
Scalability of Multicast Delivery for Non-sequential
Streaming Access ∗

Shudong Jin
Computer Science Department

Boston University, Boston, MA 02215

jins@cs.bu.edu

Azer Bestavros
Computer Science Department

Boston University, Boston, MA 02215

best@cs.bu.edu

ABSTRACT
To serve asynchronous requests using multicast, two categories of
techniques–stream merging and periodic broadcasting–have been
proposed. For sequential streaming access, where requests are un-
interrupted from the beginning to the end of an object, these tech-
niques are highly scalable: the required server bandwidth for stream
merging growslogarithmically as request arrival rate, and the re-
quired server bandwidth for periodic broadcasting varieslogarith-
mically as the inverse of start-up delay. A sequential access model,
however, is inappropriate to model partial requests and client inter-
activity observed in various streaming access workloads. This pa-
per analytically and experimentally studies the scalability of mul-
ticast delivery under a non-sequential access model where requests
start at random points in the object. We show that the required
server bandwidth for any protocol providing immediate service grows
at least as thesquare root of request arrival rate, and the required
server bandwidth for any protocol providing delayed service grows
linearly with the inverse of start-up delay. We also investigate the
impact of limited client receiving bandwidth on scalability. We
optimize practical protocols which provide immediate service to
non-sequential requests. The protocols utilize limited client receiv-
ing bandwidth, and they are near-optimal in that the required server
bandwidth is very close to its lower bound.

1. INTRODUCTION
Streaming media delivery presents a formidable strain on server
and Streaming media delivery presents formidable strain on server
and network capacity. With the mushrooming demand for large
electronic artifacts stored in Internet servers ranging from Video-
on-Demand servers to software repository servers, multicast emerges
as a promising scalable delivery technique for such content.

Multicast can be used in both a demand-driven (closed-loop) fash-
ion and a data-centered (open-loop) fashion. In closed-loop ap-
proaches, service starts as soon as a request is made. However, as

∗This work was supported in part by NSF under Grant ANI-
9986397 and ANI-0095988. Shudong Jin was also supported by
an IBM Ph.D. Research fellowship.

time goes by, it is possible that the service be delegated to an ex-
isting multicast stream. For example, consider a scenario in which
two clients download a one-hour video, with the second client start-
ing one minute after the first. Service to the second client starts
immediately through a dedicated delivery of the first minute of
the video to that client, with the remaining fifty nine minutes ob-
tained (and buffered for playout one minute later) by joining the
first client’s multicast channel. In open-loop approaches, a server
multicasts the object or the segments of the object periodically, and
clients simply join such multicast channels. Since a server is not in-
teractively responding to request arrivals, clients may have to wait
before service could start.

Both closed-loop and open-loop approaches have been well-studied,
including the early batching [13, 15], piggybacking [23, 24, 2, 30],
and stream tapping/patching [10, 27, 9, 22, 41, 8] techniques, as
well as the more recent stream merging [17, 18, 19, 7, 14, 33, 6,
44] and broadcasting protocols [43, 3, 28, 16, 21, 29, 36, 37, 38,
40, 39, 26, 42]. Two particular techniques—stream merging and
periodic broadcasting—have been shown to be highly scalable.

Stream merging originated with the work of Eager, Vernon, and Za-
horjan [17, 18, 20]. With stream merging, server bandwidth grows
logarithmically with request arrival rate (or the average number of
clients requesting an object simultaneously). Periodic broadcasting
was introduced by Viswanathan and Imielinski [43]. With periodic
broadcasting, clients may observe a small start-up delay but the re-
quired server bandwidth growslogarithmically with the inverse of
that start-up delay. Both stream merging and periodic broadcasting
techniques are built on the assumptions that clients have higher re-
ceiving bandwidth than the object playback rate, and that they have
local storage to keep prefetched portions of the object temporarily.

The scalability of both stream merging and periodic broadcasting
rests on the assumption of sequential access. That is, clients request
an object from the beginning and play it without interruption to the
end. It is unknown how these techniques scale in a non-sequential
access environment, in which clients may request the segments of
an object. Indeed, recent studies on the characterization of stream-
ing access workloads [34, 25, 12, 4] have revealed that client access
is seldom sequential due to frequent client inter-activity. While sev-
eral studies have tried to minimize the bandwidth requirement for
non-sequential access in Video-on-Demand servers [5, 31, 32, 1,
11, 35], it is still unknown what are the potentials and limitations
of multicast delivery in a non-sequential access environment.

We give two example applications with non-sequential access char-
acteristics. The first example is interactive Video-on-Demand for

remote learning in an educational environment, or for press releases
in a corporate environment, for example. Here a potentially large
number of clients may request an object within a short period of
time (e.g., after a lecture is released, or after a press release is put
out), but not all of them may settle for a continuous playout from
beginning to end. Specifically, clients may jump frequently using
VCR functionality such as pause, fast-forward, skip, and rewind.
Clearly, it is desirable that the server be able to support a very large
number of simultaneous requests while minimizing the start-up de-
lay for these requests. The second example is real-time large soft-
ware distribution applications. Here a large number of clients may
need to download a new software release simultaneously, or within
a very short period of time, possibly in reaction to a cyber threat,
or to fix a software vulnerability. The entire large software package
could be viewed as a streaming object and served using multicast.
However, different clients may require different components of the
software due to customized installations, for example. This trans-
lates to “jumps” in the process of accessing the object.

Paper Contributions and Overview
This paper considers the problem of using multicast to serve non-
sequential requests. Under a simple non-sequential streaming ac-
cess model, we derive a tight lower bound on the required server
bandwidth for any protocols providing immediate or delayed ser-
vice. The lower bound is validated through simulation. It also
appears that this lower bound holds for more general cases. Our
results indicate that the scalability of multicast delivery under a
non-sequential access model is not as good as the logarithmic scal-
ability achievable under a sequential access model. Specifically,
we show that for non-sequential access the required server band-
width for any protocol providing immediate service grows at least
as fast as thesquare root of request arrival rate, and that the required
server bandwidth for any protocol providing delayed service grows
linearly with the inverse of the start-up delay. We also study how
limited client receiving bandwidth may impact scalability. Finally,
we propose practical and very simple delivery protocols that require
server bandwidth very close to the lower bound. These protocols
provide immediate service to clients, and they assume only limited
client receiving bandwidth.

The paper is organized as follows. Section 2 presents some back-
ground knowledge and related work on stream merging and pe-
riodic broadcasting techniques. In Section 3, we derive the lower
bounds on required server bandwidth under a simple non-sequential
access model. Section 4 presents simulation results that validate
our analytical results under more realistic non-sequential access
models. In Section 5, we study the impact of limited client re-
ceiving bandwidth. In Section 6, we present optimized multicast
delivery protocols for non-sequential access. We conclude in Sec-
tion 6 with a summary and with directions for future work.

2. BACKGROUND AND RELATED WORK
This section briefly describes two previous techniques, stream merg-
ing and periodic broadcasting which utilize multicast delivery to
serve streaming media objects. We present results from previous
work on the scalability of these techniques when streaming ac-
cesses are sequential. In addition, we introduce a non-sequential
access model (and notations thereof) used in this paper.

2.1 Stream Merging
In stream merging, a server immediately delivers the object in re-
sponse to a client’s request. This means that the server initiates

0 4 6 8 10

A

C

B joins A

C joins A

C joins B
B

2

(a)
0 4 6 8 10

A

C

B

C joins B

B joins A

2

(b)

Figure 1: An example of hierarchical stream merging. (a)
Client receiving bandwidth is twice the object playback rate.
(b) Client receiving bandwidth is 1.5 times the playback rate.

a stream for the client. However, assuming that the client receiv-
ing bandwidth is higher than the object’s playback rate (it is of-
ten assumed that the client can receive up to two streams at the
same time), it is possible for the client to listen to a second ongoing
stream of the same object, which was initiated by an earlier client.
As time goes by, it is possible that the first stream becomes no
longer necessary since its future content would have been already
prefetched from the second stream. Thus, the client is able to join
an ongoing multicast session by virtue of making-up the content it
missed from that session using a dedicated stream. This process
of merging with multicast sessions that started earlier(and in the
process pruning sessions that started later) can be repeated many
times, giving rise tohierarchical stream merging [20] as opposed
to the stream tapping/patching techniques where merging occurs
only once for each client.

Figure 1 gives an example where three clients (A, B, andC) re-
quest an object at times 0, 3, and 4, respectively. Figure 1(a) as-
sumes that the clients’ receiving bandwidth is twice the object play-
back rate. The server initiates one stream for each client. ClientC
also listens to the stream forB and prefetches data there. At time
5, the stream initiated forC is no longer necessary sinceC has al-
ready prefetched and will keep prefetching data from the stream for
B. From this point on,C starts to listen to the stream forA. Notice
that,B starts to listen to the first stream earlier.B virtually joins
A at time 6 andC joinsA at time 8. Also notice that, after time 6,
the stream initiated forB is no longer necessary forB, butC has
yet to retrieve segment [3,5] of the object. The server may initiate
a stream again forC, or simply prolongs the stream forB by two
units of time untilC joinsA (as shown in the figure).

It is often the case that client receiving bandwidth is less than twice
the object playback rate. Bandwidth skimming protocols [19] work
well in this case. Each stream is divided intok substreams using
fine-grained interleaving, wherek is a positive integer. Each sub-
stream is then transmitted on a channel with rate equal to1/k times
the object playback rate. Stream merging is possible if clients can
receive at least(k + 1) substreams at the same time. Figure 1(b)
gives an example whenk = 2. In time interval [4,5],C receives
two substreams of its own and prefetches only one substream of
B. After that, in time interval [5,6],C need only receive one sub-
stream of its own and prefetches the two substreams ofB. Even-
tually, C joins B at time 6. Similarly,B joins A at time 9, and
C joins A at time 12. A salient feature of bandwidth skimming
is that when client receiving bandwidth is slightly higher than the
object playback rate (e.g., by 25%), the required server bandwidth
is still comparable to that under an unlimited receiving bandwidth

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������������
������������
������������
������������

������������
������������
������������
������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

������������
������������
������������
������������

������������
������������
������������
������������

��
��
��
��

��
��
��
��

5 10 15 20 25 30 35 40 450

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 2

Channel 1

Time

Figure 2: The schedule of Skyscraper broadcasting with 7 seg-
ments. The transmission plans for two clients are shown by the
shaded segments. Each client receives at most two segments at
the same time, and can continuously play out the object after a
start-up delay smaller than the duration of the first segment.

assumption.

It has been shown that under both unlimited and limited receiving
bandwidth assumptions, the required server bandwidth increases
logarithmically with request arrival rates [20]. Thus, stream merg-
ing substantially outperforms stream tapping/patching techniques
where the required server bandwidth increases as the square root of
request arrival rate [22, 20].

2.2 Periodic Broadcasting
In periodic broadcasting schemes, a long object is divided into a se-
ries of segments with increasing sizes. Each segment is periodically
broadcasted on a dedicated channel. When a client is playing an
earlier segment, later segments are prefetched into the client’s local
buffer. To make this possible, the client must have higher receiving
bandwidth than the object playback rate. Like stream merging, it is
often assumed that clients can receive two streams/segments at the
same time. The segment size progression is made in such a way
so that once the client starts playing the first segment, the whole
object can be played out continuously.

Two important performance metrics of periodic broadcasting proto-
cols are the required server bandwidth and the start-up delay. The
required server bandwidth is proportional to the number of seg-
ments, which is fixed and independent of the request arrival rate.
The maximum start-up delay is equal to the duration of the first
segment. A desirable property of periodic broadcasting protocols
is that the small first segment permits a small start-up delay while
the larger later segments allow the total number of segments to re-
main small. To achieve the best tradeoffs between these two met-
rics, a broadcasting protocol needs to find the quickest segment size
progression.

Various periodic broadcasting protocols have been proposed in the
literature. To understand the general idea behind these protocols, it
suffices to describe one example, theSkyscraper broadcasting [28]
protocol. Skyscraper broadcasting assumes that client receiving
bandwidth is twice the object playback rate. The series of segment
sizes is{1,2,2,5,5,12,12,25,25,52,52,...}. The broadcast schedule
with seven segments is shown in Figure 2. The figure shows that
two clients, starting in time interval (1,2) and (16,17), respectively,
are served with delay less than one unit of time, and henceforth can
continuously play out the object. These two clients have different
transmission schedules, as shown by the shaded segments; none of
them needs to receive more than two segments at any time.

The segment size progression of Skyscraper broadcasting has the
following property: the size is at least doubled every two steps.
Different broadcasting protocols may have different segment size
progressions,e.g., geometric series and Fibonacci series, but it is
common that the size increasesexponentially. Thus, the total num-
ber of segments (which is proportional to the required server band-
width) is a logarithmic function of the inverse of the first segment
size (which is proportional to the start-up delay).

2.3 Notation and Assumptions
Some of the notation used in this paper are listed in Table 1. Let
T be the length of an object in bytes. Assuming that such an ob-
ject is played out at a constant bit-rate of one byte per unit time,
its duration is alsoT units of time. We consider the following sim-
ple model for non-sequential accesses. Request arrivals follow a
Poisson process with arrival rateλ. Each request is for a segment
of sizeS which starts from a random point in the object. We as-
sumeS < T . For simplicity, we assume that the object is cyclic,
which means that access may proceed past the end of the object
by cycling to the beginning of the object. ParametersT , λ, andS
uniquely specify a workload.

For ease of presentation, we introduce two other quantitiesN and
M , which are derived from the three basic parametersT , λ, and
S. Let N denote the average number of clients being serviced at
the same time. Using Little’s Law, it follows thatN = λS. To
assess the scalability of a multicast delivery protocol, it is custom-
ary to find out how the server bandwidthB grows as a function of
N . Similarly, letM denote the average number of requests over a
period of timeT . Again, it follows thatM = λT . Notice that by
definition,M > N . It also helps to understand that ifS = T/4 for
example, thenM = 4N .

Let d denote the maximum delay before service for a request is
started. Under an immediate service assumption,d = 0. Thus,
immediate service is a special case of delayed service. For clar-
ity, in our analysis of the next section, we first consider immediate
service, and then consider the general delayed service.

Let n denote the client receiving bandwidth in units of object play-
back rate. For example,n = 2 means the client can receive two
streams at unit playback rate simultaneously. We first assume that
n is unlimited in the derivation of the lower bound on the required
server bandwidth. In Section 5, we use simulations to show that
when client receiving bandwidth is limited, the required server band-
width increases slightly.

Finally, considering that storage is not expensive, we assume that
the clients have large enough buffers, and thus can always keep
prefetched data in their buffers.

2.4 Scalability of Multicast Delivery
for Sequential Access

For sequential access, requests start from the beginning of the ob-
ject and continue uninterruptedly until the end. Thus,S = T .
Eageret al. [20, 33] derived a tight lower bound on the required
server bandwidth for any protocol (including stream merging) that
provides immediate service. The lower bound is:

Bimmediate,sequential
minimum =

∫ T

0

dx

x + 1/λ

= ln(N + 1). (1)

Notation Definition

T object duration (or length in bytes, assuming one byte per unit time)
λ client request arrival rate
S duration of each request
N average number of clients being serviced at same time. This quantity is equal toλS.
M average number of requests arrived inT . This quantity is equal toλT
B required server bandwidth (in units of object playback rate)
d maximum start-up delay for each request
n client receiving bandwidth (in units of object playback rate)

Table 1: Notations used throughout this paper.

The bound is derived by considering an arbitrarily small portion of
the object at offsetx. This portion is multicasted. Later requests
may join the multicast, until the first request after timex which has
missed this portion. On average, the server needs to multicast this
portion again after timex + 1/λ. This bound can be extended by
adding a start-up delayd as follows:

Bdelay,sequential
minimum =

∫ T

0

dx

x + d + 1/λ

= ln(
N

λd + 1
+ 1). (2)

For periodic broadcast protocols which assume arbitrary largeλ,
the above lower bound is:

Bperiodic,sequential
minimum = ln(

T

d
+ 1). (3)

In summary, with sequential access, (1) the lower bound on the
required server bandwidth for any protocol providing immediate
service grows logarithmically with request arrival rate, and (2) the
lower bound on the required server bandwidth for any protocol pro-
viding delayed service grows logarithmically with the inverse of the
start-up delay. These results provide the basic scalability arguments
of multicast delivery under a sequential access model.

3. MULTICAST DELIVERY
WITH NON-SEQUENTIAL ACCESS

In this section, we consider non-sequential access and derive tight
lower bounds on the required server bandwidth for any protocol
providing immediate service and delayed service. We assume that
client receiving bandwidth is unlimited.

3.1 Scalability of Immediate Service Protocols
We consider protocols that provide immediate service under the
simple non-sequential access model described in the last section.
Let us consider an arbitrarily small portion of the object, say a byte.
Assume that at time 0, this byte is multicasted. The question is,
when does it need to be multicasted again?

Consider the random variableτ which is the time elapsed until this
byte must be multicasted again—i.e., τ is the latest point in time
beyond which a request would be delayed if the byte were not mul-
ticasted again. Clearly, at timeτ this byte must be immediately
needed by some request because, otherwise, the multicasting of the
byte could have waited, which by definition ofτ is not the case.
Such a request must have been initiated after time 0 because, oth-
erwise, the byte could have been retrieved from the multicast at
time 0. Our ultimate goal is to compute how frequently the byte is

served—i.e., the expectation ofτ . To do so, it suffices to derive the
probability density function ofτ , denotedf(.). We do so below.

Consider the arrival process{X}, where eventX is the playout of
the byte by some request. It is obvious that this arrival process is
a Poisson process with an arrival rateΛ = λS/T = N/T . That
is, on average the byte is played outN times in T . As we ex-
plained earlier, the playout of the byte by some request at a given
moment does not necessarily mean a multicast of the byte at that
precise moment. Thus, what we are interested in is another ar-
rival process—namely those arrivals in{X} that necessitate that
the byte bemulticasted again. Let{X ′} denote such an arrival
process and letΛ′ denote the arrival rate for this process.

Arrivals in {X ′} are clearly a subset of arrivals in{X}. Specifi-
cally, an arrival in{X} that could have retrieved the byte at time
0 must be excluded from{X ′} since such an arrival would not
require a re-multicasting of the byte at timeτ . Assume that an ar-
bitrary X occurs at timex. If x ≤ S, then with probabilityx/S
it is also an event of{X ′}. If x > S, thenX is certainly (with
probability 1) an event of{X ′}. Therefore, the arrival rateΛ′ is a
function of the arrival timex:

Λ′(x) =

{
Λx/S, if x ≤ S
Λ, if x > S

This observation is made more clear in the illustration below.

✲
Timex

✻

Λ′(x)

0
✟✟✟✟✟✟✟✟

S

Λ

Whenx = 0, Λ′(x) = 0, since certainly an event of{X} is not that
of {X ′}. Whenx increases,Λ′(x) increases linearly untilx = S.
Whenx ≥ S, an event of{X} is certainly an event of{X ′}, so
Λ′(x) = Λ.

We are now ready to derive the marginal and density functions of
the random variableτ . To do so, we first compute the expected
number of eventsX ′ before timex.

α(x) =

∫ x

0

Λ′(x)dx

=

{
Λx2

2S
, if x ≤ S

Λ(x − S
2
), if x > S

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

250

Bandwidth

(a) Linear scale

1
10

100
1000N 1

10
100

1000
10000

100000

M0.1

1

10

100

1000

Bandwidth

(b) Log scale

Figure 3: Lower bound on required server bandwidth for im-
mediate service protocols, varying with the number of simulta-
neous requests N and segment request arrival rate M .

Notice that the probability that there is no arrival over time interval
(0, x) is equal toe−α(x) since the arrivals are independent. Hence,
the marginal distribution function ofτ is:

F (x) = P{τ > x}
= 1 − P{no arrival in interval(0, x)}

=

{
1 − e−

Λx2
2S , if x ≤ S

1 − e−Λ(x− S
2), if x > S

Consequently, the probability density function is:

f(x) =
dF (x)

dx

=

{
Λx
S

e−
Λx2
2S , if x ≤ S

Λe−Λ(x− S
2), if x > S

The remainder of the derivation is straightforward. We compute the
expectation ofτ as follows:

E[τ] =

∫ ∞

0

xf(x)dx

=

√
2S

Λ
γ(

3

2
,
ΛS

2
) + e

−ΛS
2 (S +

1

Λ
),

where the incomplete gamma functionγ(a, b) =
∫ b

0
xa−1e−xdx.

Finally, we obtain the average required server bandwidth as

B =
T

E[τ]

=
T√

2S
Λ

γ(3
2
, ΛS

2
) + e

−ΛS
2 (S + 1

Λ
)
.

SubstitutingΛ with N/T andS with NT/M , we obtain the fol-
lows

B =
1√

2
M

γ(3
2
, N2

2M
) + e

−N2
2M (N

M
+ 1

N
)
. (4)

The above, seemingly complex result can be greatly simplified.
WhenN2 � 2M , the incomplete gamma functionγ(3

2
, N2

2M
) ap-

proaches the complete gamma functionγ(3
2
,∞) =

√
π/2 very

fast. Also, sincee
−N2
2M approaches zero very fast,e

−N2
2M (N

M
+ 1

N
)

is insignificant. Hence,B ≈ √
2M/π ≈ 0.797

√
M . This means

that whenM is of the same order asN , the required server band-
width is at the order of

√
N . This lower bound is much higher

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

B
an

dw
id

th

N

M=1600
M=400
M=100

(a) Linear-scale

1

10

100

1 10 100 1000

B
an

dw
id

th

N

M=1600
M=400
M=100

(b) Log-scale

Figure 4: Lower bound varying with N when M is fixed.

than the logarithmic bandwidth requirement of stream merging for
sequential requests.

Generally, whenM increases,B also increases. For example,
when2M = N2, we compute the lower bound to beB ≈ 0.54N ,
which is comparable to the required server bandwidth under a uni-
cast service. Further increasingM results in diminishing the ad-
vantage of multicast delivery, especially when multicast overhead
is taken into consideration.

For the general case, it is easy to numerically solve equation (4).
We have done so by varyingN from 1 to 1000 and varyingM from
N to 100N . The results are shown in Figure 3. From Figure 3(a),
we observe that the required server bandwidth increases very fast
whenM increases (S decreases sinceS = NT/M). Eventually,
it is close to that of a unicast service. Notice that for sequential
access, stream merging techniques have the required server band-
width lower boundlog(N + 1), which would be at the bottom of
the plot (not shown here). Figure 3(b) shows the same plot except
that the axes are in log-scale. We observe that the log-value of the
lower bound is approximately linear to those ofN andM . This
is because of the power-law relationship betweenB andN : the
lower bound on bandwidth is at the order of

√
N whenM is close

to N , and whenM increases to the order ofN2, the lower bound
increases to the order ofN .

In Figure 4, to better illustrate the lower bound’s behavior, we plot-
ted it by fixingM at several values, but varyingN up toM . Note
that hereλ is fixed, so increasingN means increasingS. As can
be observed from the figure, whenN is small, the required server
bandwidth increases linearly withN . WhenN is large, the re-
quired server bandwidth is bounded by the constant0.797

√
M .

Note: The analysis we presented in this section assumes constant
segment sizes. For the general case, when the segment size is vari-
able, we found it difficult to derive the lower bound analytically.
More details are given in Appendix.

3.2 Scalability of Delayed Service Protocols
We now focus on the more general case—protocols that provide
service within a fixed delay. We use the non-sequential access
model described in the last section. Requests are satisfied in a
slightly different way. Each client tolerates waiting for an inter-
val of d time units (bytes) before it plays the requested segment
of the object. During this interval, the client joins other streams
to retrieve the bytes that will be played. Once the client starts to
play the object, it continues retrieving later bytes whenever avail-
able. The client initiates a stream for those bytes that can not be
retrieved from other ongoing streams. It is obvious that the imme-

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

Bandwidth

(a)d = 0.001T

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

20

40

60

80

100

120

Bandwidth

(b) d = 0.005T

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0
5

10
15
20
25
30
35
40
45
50

Bandwidth

(c) d = 0.02T

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

2

4

6

8

10

Bandwidth

(d) d = 0.1T

Figure 5: Lower bound on required server bandwidth for de-
layed service protocols varying with N and M . The delay is set
to several typical values.

diate service model is a special case of this delayed service model
whend = 0.

As before, assume that an arbitrary byte is multicasted at time 0.
Let τ denote the time when the byte must be multicasted again.
Compared to the immediate service case, the expectation ofτ in-
creases byd. Hence, we can derive the lower bound of the required
server bandwidth to be

B =
1√

2
M

γ(3
2
, N2

2M
) + e

−N2
2M (N

M
+ 1

N
) + d

T

. (5)

If d = 0, this lower bound is consistent with equation (4). When
d/T is still very small compared to

√
1/M , this lower bound is

close to that of immediate service. Generally, whend increases,
this lower bound decreases. However, the rate at which the lower
bound decreases is no higher than the inverse ofd. This sug-
gests that the use of delayed service is less effective under a non-
sequential access model than it is under a sequential access model.
Recall that for sequential access, periodic broadcasting techniques
reduce bandwidth requirement linearly by increasing service delay
logarithmically.

It is straightforward to numerically solve equation (5). We have
done so by varyingN from 1 to 1000, varyingM fromN to100N ,
and choosing typical values ford (0.001T , 0.005T , 0.02T , and
0.1T). Results are shown in Figure 5. We observe that whend is
small, for exampled = 0.001T , the lower bound on bandwidth
is close to that of immediate service shown in Figure 3. Whend
increases, the lower bound decreases. For all the cases, the lower
bound is no larger thanT/d.

It is important to notice that, whend is larger, the lower bound
approachesT

d
faster asN andM increase. Further increases ofN

andM do not result in higher bandwidth requirement.

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

250

Bandwidth

(a) Linear scale

1
10

100
1000N 1

10
100

1000
10000

100000

M0.1

1

10

100

1000

Bandwidth

(b) Log scale

Figure 6: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N and segment request arrival
rate M .

4. SIMULATION RESULTS
The lower bounds of the previous section were derived using an
ideal non-sequential access model assuming independent arrivals
and constant segment sizes. To validate these lower bounds and to
establish their robustness under more realistic conditions, we per-
formed extensive simulations which we describe in this section.

4.1 Immediate Service
We have written a simulator for a protocol that provides immediate
service. Assuming unlimited client receiving bandwidth, a client
retrieves later bytes from ongoing streams whenever possible. If a
byte cannot be obtained in this way before the time of play, it is
multicasted as late as possible (at the time of play) so that other
clients can fully utilize it. We varied a number of simulation pa-
rameters:N from 1 to 1000 andM from N to 100N . The results
are shown in Figure 6. To obtain each point in the figure, we ran the
simulator many times and took the average bandwidth. For clarity,
the confidence interval is not shown.

Comparing Figure 6 with Figure 3, we find that in all cases, the
average required server bandwidth obtained through simulation is
very close to that of our numerical analysis. This is expected since
the derived lower bound istight.

Figure 7 shows the average bandwidth for some special cases. The
figure shows the required server bandwidth obtained through sim-
ulation, the lower bound, and the required server bandwidth (also
obtained through simulation) for sequential access for comparison
purposes.

0

10

20

30

40

50

1 10 100 1000

B
an

dw
id

th

N

Non-sequential simulated
Non-sequential Lower Bound

Sequential simulated

(a)S = T/4

0

20

40

60

80

100

1 10 100 1000

B
an

dw
id

th

N

Non-sequential simulated
Non-sequential Lower Bound

Sequential simulated

(b) S = T/16

Figure 7: Comparison of the scalability of multicast deliv-
ery for immediate service protocols under sequential and non-
sequential access models. Non-sequential requests are gener-
ated such that each request starts from a random point in the
media object.

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

250

Bandwidth

(a) With uniform distribution.

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

250

Bandwidth

(b) With Pareto distribution.

Figure 8: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N and segment request arrival
rate M . Mean segment size is NT/M .

In particular, Figure 7(a) shows the case whenM = 4N . That is
S = T/4, i.e., each client randomly requests a segment whose size
is equal to one-fourth of the whole object. Figure 7(b) shows the
caseM = 16N . That isS = T/16.

From Figure 7 we observe that the required server bandwidth for
non-sequential access increases quite fast. Both the results from
simulation and the lower bound are much higher than those for se-
quential access. We have also compared the required server band-
width for sequential access with its theoretical value (not shown),
log(N + 1), and found that they match well.

For sequential access, the required server bandwidth increases log-
arithmically with request arrival rate. For non-sequential access,
the required server bandwidth increases with the square root ofN .
In addition, we observed that whenM = 16N the required server
bandwidth is roughly twice that obtained whenM = 4N . This
is consistent with the fact that the lower bound approximately in-
creases as the square root ofM .

4.1.1 Effect of Variable Segment Size
Note that in our analysis (last section) and in the above simulations,
we assumed that the segment size is a constantS equal toNT/M .
In more realistic workloads, the segment size can vary according to
some distribution. Thus, one question is whether the lower bound
still holds for various distributions ofS.

To answer this question, we generated segment sizes that follow
a uniform distribution and a Pareto distribution, respectively. The
mean segment size isS = NT/M . For the uniform distribution,
we let the segment size vary between 0 and2S. For the Pareto
distribution, we set its shape parameterα = 2.0 and computed its
scale parameterk to ensure a mean segment size ofS = NT/M .
We have also performed simulations with other values ofα (not
shown) and found that the corresponding effects on the required
server bandwidth were negligible.

Figure 8 shows the results we obtained from simulations with vari-
able segment sizes. Comparing these results with those obtained
under a constant segment size assumption (shown in Figure 6), as
well as the lower bounds (shown in Figure 3), we found that the
differences are almost negligible.

The above results lead us to conclude that with variable segment
sizes, the required server bandwidth also increases as the square
root of request arrival rate.

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

250

Bandwidth

(a) All forward jumps.

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

250

Bandwidth

(b) 1/3 of the jumps are backward.

Figure 9: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N and segment request arrival
rate M . Requests are generated using an ON-OFF model. ON-
segment (request duration) and OFF-segment (jump distance)
follow Pareto distribution.

4.1.2 Effect of Request Correlations
Our simulations so far were obtained under an assumption that re-
quests are not correlated and that they start anywhere in the object.
In the set of simulations we describe next, these assumptions were
removed. To do so, we generated requests that exhibit characteris-
tics observed in real streaming access workloads.

We adopt the following model for client inter-activity. Each client
starts asession from the beginning of an object. After receiving
a segment of the object (the ON-segment), the client skips a por-
tion of the object (the OFF-segment). This process repeats until a
request or a jump goes beyond either end of the object.

In prior studies that characterized streaming access workloads [34,
4], it has been observed that the distributions of ON-segments tend
to be heavy-tailed. In particular, the Pareto distribution was found
to be a close fit. Thus, in our simulations, we generated requests
that exhibited such properties. For ON periods, we used a Pareto
distribution with parameterα = 2 and we set the scale parameter
k to achieve an average segment size ofS = NT/M . For OFF pe-
riods, we also used a Pareto distribution with parameterα = 2 and
we set the scale parameterk to achieve an average jump distance
of S/2. Results from these simulations are shown in Figure 9.

In other simulation experiments (not shown) we changed the aver-
age jump distance, as well as other parameters. Our results suggest
that the required server bandwidth appears not to be very sensitive
to these variations.

Figure 9(a) shows the results when only forward jumps are allowed.
That is, each client requests a segment and skips a segment to con-
tinue, and so on until the end of the object. Figure 9(b) shows the
results when 33% of the jumps were backward jumps. Comparing
these results to the lower bound in Figure 3 and the simulation re-
sults in Figure 6 and 8, we found the required server bandwidth to
be very close.

Comparing Figure 9(b) to Figure 9(a), we found that with back-
ward jumps, the required server bandwidth decreases slightly. We
have estimated the difference and found it to be up to 15%. This
can be explained as follows. In our simulation, we assumed that
each client has a large enough buffer to keep the segments of the
object that have been played. With backward jumps, it is possi-
ble that the client plays a portion of the object kept in the buffer.
This is equivalent to introducing a start-up delay for the request.

0

10

20

30

40

1 10 100 1000

B
an

dw
id

th

N

Non-sequential simulated
Non-sequential Lower Bound

Sequential Lower Bound

(a)S = T/2

0

10

20

30

40

50

60

1 10 100 1000

B
an

dw
id

th

N

Non-sequential simulated
Non-sequential Lower Bound

Sequential Lower Bound

(b) S = T/4

0

10

20

30

40

50

60

70

80

1 10 100 1000

B
an

dw
id

th

N

Non-sequential simulated
Non-sequential Lower Bound

Sequential Lower Bound

(c) S = T/8

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

B
an

dw
id

th

N

Non-sequential simulated
Non-sequential Lower Bound

Sequential Lower Bound

(d) S = T/16

Figure 10: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N . M is set to several values. Re-
quests are generated using an ON-OFF model.

Hence, it reduces the required server bandwidth. Nevertheless, the
presence of backward jumps does not change the asymptotic square
root lower bound.

From Figure 9, we also observe that whenM is small, the required
server bandwidth appears lower than those in Figures 3, 6, and 8.
This is expected. WhenM is smaller, the average request dura-
tion is closer toT , and since the clients start to retrieve the object
from the beginning, requests tend to be “sequential”. To understand
this more clearly, we zoom in on the plot in Figure 9(a). In Fig-
ure 10, we show several special cases whenM = 2N , M = 4N ,
M = 8N , andM = 16N . Note that whenM is smaller,e.g.,
M = 2N , the average request duration isT/2. In this case, ac-
cess is closer to “sequential”, and the required server bandwidth is
closer to the lower bound for sequential access. This is evident in
Figure 10(a). WhenM increases, access becomes “less sequen-
tial”, resulting in a required server bandwidth that is more accu-
rately predicted by the lower bound for non-sequential access. This
is evident in Figure 10(b)-(d). To summarize, with only very few
jumps during the time of a complete object playout, the required
server bandwidth increases at least as the square root of the request
arrival rate.

4.2 Delayed Service
We have also used simulations to validate the required server band-
width of delayed service protocols. We varied simulation parame-
tersN from 1 to 1000 and variedM from N to 100N . We chose
typical values ford—namely0.001T , 0.005T , 0.02T , and0.1T .

In each simulation run, we first generate a sequence of requests.
Each request is delayed for timed. During this delay, later bytes are
fetched from ongoing streams whenever possible. When a client is
playing the object, later bytes can be still retrieved from ongoing
streams. Any byte that cannot be obtained in this manner is re-
trieved from the server directly, andas late as possible such that
later clients can fully utilize it.

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

50

100

150

200

Bandwidth

(a)d = 0.001T

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

20

40

60

80

100

120

Bandwidth

(b) d = 0.005T

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0
5

10
15
20
25
30
35
40
45
50

Bandwidth

(c) d = 0.02T

0 200 400 600 800 1000N 0
20000

40000
60000

80000
100000

M0

2

4

6

8

10

Bandwidth

(d) d = 0.1T

Figure 11: Required server bandwidth obtained through simu-
lation varying with N and M . The delay is set to several typical
values.

The results of our simulations are shown in Figure 11. Comparing
those results to the ones anticipated in Figure 5, we find that, in
all cases, the average required server bandwidth obtained through
simulations is close to that we obtained through analysis.

Figure 12 shows how the required server bandwidth varies with de-
lay d. We chooseM = 4N , i.e., each request retrieves one-fourth
of the whole object. Figure 12(a) shows results whenN = 50,
representing a less popular object, and Figure 12(b) shows the case
whenN = 1000, representing a highly popular object. In each
case, we plot the lower bound for non-sequential access, as well as
that obtained through simulations. In addition, for comparison pur-
poses, we also plot the bandwidth-delay relationship for sequential
access. In particular, we plot the minimum required server band-
width for periodic broadcasting in equation (3), and the required
server bandwidth measured from simulation for stream merging
(assuming unlimited client receiving bandwidth). Our observations
are summarized as follows.

First, the required server bandwidth under a non-sequential access
model is much higher than that under a sequential access model.
The difference is more pronounced for more popular objects. No-
tice that whend → 0, the lower bound on required bandwidth
under a non-sequential access model is close to0.797

√
M which

is much higher than thelog(N +1) lower bound under a sequential
access model.

Second, under a sequential access model, stream merging tech-
niques achieve lower required server bandwidth than broadcasting
when delay is small. This is more obvious for less popular objects.
This is because stream merging has a lower bound oflog(N + 1)
whend → 0, whereas broadcasting techniques have a lower bound
of log(T/d+1). So whend < T/N , the required server bandwidth
for broadcasting is higher. In fact, in this figure, the simulation re-
sults for stream merging under a sequential access model are close
to the bound given in equation (2).

0

2

4

6

8

10

12

14

0.0001 0.001 0.01 0.1 1

B
an

dw
id

th

Delay (unit=T)

Non-sequential simulated
Non-sequential Lower Bound

Broadcasting, eqn.(3)
Sequential simulated

(a)N = 50

0

10

20

30

40

50

60

0.0001 0.001 0.01 0.1 1

B
an

dw
id

th

Delay (unit=T)

Non-sequential simulated
Non-sequential Lower Bound

Broadcasting, eqn.(3)
Sequential simulated

(b) N = 1000

Figure 12: Required server bandwidth varying with d.

5. IMPACT OF LIMITED BANDWIDTH
So far, we assumed that clients have unlimited receiving bandwidth
(n = ∞). This section uses simulations to study how limited client
receiving bandwidth affects the scalability of multicast delivery for
immediate service protocols. In order for multicast delivery to be
possible, the client receiving bandwidthn > 1.0 must hold.

In the context of sequential access, there are advanced techniques
for scheduling client requests using multicast streams. Eageret al.
[18] proposed severalhierarchical multicast stream merging tech-
niques which progressively merge asynchronous client requests into
larger and larger groups. One problem that must be addressed re-
lates to the scheduling of these mergers. Several heuristic policies
were proposed. In particular, assumingn = 2, theclosest target
policy requires each client to join the most recently initiated ear-
lier stream that is still alive. Simulations showed that this policy
performs very close to the off-line optimal algorithm (with known
client request arrivals in advance), which is obtained by solving a
dynamic programming problem.

Under a non-sequential access model, we modify the closest target
merging policy whenn = 2. The key point is how we define the
closest target for each client. Since the requests may start anywhere
in the object, the closest target is not necessarily the most recently
initiated stream. Instead, we define the closest target of each client
as the multicast stream that will be played by the client in the near-
est future. The intuition behind this choice is that it is critical for the
client to prefetch the portion of the data that will soon be played. In
addition, the closest target will be redefined when the target itself
is merged or is terminated.

Whenn < 2, we modify thebandwidth skimming technique [19].
The following is a straightforward adaption of the bandwidth skim-
ming technique described in Section 2.1. Each multicast stream is
divided intok substreams, wherek is a positive integer. Each sub-
stream is then multicasted with rate equal to1/k times the object
playback rate. Each client is assumed to be capable of receiving at
least(k + 1) substreams simultaneously (thusn = 1 + 1/k). The
closest target policy is then applied to the substreams: whenever
the client has idle bandwidth, it listens to the substreams whose
data will be played in the nearest future. The client may listen to
up to(k + 1) substreams.

We developed a simulator for this stream merging/bandwidth skim-
ming technique. Figure 13 shows the required server bandwidth
we obtained through simulations in which we varied the number of
concurrent clientsN . The value ofn is varied from1.125 to∞. In
Figure 13(a), we setM = 4N , i.e., S = T/4, each request is for
one-fourth of the object. In Figure 13(b), we setM = 16N , i.e.,
S = T/16.

0

20

40

60

80

100

120

140

160

180

1 10 100 1000

B
an

dw
id

th

N

n = 1.125
n = 1.25
n = 1.5

n = 2
n infinite

(a)S = T/4

0

40

80

120

160

200

240

280

320

360

1 10 100 1000

B
an

dw
id

th

N

n = 1.125
n = 1.25
n = 1.5

n = 2
n infinite

(b) S = T/16

Figure 13: Required server bandwidth of immediate service
protocols when client receiving bandwidth is limited.

From this figure, we observe that when a client’s receiving band-
width is limited, the required server bandwidth is only slightly
higher. For example, whenN = 1000 andn = 1.5 (i.e., one-
third of the client bandwidth is used for prefetching), our simula-
tions indicate that the required server bandwidth is about 1.69 times
that required under unlimited client receiving bandwidth assump-
tion (n = ∞). Whenn = 2, our simulations indicate that the re-
quired server bandwidth is very close to that under unlimited client
receiving bandwidth assumption. We estimate that the difference
is around 12% for large values ofN . These results suggest that
even with a limited client receiving bandwidth, it is possible for a
protocol to have required server bandwidth quite close to its lower
bound. In the next section, we study practical multicast delivery
protocols that achieve this goal.

6. PRACTICAL MULTICAST DELIVERY
The protocols considered in the previous sections either assume
unlimited client receiving bandwidth or are too sophisticated to be
practical. For example, in the modified closest target merging pol-
icy, each client may join and leave multicast streams frequently.
Such a behavior may incur high overhead on servers. In this sec-
tion, we describe practical multicast delivery protocols and opti-
mize them by minimizing the required server bandwidth.

6.1 Protocols
We consider the following protocol which provides immediate ser-
vice to the clients:The server multicasts an object for every inter-
val of length x. Each client joins the temporally closest multicast
stream. The missed portion of the requested segment is immediately
unicasted from the server.

The above protocol is simple in that for each request, the client need
only join one multicast stream. Also, the above protocol is readily
usable by a client whose receiving bandwidth is twice the object
playback rate,i.e., n = 2. Both the multicast and unicast streams
are sent at playback rate. Assuming that a client requests a seg-
ment which was most recently multicastedt units of time ago, then
the client receives a unicast stream of lengtht, while concurrently
prefetching data from that multicast stream.

Notice that it is straightforward to generalize the above protocol
for clients with lower receiving bandwidth,i.e., 1 < n < 2. To
do so, we again capitalize on the ideas from bandwidth skimming
techniques. Namely, each stream (both unicast or multicast) is di-
vided intok substreams using fine-grained interleaving, wherek is
a positive integer. Each substream is sent with rate equal to1/k
times the playback rate. The clients can receive(k+1) substreams
(thusn = 1+1/k). Assume a client requests a segment which was

most recently multicastedt units of time ago. The client receives
k unicast substreams immediately from the server and meanwhile
it prefetches data from one multicast substream. Then,t units of
time later, the client need only receive(k − 1) unicast substreams,
and can prefetch two multicast substreams. Anothert units of time
later, the client need only receive(k − 2) can prefetch three mul-
ticast substreams, and so on. Eventually, no unicast substream is
needed.

6.2 Protocol Optimization
To optimize our protocol, we determine the value ofx, which con-
trols the frequency of multicasting the object. Assume that each
request is for a segment of constant lengthS. We first compute the
average cost of unicast. Assume a client requests a segment which
was most recently multicastedt units of time ago. From the de-
scription of the protocols above, it is not difficult to find that the
total duration of the unicast substreams is

∑k
i=1 it = k(k +1)t/2,

assumingS ≥ kt. On average this is equal tok(k + 1)x/4. Since
the sending rate is1/k times the playback rate, the number of bytes
unicasted is(k + 1)x/4. Over a period of timeT , there areM re-
quests, so there are(k + 1)Mx/4 bytes unicasted on average. In
addition, over a period of timeT , the object is multicastedT/x
times, so there areT 2/x bytes multicasted on average.

We are now ready to optimize our protocol by minimizing the total
cost of the protocol over a period of timeT . This cost is given by:

g(x) =
(k + 1)M

4
x +

T 2

x
.

It is not difficult to find the optimal solutiong∗ =
√

(k + 1)MT

whenx∗ = 2T/
√

(k + 1)M . This yields a required server band-
width of

√
(k + 1)M .

Whenk = 1 andn = 2, the required server bandwidth is1.414
√

M ,
which is approximately 1.773 times the lower bound given in equa-
tion (4). This means that such a simple protocol needs less than
twice the server bandwidth required for the rather impractical pro-
tocols we assumed in our simulations. Even whenk increases (i.e.,
n approaches unity), the required server bandwidth for this simple
protocol increases only as the square root ofk + 1. For example,
when 33% of the client bandwidth is used for prefetching (k = 2
andn = 1.5), the required server bandwidth is only1.732

√
M

which is about 2.173 times the lower bound.

Although it is possible to further decrease the required server band-
width by using more sophisticated protocols, or fine tuning the sim-
ple protocol we described here, the payoff from such an exercise is
fairly limited. Recall that in the last section, our simulation re-
sults have shown that whenn = 1.5, the sophisticated earliest tar-
get first merging algorithm we discussed requires server bandwidth
roughly equal to 1.69 times the lower bound—allowing only a lim-
ited “room for improvement” over the 2.173 times the lower bound
achieved using the protocol described above.

7. CONCLUSION
In this paper, we have analytically derived tight lower bounds on the
required server bandwidth for protocols in a multicast environment
when access to streaming objects is not sequential. In particular, we
have shown that in such systems, the required server bandwidth for
any protocol providing immediate service grows as the square root
of the request arrival rate, and that the required server bandwidth
of any protocol providing delayed service is inversely proportional

to the maximum allowable start-up delay. The robustness of our
analytical results have been confirmed using extensive simulations
under realistic workloads. Also, the impact of limited client receiv-
ing bandwidth was investigated. Finally, based on our findings, we
proposed a practical, near-optimal multicast-based delivery proto-
col, which results in a server bandwidth requirement that is fairly
close to its lower bound under both abundant and limited client re-
ceiving bandwidth assumptions.

Our findings suggest that for non-sequential access, multicast de-
livery is not a panacea for scalability. Therefore, for large-scale
content delivery applications that require non-sequential access of
large electronic artifacts, for example, interactive video delivery
and real-time software distribution, we should seek alternative or
complementary techniques that increase the scalability of stream-
ing delivery mechanisms. Such techniques include caching, buffer-
ing, and replication, among others.

ACKNOWLEDGMENTS
The authors would like to thank Mark Crovella for providing a few
references on streaming access workload characterization. The au-
thors are also grateful to the anonymous reviewers for their insight-
ful and helpful comments.

APPENDIX: Variable Segment Size Analysis
Assume that the segment size is a random variable, following a
distribution with a general density functiong(y), a < y < b. The
mean segment size isS. We hope to follow the steps in Section 3
to compute the lower bound on the required server bandwidth.

Let {X} and{X ′} be as defined in Section 3. First we need to
computeΛ′(x), the arrival rate of{X ′}. Assume an arbitraryX
occurs at timex. The probability that thisX is also an event of
{X ′} can be computed as∫ x

a

yg(y)

S
dy +

∫ b

x

yg(y)

S

x

y
dy. (6)

This expression is explained as follows. Hereyg(y)
S

is the proba-
bility density that the eventX occurs as a client requests a segment
of lengthy. Note that it is more likelyX occurs as the result of a
longer request. Ify < x, then certainly the eventX is also an event
of {X ′}. In this case,

∫ x

a

yg(y)
S

dy gives the cumulative probability.
If y ≥ x, then with probabilityx

y
, the eventX is also an event of

{X ′}. In this case,
∫ b

x

yg(y)
S

x
y
dy gives the cumulative probability.

It is not difficult to verify that the deterministic model in Section 3
is a special case.

For the general case, equation (6) cannot be solved.

We have considered several special cases with variable segment
sizes including: (i) uniform distributiong(y) = 1

2S
, 0 < y < 2S;

and (ii) exponential distributiong(y) = 1
S
e−y/S , y > 0. Although

we are able to compute equation (6) and the exact expression of
Λ′(x), when we proceed as in Section 3, the derivation of the lower
bound becomes increasingly complex.

REFERENCES
[1] E. L. Abram-Profeta and K. G. Shin. Providing unrestricted

VCR functions in multicast video-on-demand servers. InPro-
ceedings of ICMCS, June 1998.

[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal pig-
gybacking merging policies for video-on-demand systems. In
Proceedings of SIGMETRICS, May 1996.

[3] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A permutation-based
pyramid broadcasting scheme for video-on-demand systems.
In Proceedings of ICMCS, 1996.

[4] J. Almeida, J. Krueger, D. Eager, and M. Vernon. Analy-
sis of educational media server workloads. InProceedings of
NOSSDAV, June 2001.

[5] K. C. Almeroth and M. H. Ammar. The use of multicast de-
livery to provide a scalable and interactive video-on-demand
service.IEEE Journal on Selected Areas in Communications,
14:1110–1122, 1996.

[6] A. Bar-Noy, J. Goshi, R. E. Ladner, and K. Tam. Compari-
son of stream merging algorithms for media-on-demand. In
Proceedings of MMCN, January 2002.

[7] A. Bar-Noy and R. E. Ladner. Competitive on-line stream
merging algorithms for media-on-demand. InProceedings of
Symposium on Discrete Algorithms, January 2001.

[8] Y. Cai and K. A. Hua. An efficient bandwidth-sharing tech-
nique for true video on demand systems. InProceedings of
ACM MULTIMEDIA, November 1999.

[9] Y. Cai, K. A. Hua, and K. Vu. Optimizing patching perfor-
mance. InProceedings of MMCN, 1999.

[10] S. W. Carter and D. D. E. Long. Improving video-on-demand
server efficiency through stream tapping. InProceedings of
ICCCN, September 1997.

[11] S. W. Carter, D. D. E. Long, and J. Paris. An efficient imple-
mentation of interactive video-on-demand. InProceedings of
MASCOTS, August 2000.

[12] M. Chesire, A. Wolman, G. Voelker, and H. Levy. Measure-
ment and analysis of a streaming workload. InProceedings of
USITS, March 2001.

[13] T. Chiueh and C. Lu. A periodic broadcasting approach to
video-on-demand service. InProceedings of MMCN, 1995.

[14] E. G. Coffman, J. P. Jelenhovic, and P. Momcilovic. Prov-
ably efficient stream merging. InProceedings of Web Caching
Workshop, June 2001.

[15] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic batching
policies for an on-demand video server.ACM Multimedia Sys-
tems Journal, 4(3):112–121, 1996.

[16] D. Eager and M. Vernon. Dynamic skyscraper broadcasts for
video-on-demand. InProceedings of MIS, 1998.

[17] D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth
requirements for on-demand data delivery. InProceedings of
MIS, 1998.

[18] D. Eager, M. Vernon, and J. Zahorjan. Optimal and efficient
merging schedules for video-on-demand servers. InProceed-
ings of ACM MULTIMEDIA, November 1999.

[19] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skimming:
A technique for cost-efficient video-on-demand. InProceed-
ings of MMCN, January 2000.

[20] D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth
requirements for on-demand data delivery.IEEE Transactions
on Data and Knowledge Engineering, 13, 2001.

[21] L. Gao and D. Towsley. Efficient schemes for broadcasting
popular videos. InProceedings of NOSSDAV, June 1998.

[22] L. Gao and D. Towsley. Supplying instantaneous video-on-
demand services using controlled multicast. InProceedings
of ICMCS, June 1999.

[23] L. Golubchik, J. C. S. Liu, and R. R. Muntz. Reducing I/O
demand in video-on-demand storage servers. InProceedings
of SIGMETRICS, 1995.

[24] L. Golubchik, J. C. S. Liu, and R. R. Muntz. Adaptive pig-
gybacking: A novel technique for data sharing in video-on-
demand storage servers.ACM Multimedia Systems Journal,
4(3):140–155, 1996.

[25] N. Harel, V. Vellanki, A. Chervenak, G. Abowd, and
U. Ramachandran. Workload of a media-enhanced classroom
server. InProceedings of Workshop on Workload Characteri-
zation, 1999.

[26] A. Hu. Video-on-demand broadcasting protocols: A compre-
hensize study. InProceedings of INFOCOM, April 2001.

[27] K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast tech-
nique for true video-on-demand services. InProceedings of
ACM MULTIMEDIA, 1998.

[28] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new
broadcasting scheme for metropolitan video-on-demand sys-
tems. InProceedings of SIGCOMM, September 1997.

[29] L. Juhn and L. Tseng. Harmonic broadcasting for video-
on-demand service.IEEE Transactions on Broadcasting,
44(1):100–105, 1998.

[30] S. W. Lau, J. C. S. Liu, and L. Golubchik. Merging video
streams in a multimedia storage server: Complexity and
heuristics.ACM Multimedia Systems Journal, 6(1):29–42,
1998.

[31] V. O. Li, W. Liao, X. Qiu, and E. Wong. Performance model
of interactive video-on-demand systems.IEEE Journal on Se-
lected Areas in Communications, 14:1099–1109, 1996.

[32] W. Liao and V. O. Li. The split and merge protocol for inter-
active video-on-demand.IEEE Multimedia, 4:51–62, 1997.

[33] A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel.
Scalable on-demand media streaming with packet loss recov-
ery. InProceedings of SIGCOMM, August 2001.

[34] J. Padhye and J. Kurose. An empirical study of client interac-
tions with a continuous-media courseware server. InProceed-
ings of NOSSDAV, June 1998.

[35] J. Paris. An interactive broadcasting protocol for video-on-
demand. InProceedings of IPCCC, April 2001.

[36] J. Paris, S. W. Carter, and D. D. E. Long. Efficient broadcast-
ing protocols for video on demand. InProceedings of MAS-
COTS, July 1998.

[37] J. Paris, S. W. Carter, and D. D. E. Long. A low bandwidth
broadcasting protocol for video on demand. InProceedings
of ICCCN, 1998.

[38] J. Paris, S. W. Carter, and D. D. E. Long. A hybrid broadcast-
ing protocol for video on demand. InProceedings of MMCN,
1999.

[39] J. Paris, S. W. Carter, and D. D. E. Long. A reactive broadcast-
ing protocol for video on demand. InProceedings of MMCN,
January 2000.

[40] J. Paris, D. D. E. Long, and P. E. Mantey. Zero-delay broad-
casting protocols for video on demand. InProceedings of
ACM MULTIMEDIA, November 1999.

[41] S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal patching
schemes for efficient multimedia streaming. InProceedings
of NOSSDAV, June 1999.

[42] S. Sen, L. Gao, and D. Towsley. Frame-based periodic broad-
cast and fundamental resource tradeoffs. InProceedings of
IPCCC, April 2001.

[43] S. Viswanathan and T. Imielinski. Pyramid broadcasting for
video on demand service. InProceedings of MMCN, 1995.

[44] Y. Zhao, D. Eager, and M. Vernon. Efficient delivery tech-
niques for variable bit rate multimedia. InProceedings of
MMCN, January 2002.

