be done using any
number of multi-hop ad-hoc or delay-tolerant network (DTN)
routing techniques [12], [13], [21]. In a mobile, potentially
sparse setting, where end-to-end paths are unavailable, DPR
is not an attractive solution as it requires the use of flooding-
based store-carry-forward routing of both readings and queries,

978-1-4244-1777-3/08/$25.00 © IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE SECON 2008 proceedings.

469

which is inappropriate for “delay intolerant” field monitoring
due to freshness requirements imposed on query results, and
which is incompatible with the stringent constraints imposed
on the use of device power and memory.1

Alternatively, in this paper, we propose the use of APR,
whereby a reading is not associated with a locale where it must
be stored, but rather such a reading could be stored in any one
of the (and even replicated across multiple) mobile caches in
the system. To improve the local view of nodes, upon meeting
a new neighbor, nodes exchange a small number of samples.
This exchange “diffuses” samples from different spots in the
field to nodes that may have never visited these spots. Thus,
caches are pro-actively managed so as to capture a local view
of the field, which, as best as possible, matches the preference
of users for query targets. A query issued locally at a node
could then be answered directly by accessing the local cache,
or at worst, by accessing the aggregate view in the caches of
a small number of direct neighbors.
Paper Outline: The remainder of this paper is organized as
follows. In Sections II and III, we provide a statement of the
problem, and present our basic assumptions, definitions, and
requisite background. In Sections IV and VI, we overview
the two alternative solutions to the problem — APR and
DPR, respectively. In Section V, using a simplified mobility
model, we analyze APR’s ability to achieve (say) uniform field
coverage using an informed and an uninformed cache man-
agement strategy. We confirm APR’s premise using extensive
simulations, the results of which we present in Section VII.
We conclude the paper with a brief discussion of related work
in Section VIII and a summary of our findings in Section IX.

II. DEFINITIONS AND PROBLEM STATEMENT

Basic Assumptions: We assume that nodes move indepen-
dently and autonomously. In particular, node mobility is not
driven by the need to effectively sample the field—i.e., the
probability of visiting a location in the field is not correlated
with the probability for that location to be a query target.
We assume that nodes know their locations, either relative or
absolute. We assume that storage devoted to our “parasitic”
field monitoring service is limited, necessitating the use of a
cache management strategy. We also assume that nodes have
unique known ID’s.
Data Sampling: We assume that mobile nodes sample the
field according to a Poisson process. Nodes collect spatio-
temporal samples, i.e., every collected sample is associated
with an (x, y) coordinates along with a time-stamp to indicate
both the sample’s location and “age”.
Data Freshness: In order to be useful, returned query results
should not be “stale”. Thus, we assume that a well-defined
mechanism exists via which nodes are able to discard ob-
solete samples (e.g., a time-to-live (TTL) for each sample),
or otherwise assign a marginal utility to keeping one sample

1Even if memory/power are not constrained, the use of flooding would result
in extensive network load and increased data dissemination delays due to (or
in order to avoid) collisions, with negative implications on timely delivery of
data with freshness constraints.

versus another – i.e., an aging mechanism. Clearly, choosing
the right parameters for aging depends on the stationarity (or
time-scale of change) of the target phenomenon sampled by
the sensors.
Query Origin and Target: While roaming the field, users
may become interested in querying (or reading) the state
of a remote location in the field. Such queries are sub-
mitted through the query origin (the node associated with
the inquirer’s device). The remote location that the user is
interested in reading is the query target. Different applications
may exhibit different distributions of query origins and query
targets. While the distribution of query origins may reflect the
mobility model of users,2 the same cannot be said about the
distribution of query targets. In particular, a priori knowledge
of the distribution of query targets could be used to improve
the performance of the system (e.g., by allowing nodes to
give different weights to caching entries based on the spatial
coordinates of the entries) [18]. Due to space limitations, in
this paper, we address the problem when nodes are equally
interested in the whole field (i.e., uniform distribution for
query targets). The case when this interest is skewed (e.g.,
more query targets in the center of the field) is studied in the
longer version of this paper [20].
Query Precision: One particularly important parameter of
queries is the tolerable inaccuracy in the result. We assume that
queries target a specific location in the field along with some
desirable precision (�), which constrains how far the samples
used to answer the query could be from the query target.
Introducing query precision allows the support of applications
in which queries might target locations in the field where no
readings were collected.
Objective and Approaches: Assuming that the distribution of
query targets is uniform suggests that the goal of the system
would be to achieve uniform field coverage. This goal can be
achieved using the DPR and APR approaches motivated in the
last section. In the next section, we develop a formal definition
of what constitutes “uniform” field coverage. Our approach for
that is to use mutual distant sampling of the field, i.e., keep
samples that are as far from each other as possible. Section
III explains the concept of mutual distant sampling, whereas
Section IV explicates how this concept fits in our design. In
[20], we show how this technique can be modified to handle
non-uniform query distributions.

III. BACKGROUND: MUTUALLY DISTANT SAMPLING

Teng [30] discusses the NP-hard problem of mutually distant
sampling over a metric space and provides an analysis of the
performance of a greedy approximation thereof.

Let Γ = (D, ‖‖) be a metric domain, where ‖‖ is a non-
negative measure of distance over the domain. We assume that
this distance measure satisfies the triangle inequality. Given
a positive integer k, then k-sampling of the domain amounts
to finding a set S such that |S| = k, and S maximizes the

2For example, a mobility model that results in higher concentration of users
in a particular part of the field will result in a higher number of queries
originating from that part of the field.

470

minimum distance of its points. The minimum distance of S
is defined as follows:

min(S) = mini�=j‖si, sj‖ (1)

i.e., S maximizes the minimum mutual distance between its
samples.
Greedy Approximation: Teng [30] proves that the greedy
algorithm sketched below provides a 0.5-approximation to the
problem, i.e., mini �=j‖si, sj‖ ≥ 0.5 ×mini�=j‖ti, tj‖, where
si, sj ∈ S, ti, tj ∈ T , where T is the optimal solution, and S
is the set returned by the greedy algorithm.

Algorithm 1: Input: Γ = (D, ‖‖), an integer k ≥ 2.

1) Start with a random point x ∈ D. Let S = {x}.
2) For j = 2 to k, repeat the following:

2.1) Select the point y ∈ D such that y maximizes the
following function

ψ(S, y) = minq∈S‖q, y‖
ψ(S, y) defines the distance between a set S and a
point y using the measure ‖‖, as the minimum distance
between y and all points q ∈ S.
2.2) Set S = S ∪ {y}

3) Return S.

When D is a set of points {p1, p2, ..., pn} ∈ R
d, the

complexity of this greedy algorithm is O(k2n).

IV. AMORPHOUS PLACEMENT AND RETRIEVAL (APR)

APR is a simple scalable algorithm that employs mobility,
as opposed to multi-hop communication, whenever possible,
to diffuse field samples from field locations to nodes that
have never visited these locations. Hence, it improves the
local view of each node of the whole field and enables
nodes to answer more queries locally saving communication
overhead. Avoiding multi-hop communication (as in ad-hoc
routing techniques [12], [21]) makes APR efficient in terms of
energy consumption and more robust in case of node failures
or packet losses, moreover, it saves the overhead of operating
an ad-hoc routing protocol. We also show that, interestingly,
under limited node mobility, APR results in an informed multi-
hop diffusion of field readings (akin to a selective delay-
tolerant multi-hop forwarding of these readings).

APR has two main components: (1) sample diffusion, and
(2) cache management. Both components work together to
enable nodes to optimize the contents of their caches resulting
in better matching between the distribution of query targets
and locally/nearby cached samples.
Sample Diffusion: The set of samples that are locally cached
by a node (i.e., the node’s view of the whole field) is a subset
of the set of samples this node collects while moving in the
field. The latter set is totally defined by the mobility model
of nodes, since nodes sample the field along their movement
trajectory. However, the workload presented to any node (i.e.,
targets of queries posed to this node) is independent of the
node’s trajectory. Hence, we need a mechanism to “decouple”
each node’s view of the field from its movement trajectory.

This mechanism relies on sample diffusion, whereby upon
encountering each other, nodes exchange a small number of
samples. This amounts to diversifying the contents of each
cache, allowing improved matching of the nodes’ local view
of the whole field to the query distribution at both nodes.

More specifically, a node z declares its presence to its
neighbors by broadcasting a short Hello packet every α
seconds. Hello packets contain a compact summary of the
cache of z (using a Bloom filter). Upon receipt of such a
packet, a neighbor y replies with an Exchange packet: a
packet containing k of its samples that failed the Bloom
filter test (i.e., node z does not have similar samples and
hence its local view of the field would improve by getting
these samples). The Exchange packet, likewise, contains a
compact summary of y’s cache. Upon receiving an Exchange
packet, z adds the received samples to its cache applying
the QCCM cache management algorithm described below, if
needed. Then it replies to y with a similar packet containing
k of its own samples.

Some parameters decisively affect the performance of the
sample diffusion process. The first parameter is α, the rate
of sample diffusion. Slow sample diffusion rates may not
specifically help diversifying the contents of caches, resulting
in poor performance. While, high diffusion rates may cost
too much communication power. The other parameter is the
diffusion size k . Too small of a value may not be enough to
improve performance, while a very large value means more
energy consumption. These parameters need to be carefully
tuned to optimize the performance of APR.
Query-Cognizant Cache Management: Since the queries
originating at a node follow a certain target distribution that
is independent of the movement trajectory of this node, it
is best to manage the node’s cache in a way that makes it
store a representation that mirrors this distribution—e.g., when
query targets are uniformly distributed, the cache management
should strive to cover the entire field as uniformly as possible.
To achieve this goal we propose Query-Cognizant Cache
Management (QCCM) policy. QCCM is based on maximizing
the mutual distance between samples, as explained in Section
III. Whenever the cache is full and there are more than one
sample to be added to the cache (due to sample diffusion),
Algorithm 1 is applied to determine which set of samples
should be retained in the cache.

Notice that, in case the query model doesn’t follow a
uniform distribution over the field, we can always apply
a mapping (coordinate transformation) to get the effect of
“stretching” (or scaling) the field at the areas of high interest.
This would ensure that applying the QCCM algorithm will
not evict samples from areas of high interest in favor of other
samples covering a less important area. The exact form of this
transformation depends on the exact distribution of query tar-
gets over the field. We refer interested readers to the extended
version of this paper [20] for details of this algorithm when the
query distribution is smooth and symmetric in all dimensions
(e.g., a bivariate normal distribution), noting that for such a
case, one only needs to apply a simple transformation over

471

the distances between samples before applying the QCCM
algorithm. In the remainder of this paper, unless otherwise
noted, we will assume that query targets are uniform over the
field.

V. EFFECT OF CACHE MANAGEMENT

In this section we develop a simple model to gain insight into
how much the cache management of multiple mobile nodes
affects their collective probability of success in answering
queries. We assume that n mobile nodes roam in a two-
dimensional periodic field (i.e., torus) of size L × L. Each
node has a cache of size c, where L2 � c. Nodes are given
enough time T to sample the entire field 3. Nodes answer
queries uniformly distributed over the field and of precision �,
where we use L1 (i.e., Manhattan) distance. The mobile nodes
move according to some mobility model, and they sample the
field along their movement trajectory, applying a cache man-
agement algorithm whenever needed. We model any mobility
model through a probability distribution pij ,∀(i, j) ∈ [L,L],
where pij is the steady-state probability of any node being in
field location (i, j) under that mobility model. A “uniform”
mobility model assigns the same probabilities to all field lo-
cations, while a “biased” model assigns different probabilities
to different field locations (e.g., a random waypoint mobility
model results in a higher probability of being in the center
of the field). To be amenable to analysis, we assume that
any collected sample stays fresh, and so a returned answer
is always fresh. This assumption is reasonable if the rate of
query/response is much larger than the rate of change in the
sampled phenomenon. We relax this assumption in Section
VII.

The goal of the model is to compare two cache management
algorithms: QCCM, and random cache management (RCM)
at steady state—we say that the system reached steady state
when all nodes have sampled every location in the field. To
focus on the efficiency of the cache management algorithm,
we assume that nodes flood the field with their queries, so
that cache management decisions done at one node affect the
probability of success of queries issued at other nodes. We
now introduce two lemmas to help us calculate coverage by
each cache management algorithm, which, under the uniform
query model assumption, is indicative of the query success
ratio.
Coverage of a single sample: Assume a node keeps a sample
e at location (x, y), then the coverage of the field attained by
keeping e is a function of �, the query precision. The following
Lemma defines coverage of a single sample R(�).

Lemma 1: Let � denote the query precision. Then, in a two-
dimensional periodic field, and using the L1 distance measure,
field coverage attained by keeping any sample (assuming no
overlap with coverage from other samples) can be calculated
by R(�) =

∑�
i=1 4i+ 1 = 2�(�+ 1) + 1

Proof: It suffices to notice that on an L × L torus, the
number of neighboring locations at distance exactly � from

3That is T = O(L2logL) according to [34]. This is an accurate estimation
for L2 ≈ 25.

any location equals exactly 4 �, and we add 1, to account for
coverage of the field location where the sample lies.
Optimal Inter-Sampling Spacing (ISS) in 2D torus: We
need to answer the question: how can we place c points on a
torus of dimensions L × L, such that the minimum mutual
distance between any two points is maximized, and what
would the optimum distance Sopt in this case. Let’s assume
for now that c is a square number, i.e., c = s2 for some
integer s < L, and L is a multiple of s. Then we can very
easily argue that placing the c points uniformly on the field
maximizes their mutual minimum distance. In such a case,
an optimal algorithm would be one that divides the torus into
s×s squares, then places a point in each square. Selecting the
corresponding points in each square yields a minimum ISS of
Sopt = L/s. The following lemma formalizes this fact.

Lemma 2: In an L×L torus and given that c = s2, if L > s
and L is a multiple of s, then Sopt ≥ L

s .
Performance of QCCM: As we discussed above, at steady
state, nodes would have sampled the entire field. Recall
that QCCM decouples the cache content from the movement
trajectory of the nodes. Then we assume that nodes are able to
maximize inter-sample spacing, yielding ISS = Sopt = L/s.
This is always true as long as the mobility model has nonzero
probability of visiting all field locations. Since there are n
nodes, we know that given any area A of size = Sopt × Sopt,
A will host exactly one sample from each node, for a total of
n samples in A. Coverage of A, in this case, corresponds to
coverage of the whole field, since the coverage pattern in A
is repeated over the rest of the field.

To simplify the analysis, we assume that nodes do not opti-
mize their caches with respect to contents in their neighbors’
caches (i.e., nodes do not try to minimize the intersection of
coverage achieved by samples in their caches and coverage of
samples in their neighbors’ caches). Under this assumption,
it follows that A has n randomly placed samples. Figure 1
illustrates this setup. Now, consider any field location (lij)
in A, the probability (q = Pr[lij covered]) of covering this
location is proportional to the value of �, and can be calculated
as q = R(�)

Sopt×Sopt
. This follows from the fact that coverage of

any field location is related to coverage of one sample. For
example, if � = 0, lij has only one chance of being covered
(i.e., having a sample at lij). If � = 1, then lij has five
chances (having a sample at location lij itself, or having a
sample at any of its four neighboring locations), and so on.
Now we can view the attempt to cover any field location in
A by the n samples, as n independent Bernoulli trials, each
with probability of success q. Thus, the probability of covering
any field location exactly x times (i.e., probability lij will fall
into the coverage area of x different samples) has a binomial
distribution and is given by Pr[B(n, q) = x], where B(n, q)
is the Binomial probability. By running a summation of the
last quantity for x = 1 · · ·n, we can obtain the probability of
success under QCCM as:

SuccessQCCM =
n∑

x=1

(
n

x

)
qx (1−q)n−x = 1−(1−q)n (2)

472

Fig. 1. Idealized field coverage by four nodes applying QCCM. Notice that
any area A = Sopt × Sopt will have exactly one sample from each node.

Performance of RCM: Under RCM, nodes sample the un-
derlying mobility model, hence their cache content will match
this distribution. Following the same lines of analysis as we
did in QCCM, we have n nodes, each with cache c, for a total
of n × c samples in the field. For a given value of �, let’s
define Nij as the set of neighboring locations of lij within �
distance units. The probability ωij of covering a location lij
can be calculated as: ωij = pij +

∑
lxy∈Nij

pxy

Hence the probability of lij being covered exactly x times
is given by: Pr[B(n× c, ωij) = x], and the expected number
of locations that are covered exactly x times is given by:∑

0≤i,j≤L Pr[B(nc, ωij) = x]. Then, we can calculate cover-
age of the field by running a summation for all x = 1 · · ·n×c,
and the success probability is given by:

SuccessRCM =
1
L2

nc∑
x=1

(
n c

x

)
[

∑
0≤i,j≤L

ωx
ij(1 − ωij)nc−x]

(3)
Figure 2 plots Equations 2 and 3 for two different mobility

models depicted in Figure 3. We have numerically confirmed
that both mobility models have no i, j such that p(i, j) = 0,
i.e., nodes can sample the entire field under both models. It
is clear that QCCM has a noticeable performance advantage
over RCM, as it manages cache content based on the workload,
decoupling it from the trajectory of motion of nodes.

VI. DIRECTED PLACEMENT AND RETRIEVAL (DPR)

A radically different approach to “amorphous” placement is
planned or directed placement. In this approach the system
plans the storage location of every group of samples. The stor-
age location is independent of the location of sensors collect-
ing these samples, hence, this approach mandates transporting

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of nodes

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Probability of success as a function of number of nodes

QCCM (precision = 2)

RND1 (precision = 2)

RND2 (precision = 2)

QCCM (precision = 5)

RND1 (precision = 5)

RND2 (precision = 5)

Fig. 2. Effect of cache management algorithm on query success ratio for n
mobile nodes. Notice RND2, RCM under mobility model 2 (Figure 3 right),
is better than RND1, RCM under mobility model 1 (Figure 3 left), since the
earlier is less skewed than the latter.

0

50

100

0

50

100
0

1

2

3

4

5

6
x 10

−4

0

50

100

0

50

100
0

1

2

3

4
x 10

−4

Fig. 3. pij for the two mobility models used in Figure 2

samples from the collecting sensor(s) to the storage sensor(s).
We call the latter the home of the sample. DPR has two main
questions to resolve: (1) how to plan sample placement, and
(2) how to transport samples from the collecting sensors to the
home sensor. Hashing is a widely used technique to answer
questions like the first. In systems like [22] and [25], it was
proposed to hash samples (based on the sample name) to
some location in the field. Nodes closest to that location are
considered the home nodes for these samples. To account for
mobility, sample replication has been employed to maintain the
semantics of the approach (i.e., hashing any sample e to get a
field location, sensors closest to a hashed location are the home
sensors for e). Queries are likewise hashed using the same
function to get the location where answers to the query should
be found. To answer the second question, geographic routing
techniques (e.g., GPSR [13]) were employed. Assuming nodes
are aware of their own location and that of their neighbors,
GPSR can be used to route packets to the node closest to
a given location in the field. It is clear that, unlike APR,
DPR-like approaches depend on multi-hop communication,
which consumes much energy. In this paper, we use a slightly
different version from the one described above. Instead of
hashing samples and queries to field locations, we hash them
to node ID’s. It is worth noting that, DPR-like algorithms
are not originally designed to handle mobile nodes. However,

473

to allow for fair comparison between APR and DPR, we
assume that, under DPR, any two nodes a and b route packets
(samples, queries, and query answers packets) between them
on the optimum route found by applying Dijkstra’s algorithm.
Dijkstra’s algorithm requires instant knowledge of the whole
network topology — a piece of information that many realistic
systems would lack. Therefore, results reported in this paper
should be viewed as providing an upper-bound on any realistic
implementation of DPR algorithms. The hashing of samples is
based on the sample location. More specifically, we divide the
field into Responsibility Regions (RR for short), each region is
assigned to a node. All samples collected by any node at the
RR of node z are forwarded to z. z manages its cache such
that, it keeps samples collected only from its RR. Queries are
likewise hashed, based on the query target to get the ID of
the home node. Queries are forwarded to their home node,
and answers are routed back to inquirer. Having in mind that,
nodes only keep samples form their respective RR, the cache
management technique used to manage these samples does
not have a huge impact on performance. We experimented
with both RCM and QCCM, and results were very close. The
reason is that the area of RR is usually much smaller than
that of the field, that the effect of the cache management is
not really noticeable on performance.

VII. PERFORMANCE EVALUATION

We evaluated APR and DPR using extensive simulations under
a variety of settings. In this section we provide the key results
from our experiments, with additional results and extensions
available in the longer version of this paper [20].
Simulation Model and Setup: we conducted a set of de-
tailed packet-level simulation experiments, in which we used
identical mobility and sampling scenarios for the various
approaches. Mobility scenarios for our experiments were gen-
erated off line using different mobility models, including the
corrected version of the Random Waypoint mobility model
[17], the Random Direction model [23] and the Boundless
Simulation Area model [7]. Due to space limitations, we only
report results for the corrected Random Waypoint model. In
our simulations, we set the minimum and maximum speed of
motion to 0.1 m/sec, and 20 m/sec, respectively.

The sampling process used by mobile nodes follows a
Poisson process with exponential inter-arrival time of two
seconds; a sample at time t constitutes the sensed value of
the field at the current location of the node. We report results
of simulating 100 mobile nodes moving in a field of 1400m
× 1400m, where distance is measured in Euclidean distances.
The simulation runs for 5,000 seconds. In the following
figures, every point is the average of 20 simulation runs, with
95% confidence intervals shown. Notice that the confidence
intervals are extremely small in most cases. For APR, we set
the sample diffusion size k = 4, and the rate α = 0.005 sec−1

(see the longer version of this paper [20] for justification of
APR parametrization).
Performance Metrics: The first metric we use is the query
success ratio (QSR), which is defined as the ratio between the

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Query success rate as a function of the communication range

Communication Range

Q
ue

ry
 S

uc
ce

ss
 R

at
e

APR: cache 50, precision 80

FIFO: cache 50, precision 80

No Diffusion: cache 50, precision 80

Fig. 4. Effect of APR mechanisms on QSR.

number of successfully answered queries and the number of all
queries. To measure efficiency in terms of consumed energy,
we compute the number of successfully answered queries per
unit energy, to which we refer using Success Per unit Energy
(SPE). We use an energy model based on the model presented
in [10] (Equations 1 and 2).
Effect of APR Mechanisms: APR has two main mechanisms:
sample diffusion, and QCCM. In this subsection, we quantify
the effect of each of these mechanisms on APR’s performance.
To this end, we compare three different versions of APR: (1)
APR with both sample diffusion and QCCM, (2) APR with
QCCM but no sample diffusion, and 3) APR with sample
diffusion, and FIFO cache management. We refer to these
using APR, No Diffusion, and FIFO, respectively. Figure
4 shows the QSR of these APR variants as a function of
the communication range r. These results show that sample
diffusion coupled with QCCM achieves the highest QSR.
There is a clear difference in performance between APR and
FIFO cache management validating our analytical findings in
Section V. On the other hand, disabling the sample diffusion
mechanisms hinders the performance of APR.
APR versus DPR: In this subsection we compare APR
to DPR. To that end, we vary the following parameters:
communication range r, query precision �, cache size c,
TTL, and packet loss probability (PLP). We also study the
effect of varying the distribution of queries to a non-uniform
distribution, and finally we quantify the effect of mobility
(or lack thereof) on both protocols. Due to space limitations,
we only show results for communication range, and lack of
mobility, and refer the reader to the longer version for the
rest of the results [20]. Unless otherwise noted, the default
parameters are: r = 160m, � = 140m, c = 50, TTL = 200
secs, PLP = 0, and uniform distribution of queries.
Effect of Communication Range: The communication range
r defines the level of connectivity in the network. We argued
that DPR would achieve high QSR only when the network
is very-well connected, while APR is able to achieve better
QSR in less connected networks. Validating our intuition,
Figure 5(left) shows query success ratios for APR and DPR
using different values for query precision. It is clear that APR

474

outperforms DPR for networks with smaller communication
range, while the roles are reversed when we increase the
communication range. To visualize the impact of network
connectivity on QSR for DPR, we also plot the probability
of having a connected network as a function of the communi-
cation range. This curve is based on the network connectivity
model presented in [4]. It is clear that DPR’s performance
peaks, only when the network is well connected. Increasing the
value of � (i.e., making precision requirement less strict) helps
APR outperform DPR over a wider region of communication
ranges. Later, we discuss this effect in more detail. As for
SPE, as shown in Figure 5(right), for shorter communication
ranges DPR achieves better performance at higher energy
consumption level than APR. As the communication range
increases, DPR consumes much more energy compared to
APR rendering it inefficient in terms of SPE. This is mainly
because, unlike APR, DPR depends mainly on multi-hop
communication which consumes much energy.
Performance in Static Networks: One might expect that
in static networks, APR’s performance will deteriorate sig-
nificantly compared to DPR. In this section, we show that,
counter-intuitively, lack of mobility does not impact the gen-
eral behavior of APR’s performance significantly.

In mobile networks, nodes get multiple chances of getting in
contact with different neighbors allowing them better sample
diffusion and thus an improved view of the entire field. In
case of static networks, APR depends, indirectly, on delay-
tolerant multi-hop dissemination to achieve this effect. To see
why this is the case, consider a node (z) at location (xz, yz)
in a completely static network. Due to its immobility, all
samples cached by z will be from location (xz, yz). This
will be true until z starts the sample diffusion process with
its neighbors. At this point, z will cache samples gathered
at locations of its direct neighbors. As the sample diffusion
process continues, and QCCM is applied, z will eventually
cache samples gathered at neighbors of its direct neighbors,
and so on. This effect goes on until z gets a uniform view
of the entire field. The combination of QCCM and informed
sample diffusion helps to diversify the cache contents of
all nodes improving the performance of the entire system.
Mobility, only, speeds up this process, especially when the
network is not well connected.

The repeated diffusion of samples to nodes farther from
the collecting nodes is one form of delay-tolerant multi-hop
communication. However, in this case, unlike DPR, nodes on
the way get a chance to cache such samples themselves. Figure
6 shows the performance of APR and DPR in a static network
as a function of the query precision. The relative trend of
APR, seen in mobile settings [20], is still the same (i.e., re-
laxing the precision constraint improves APR’s performance).
This accentuates the effectiveness of APR’s mechanisms in
delivering high performance even in networks with no/limited
mobility. Regarding energy efficiency, Figure 6 (right) shows
that APR is always more efficient than DPR.

It is worth pointing out that, the effect of network parti-
tioning is more pronounced when there is lack of mobility.

In APR, mobility helps nodes that are temporarily isolated
to come in contact with neighbors and exchange valuable
samples, which improves the field view at these nodes. When
there is no/limited mobility resulting in a partitioned network,
disconnected nodes have no such chance and hence their
performance deteriorates. This effect is more magnified under
DPR, since having persistent network partitions harms the
performance of the entire system (due to partitioning the field
into RR’s and assigning an RR to each node), as opposed to
harming the performance of only the group of disconnected
nodes, under APR. Another weakness in DPR is that, since
some of the RR will not have sensors reside in them, queries
about these RR will be always missed. Since APR does
not depend on the idea of RR, but rather searches for the
sample closest to the query target, the performance of APR
for the same queries is decidedly better. The probability of
this scenario happening increases as we relax the precision
constraint and increase the communication range (see Figure
6).
Summary of Findings: We conclude this section with a
summary of findings from all of our experiments.

In this paper, we have shown that: (1) Communication range
is the main determinant of DPR’s performance: a loosely
connected network renders DPR dysfunctional. In contrast,
APR features higher resilience to network disconnectivity.
(2) APR’s performance is not significantly affected by lack
of mobility. In fact, when the network is not well connetced,
lack of mobility negatively impacts the performance of DPR
much more than that of APR. (3) APR is more energy
efficient than DPR in almost all situations. In addition to
the above results, we also show in the extended version of
this paper [20] that: (4) In well-connected networks, queries
with tighter precision constraints are better handled by DPR
than APR. Relaxing precision constraints improves APR’s
performance. In loosely-connected networks, APR is better
than DPR, even for queries with tight precision constraints.
(5) in well-connected networks, when the monitored field
values have tight freshness (TTL) constraints, DPR beats APR
in handling queries with stringent precision constraints. APR’s
performance improves as we increase the value of TTL. In
loosely-connected networks, the performance of APR domi-
nates that of DPR, independent of freshness (TTL) constraints.
(6) Unlike DPR, APR is able to take advantage of increased
cache sizes in all settings. (7) APR features much higher
resilience to packet losses (and node failures) compared to
DPR. (8) Applying a mapping (a linear transformation) to
sample locations before feeding them to QCCM, enables APR
to deliver superior performance when the query distribution is
non-uniform over the field.

VIII. RELATED WORK

There have been extensive research on data management
and query resolution in sensor networks. Applications where
sensors are mobile and produce large-size samples (e.g.,
cameras) make these problems more challenging. Due to space
limitations, we restrict our attention to only a representative

475

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Communication Range

Q
ue

ry
 S

uc
ce

ss
 R

at
io

Query success ratio as a function of the communication range

APR: Precision 40

DPR: Precision 40

APR: Precision 240

DPR: Precision 240

Pr[conn. network]

50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Successful queries / consumed energy as a function of the communication ragne

Communication Range

S

uc
ce

ss
fu

l q
ue

rie
s

/ c
on

su
m

ed
 e

ne
rg

y
in

 J
ou

le
s

APR: Precision 40
DPR: Precision 40
APR: Precision 240
DPR: Precision 240

Fig. 5. Effect of communication range: Query success ratio (left) and Query success ratio per unit of energy (right).

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Query success rate as a function of the query precision

Query Precision

Q
ue

ry
 S

uc
ce

ss
 R

at
e

APR: range 160

DPR: range 160

APR: range 240

DPR: range 240

APR: range 400

DPR: range 400

50 100 150 200 250
10

−1

10
0

10
1

10
2

10
3

10
4
Successful queryies / consumed power as a function of the query precision

Query Precision

S
uc

ce
ss

fu
l q

ue
ry

ie
s

/ c
on

su
m

ed
 p

ow
er

APR: range 160

DPR: range 160

APR: range 240

DPR: range 240

APR: range 400

DPR: range 400

Fig. 6. Effect of query precision in a static network: Query success ratio (left) and Query success ratio per unit of energy (right).

sample of related research, which we broadly categorize based
on whether the network or the users (sinks) are mobile.
Static/mobile network, static sinks: Data Centric Routing
(DCR) and Data Centric Storage (DCS) fall into this category.
DCR, such as Directed Diffusion [11], employs flooding.
The overhead of flooding is amortized assuming long-running
queries. A sink floods its query/interest, and targeted sensors
respond. In our APR scheme, each node is able to answer
queries locally, or at worst, using limited-scope flooding, since
each node actively builds a view of the entire field that matches
the spatial distribution of the query targets.

DCS [27] attempts to avoid flooding altogether, hence
is suitable for one-shot queries. DCS employs hashing to
associate a data item with a specific location in the field. A
geographic routing protocol, such as GPSR [13], is used to
transport a query/answer for a data item. We compared APR
with DPR, which is basically a DCS approach.

Mobility challenges the design of both DCR and DCS—
it continually changes the topology underneath the routing
protocol. Other proposals, such as data mules [26], smart
tags [3] and mobile relays [32], employ mobile elements as
relays among static nodes. These schemes target delay-tolerant
applications, which is not the focus of this paper. Another
delay-tolerant scheme was proposed by Small et al. [28] for
a whale monitoring application.
Static network, mobile sinks: Both TTDD [35] and SEAD

[15] fall into this category. They target long-running queries
from mobile users. Essentially, these schemes can be thought
of as a hierarchical extension to Directed Diffusion, whereby
the effect of sink mobility is localized.
Mobile network, mobile sinks: The work by Zaho et al. [37]
and Lee et al. [16] fall into this category. The first employs
powerful message ferries to act as relays. In the latter proposal,
each node keeps track of its recent contacts, along with their
sensed events, and employs last-encounter routing to locate a
target node. In a similar setting of delay-tolerant applications,
Wang et al. [33] employs history-based forwarding and buffer
management.

Our proposed APR protocol also fall into this category,
albeit its suitability for delay-sensitive applications. APR does
not require external mobile elements, such as ferries or data
mules. And APR takes a different, proactive approach to
improve query performance. The key idea in APR is that
it decouples the negative effects of uncontrolled mobility on
query performance, by making cache management cognizant
of the query profile. Thus, queries can be readily answered
from the field view (samples) stored in the local cache or very
few neighboring caches.

Another related body of work, is data management in ad hoc
networks [36], [8]. The main difference between these efforts
and ours is that: usually, in ad hoc networks, the set of data
objects is limited with a known source for every object, which

476

is not the case in mobile sensor networks, since any node
can sample any field location. Moreover, correlation between
different data objects are usually ignored. Hara et al. consider
this correlation in [9]. However, the correlation structure they
consider is random. In our case, the correlation between
samples is manifested in utilizing samples to answer queries
targeting close-by field locations. Hence, the correlation is not
random and has a physical interpretation.

The sample diffusion idea used by APR resembles gossip-
ing and randomized rumor routing [14], [5], [31]. In these
efforts multi-hop routing of delay-tolerant data is avoided and
mobility is deployed instead. However, as we have shown,
APR is flexible enough to resort to delay-tolerant multi-hop
forwarding when the need arises. The sample diffusion process
also borrows ideas from the summary cache [6] by Fan et al.
to maximize its gain.

IX. CONCLUSION

In this paper, we presented a proactive approach, APR, that
amorphously places and diffuses sensor data collected by
autonomously mobile nodes, allowing nodes (and node neigh-
borhoods) to compile an integrated view of the monitored
field of interest, in anticipation of freshness-constrained and
precision-constrained queries thereof. A salient feature of APR
is that it enables the management of the nodes’ cache content
in such a way so as to match the distribution of query
targets, regardless of the distribution of the locations that are
collectively visited (and sensed). Given a uniform distribution
of queries over the space, we demonstrated, by analysis and
extensive simulations, how query performance improves under
an informed (query-aware) diffusion of sensory samples that
maximizes the minimum distance between samples in a node’s
cache. Our current work is focused on the development of a
general transformation that allows APR to handle arbitrary
distributions of query targets – and not only the symmetric
distributions we considered in this work.

REFERENCES

[1] Lifeguard, wearable wireless physiological monitor.
http://lifeguard.stanford.edu/.

[2] M. Ali and Z. A. Uzmi. CSN: A network protocol for serving dynamic
queries in large-scale wireless sensor networks. In CNSR’04, 2004.

[3] A. Beaufour, M. Leopold, and P. Bonnet. Smart-tag based data
dissemination. In WSNA ’02.

[4] C. Bettstetter. On the connectivity of wireless multihop networks with
homogeneous and inhomogeneous range assignment. In IEEE Vehicular
Technology Conf. (VTC), Vancouver, BC, Canada, September 2002.

[5] R. R. Choudhury. Brownian gossip: Exploiting node mobility for
diffusing information in wireless networks. In StoDis’05.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[7] Z. Haas. A new routing protocol for the reconfigurable wireless
networks. In ICUPC’97.

[8] T. Hara. Effective replica allocation in ad hoc networks for improving
data accessibility. In Infocom ’01, pages 1568–1576, 2001.

[9] T. Hara, N. Murakami, and S. Nishio. Replica allocation for correlated
data items in ad hoc sensor networks. SIGMOD Rec., 33(1):38–43,
2004.

[10] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In
HICSS ’00.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In
MobiCom ’00, pages 56–67, 2000.

[12] D. B. Johnson, D. A. Maltz, and J. Broch. Dsr: the dynamic source
routing protocol for multihop wireless ad hoc networks. pages 139–
172, 2001.

[13] B. Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for
wireless networks. In MobiCom ’00.

[14] A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Probabilistic reliable
dissemination in large-scale systems. IEEE Trans. Parallel Distrib. Syst.,
14(3):248–258, 2003.

[15] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor networks.
In SenSys ’03, pages 193–204, New York, NY, USA, 2003. ACM Press.

[16] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi.
Efficient data harvesting in mobile sensor platforms. In PERCOMW ’06.

[17] G. Lin, G. Noubir, and R. Rajamaran. Mobility models for ad-hoc
network simulation. In INFOCOM, 2004.

[18] C. Lu, G. Xing, O. Chipara, C.-L. Fok, and S. Bhattacharya. A
spatiotemporal query service for mobile users in sensor networks. In
ICDCS ’05.

[19] P. Lukowicz, U. Anliker, J. Ward, G. Trster, E. Hirt, , and C. Neufelt.
Amon: A wearable medical computer for high risk patients. In ISWC’02.

[20] H. Morcos, A. Bestavros, and I. Matta. Amorphous placement and
informed diffusion for efficient field monitoring by autonomusly mobile
sensors. Technical Report BUCS-TR-2007-008, Computer Science
Department, Boston University, 111 Cummington Street, Boston, MA
02135, June 2007.

[21] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance
vector (aodv) routing. 2003.

[22] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. Ght: a geographic hash table for data-centric storage. In
WSNA ’02, pages 78–87, New York, NY, USA, 2002. ACM Press.

[23] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser. An analysis of the
optimum node density for ad hoc mobile networks. In ICC’01.

[24] R. S., F. P., H. M., K. R., and S. S. A scalable content-addressable
network. In SIGCOMM ’01.

[25] K. Seada and A. Helmy. Refereed poster: Rendezvous regions: A
scalable architecture for service provisioning in large-scale mobile ad
hoc networks. In ACM SIGCOMM, 2003.

[26] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a
three-tier architecture for sparse sensor networks. In IEEE SNPA’03.

[27] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-
centric storage in sensornets. SIGCOMM Comput. Commun. Rev.,
33(1):137–142, 2003.

[28] T. Small and Z. J. Haas. The shared wireless infostation model: a new
ad hoc networking paradigm (or where there is a whale, there is a way).
In MobiHoc ’03.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM ’01.

[30] S.-H. Teng. Low energy and mutually distant sampling. J. Algorithms,
30(1):52–67, Jan 1999.

[31] S. Voulgaris, M. Jelasity, and M. van Steen. A robust and scalable peer-
to-peer gossiping protocol. In 2nd Int’l Workshop Agents and Peer-to-
Peer Computing, LNCS 2872,, Springer, 2003.

[32] W. Wang, V. Srinivasan, and K.-C. Chua. Using mobile relays to prolong
the lifetime of wireless sensor networks. In MobiCom ’05.

[33] Y. Wang and H. Wu. Dft-msn: The delay/fault-tolerantmobile sensor
network for pervasive information gathering. In INFOCOM ’06.

[34] G. H. Weiss. Aspects and Applications of the Random Walk. Elsevier
Science B.V., North-Holland, 1994.

[35] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data
dissemination model for large-scale wireless sensor networks. In
MobiCom ’02, pages 148–159, New York, NY, USA, 2002. ACM Press.

[36] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks.
In INFOCOM’04.

[37] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for
data delivery in sparse mobile ad hoc networks. In MobiHoc ’04.

477

