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ABSTRACT time goes by, it is possible that the service be delegated to an ex-

To serve asynchronous requests using multicast, two categories ofisting multicast stream. For example, consider a scenario in which
techniques—stream merging and periodic broadcasting—have beerwo clients download a one-hour video, with the second client start-
proposed. For sequential streaming access, where requests are uiRg one minute after the first. Service to the second client starts
interrupted from the beginning to the end of an object, these tech- immediately through a dedicated delivery of the first minute of
niques are highly scalable: the required server bandwidth for streamthe video to that client, with the remaining fifty nine minutes ob-
merging growdogarithmically as request arrival rate, and the re- tained (and buffered for playout one minute later) by joining the
quired server bandwidth for periodic broadcasting valagsrith- first client’s multicast channel. In open-loop approaches, a server
mically as the inverse of start-up delay. A sequential access model, multicasts the object or the segments of the object periodically, and
however, is inappropriate to model partial requests and client inter- clients simply join such multicast channels. Since a server is notin-
activity observed in various streaming access workloads. This pa- teractively responding to request arrivals, clients may have to wait
per analytically and experimentally studies the scalability of mul- before service could start.

ticast delivery under a non-sequential access model where requests

start at random points in the object. We show that the required Both closed-loop and open-loop approaches have been well-studied,
server bandwidth for any protocol providing immediate service growsncluding the early batching [13, 15], piggybacking [23, 24, 2, 30],
at least as thequare root of request arrival rate, and the required and stream tapping/patching [10, 27, 9, 22, 41, 8] techniques, as
server bandwidth for any protocol providing delayed service grows well as the more recent stream merging [17, 18, 19, 7, 14, 33, 6,
linearly with the inverse of start-up delay. We also investigate the 44] and broadcasting protocols [43, 3, 28, 16, 21, 29, 36, 37, 38,
impact of limited client receiving bandwidth on scalability. We 40, 39, 26, 42]. Two particular techniques—stream merging and
optimize practical protocols which provide immediate service to periodic broadcasting—have been shown to be highly scalable.
non-sequential requests. The protocols utilize limited client receiv-

ing bandwidth, and they are near-optimal in that the required server Stream merging originated with the work of Eager, Vernon, and Za-

bandwidth is very close to its lower bound. horjan [17, 18, 20]. With stream merging, server bandwidth grows
logarithmically with request arrival rate (or the average number of
1. INTRODUCTION clients requesting an object simultaneously). Periodic broadcasting

was introduced by Viswanathan and Imielinski [43]. With periodic

Streaming media delivery presents a formidable strain on Serverbroadcasting, clients may observe a small start-up delay but the re-

and Streaming media delivery presents formidable strain on serverquired server bandwidth growsgarithmically with the inverse of

and net\_/vork capacity. W'.th the mushrooming de_mand for large that start-up delay. Both stream merging and periodic broadcasting
electronic artifacts stored in Internet servers ranging from Video- hni buil h ; hat cli h :

on-Demand servers to software repository servers, multicast emergetze%c. .nlqlées grgd E' thon the azsump;uor;)s t kat ¢ |entsd ﬁve u'ghﬁr re-
as a promising scalable delivery technique for such content. celving bandwidth than the object playback rate, and that they have

local storage to keep prefetched portions of the object temporarily.

:\gzlgizsgcggtgiﬁﬁ:ré%b(%the?]_?gg]?'}g;%zﬁn (Izlocsl‘gg;g_?gg fa:‘h:The scalability of both stream merging and periodic broadcasting
P P : P ab- ests on the assumption of sequential access. That s, clients request

proaches, service starts as soon as a request is made. However, %h object from the beginning and play it without interruption to the
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9986397 and ANI-0095988. Shudong Jin was also supported by access environment, in which clients may request the segments of

an IBM Ph.D. Research fellowship. an object. Indeed, recent studies on the characterization of stream-
ing access workloads [34, 25, 12, 4] have revealed that client access
is seldom sequential due to frequent client inter-activity. While sev-
eral studies have tried to minimize the bandwidth requirement for
non-sequential access in Video-on-Demand servers [5, 31, 32, 1,
11, 35], it is still unknown what are the potentials and limitations
of multicast delivery in a non-sequential access environment.

We give two example applications with non-sequential access char-
acteristics. The first example is interactive Video-on-Demand for



remote learning in an educational environment, or for press releases
in a corporate environment, for example. Here a potentially large
number of clients may request an object within a short period of
time (e.g., after a lecture is released, or after a press release is put
out), but not all of them may settle for a continuous playout from
beginning to end. Specifically, clients may jump frequently using
VCR functionality such as pause, fast-forward, skip, and rewind.
Clearly, it is desirable that the server be able to supportaverylarge &z ~ ¢ & &5 @
number of simultaneous requests while minimizing the start-up de- ()

lay for these requests. The second example is real-time large soft-

ware distribution applications. Here a large number of clients may _ . ) .
need to download a new software release simultaneously, or within Figure 1. An example of hierarchical stream merging. (a)
a very short period of time, possibly in reaction to a cyber threat, Client receiving bandwidth is twice the object playback rate.
or to fix a software vulnerability. The entire large software package (P) Client receiving bandwidth is 1.5 times the playback rate.
could be viewed as a streaming object and served using multicast.
However, different clients may require different components of the
software due to customized installations, for example. This trans-
lates to “jumps” in the process of accessing the object.

Cjoins B

a stream for the client. However, assuming that the client receiv-
ing bandwidth is higher than the object’s playback rate (it is of-
. . ) ten assumed that the client can receive up to two streams at the
Paper Contributions and Overview same time), it is possible for the client to listen to a second ongoing
This paper considers the problem of using multicast to serve non- stream of the same object, which was initiated by an earlier client.
sequential requests. Under a simple non-sequential streaming acAs time goes by, it is possible that the first stream becomes no
cess model, we derive a tight lower bound on the required serverlonger necessary since its future content would have been already
bandwidth for any protocols providing immediate or delayed ser- prefetched from the second stream. Thus, the client is able to join
vice. The lower bound is validated through simulation. It also an ongoing multicast session by virtue of making-up the content it
appears that this lower bound holds for more general cases. Ourmissed from that session using a dedicated stream. This process
results indicate that the scalability of multicast delivery under a of merging with multicast sessions that started earlier(and in the
non-sequential access model is not as good as the logarithmic scalprocess pruning sessions that started later) can be repeated many
ability achievable under a sequential access model. Specifically,times, giving rise tchierarchical stream merging [20] as opposed
we show that for non-sequential access the required server band+o the stream tapping/patching techniques where merging occurs
width for any protocol providing immediate service grows at least only once for each client.
as fast as thequareroot of request arrival rate, and that the required
server bandwidth for any protocol providing delayed service grows Figure 1 gives an example where three clieds B, andC) re-
linearly with the inverse of the start-up delay. We also study how quest an object at times 0, 3, and 4, respectively. Figure 1(a) as-
limited client receiving bandwidth may impact scalability. Finally, sumes that the clients’ receiving bandwidth is twice the object play-
we propose practical and very simple delivery protocols that require back rate. The server initiates one stream for each client. Glient
server bandwidth very close to the lower bound. These protocols also listens to the stream f@ and prefetches data there. At time
provide immediate service to clients, and they assume only limited 5, the stream initiated faf' is no longer necessary sin€éhas al-
client receiving bandwidth. ready prefetched and will keep prefetching data from the stream for
B. From this point on{ starts to listen to the stream fdr. Notice
The paper is organized as follows. Section 2 presents some back+that, B starts to listen to the first stream earligs. virtually joins
ground knowledge and related work on stream merging and pe- A at time 6 and” joins A at time 8. Also notice that, after time 6,
riodic broadcasting techniques. In Section 3, we derive the lower the stream initiated foB is no longer necessary fd, butC' has
bounds on required server bandwidth under a simple non-sequentialyet to retrieve segment [3,5] of the object. The server may initiate
access model. Section 4 presents simulation results that validatea stream again fof’, or simply prolongs the stream f@ by two
our analytical results under more realistic non-sequential accessunits of time untilC joins A (as shown in the figure).
models. In Section 5, we study the impact of limited client re-
ceiving bandwidth. In Section 6, we present optimized multicast It is often the case that client receiving bandwidth is less than twice
delivery protocols for non-sequential access. We conclude in Sec-the object playback rate. Bandwidth skimming protocols [19] work
tion 6 with a summary and with directions for future work. well in this case. Each stream is divided irkisubstreams using
fine-grained interleaving, whereis a positive integer. Each sub-
2 BACKGROUND AND RELATED WORK stream is then transmitted on a channel_with rate egu]a/l_ltclimes
the object playback rate. Stream merging is possible if clients can

This section briefly describes two previous techniques, stream merg-_~ - : .
ing and periodic broadcasting which utilize multicast delivery to receive at leastk + 1) substreams at the same time. Figure 1(b)

serve streaming media objects. We present results from previousglves an example wheh = 2. In time interval [4,5],C' receives
" . - two substreams of its own and prefetches only one substream of
work on the scalability of these techniques when streaming ac-

. i ; . IB After that, in time interval [5,6]C need only receive one sub-
cesses are sequential. In addition, we introduce a non-sequentlastream of its own and prefetches the two substrean3. oEven-
access model (and notations thereof) used in this paper. P )

tually, C joins B at time 6. Similarly,B joins A at time 9, and

. C joins A at time 12. A salient feature of bandwidth skimming
2.1 Stream Merging is that when client receiving bandwidth is slightly higher than the
In stream merging, a server immediately delivers the object in re- object playback rate(g., by 25%), the required server bandwidth
sponse to a client’s request. This means that the server initiatesis still comparable to that under an unlimited receiving bandwidth



P = T T L The segment size progression of Skyscraper broadcasting has the
following property: the size is at least doubled every two steps.
Different broadcasting protocols may have different segment size
progressionse.g., geometric series and Fibonacci series, but it is

‘ common that the size increasagonentially. Thus, the total num-
[ [ [ \ ber of segments (which is proportional to the required server band-

\ width) is a logarithmic function of the inverse of the first segment
size (which is proportional to the start-up delay).

Channel 4‘

Channel 5‘

Channel

Channel 7‘

2.3 Notation and Assumptions

Some of the notation used in this paper are listed in Table 1. Let
T be the length of an object in bytes. Assuming that such an ob-
ject is played out at a constant bit-rate of one byte per unit time,
its duration is als@” units of time. We consider the following sim-

ple model for non-sequential accesses. Request arrivals follow a
Poisson process with arrival rate Each request is for a segment

of size S which starts from a random point in the object. We as-
sumeS < T. For simplicity, we assume that the object is cyclic,
which means that access may proceed past the end of the object

It has been shown that under both unlimited and limited receiving 2Y €Ycling to the beginning of the object. Parame&rs\, and S
bandwidth assumptions, the required server bandwidth increasesniquely specify a workload.

logarithmically with request arrival rates [20]. Thus, stream merg- ) .

ing substantially outperforms stream tapping/patching techniques FO" €@se of presentation, we introduce two other quantiiesnd

where the required server bandwidth increases as the square root of £+ Which are derived from the three basic parameférs\, and
: . Le enote the average number of clients
request arrival rate [22, 20]. S. Let N denote th ber of clients being serviced at

the same time. Using Little’s Law, it follows that = \S. To
L . assess the scalability of a multicast delivery protocol, it is custom-

2.2 Periodic Broadcasting ary to find out how the server bandwidihgrows as a function of
In periodic broadcasting schemes, a long object is divided into a se- N. Similarly, let M denote the average number of requests over a
ries of segments with increasing sizes. Each segment is periodicallyperiod of timeT". Again, it follows thatd = A\T'. Notice that by
broadcasted on a dedicated channel. When a client is playing andefinition, M > N. It also helps to understand thatdf= T'/4 for
earlier segment, later segments are prefetched into the client’s localexample, thed/ = 4N.
buffer. To make this possible, the client must have higher receiving
bandwidth than the object playback rate. Like stream merging, itis Let d denote the maximum delay before service for a request is
often assumed that clients can receive two streams/segments at thetarted. Under an immediate service assumptibes 0. Thus,
same time. The segment size progression is made in such a wayimmediate service is a special case of delayed service. For clar-
so that once the client starts playing the first segment, the whole ity, in our analysis of the next section, we first consider immediate
object can be played out continuously. service, and then consider the general delayed service.

Figure 2: The schedule of Skyscraper broadcasting with 7 seg-
ments. Thetransmission plans for two clients are shown by the
shaded segments. Each client receives at most two segments at
the sametime, and can continuously play out the object after a
start-up delay smaller than the duration of the fir st segment.

assumption.

Two important performance metrics of periodic broadcasting proto- Letn denote the client receiving bandwidth in units of object play-
cols are the required server bandwidth and the start-up delay. Theback rate. For example; = 2 means the client can receive two
required server bandwidth is proportional to the number of seg- streams at unit playback rate simultaneously. We first assume that
ments, which is fixed and independent of the request arrival rate. n is unlimited in the derivation of the lower bound on the required
The maximum start-up delay is equal to the duration of the first server bandwidth. In Section 5, we use simulations to show that
segment. A desirable property of periodic broadcasting protocols when client receiving bandwidth is limited, the required server band-
is that the small first segment permits a small start-up delay while width increases slightly.

the larger later segments allow the total number of segments to re-

main small. To achieve the best tradeoffs between these two met-Finally, considering that storage is not expensive, we assume that
rics, a broadcasting protocol needs to find the quickest segment sizethe clients have large enough buffers, and thus can always keep
progression. prefetched data in their buffers.

Various periodic broadcasting protocols have been proposed in the T : :
literature. To understand the general idea behind these protocols, it2'4 Scalablllty of Multicast Dellvery

suffices to describe one example, Skgscraper broadcasting [28] for Sequential Access

protocol. Skyscraper broadcasting assumes that client receivingFor sequential access, requests start from the beginning of the ob-
bandwidth is twice the object playback rate. The series of segmentject and continue uninterruptedly until the end. This= T.

sizes is{1,2,2,5,5,12,12,25,25,52,52,...The broadcast schedule  Eageret al. [20, 33] derived a tight lower bound on the required
with seven segments is shown in Figure 2. The figure shows that server bandwidth for any protocol (including stream merging) that
two clients, starting in time interval (1,2) and (16,17), respectively, provides immediate service. The lower bound is:

are served with delay less than one unit of time, and henceforth can T

continuously play out the object. These two clients have different pimmediate,sequential - _ / _dr

transmission schedules, as shown by the shaded segments; none of e o THI/A

them needs to receive more than two segments at any time. = In(N+1). (2)



| Notation | Definition

object duration (or length in bytes, assuming one byte per unit time)

client request arrival rate

duration of each request

average number of clients being serviced at same time. This quantity is edusl
average number of requests arrivedinThis quantity is equal taT’

required server bandwidth (in units of object playback rate)

maximum start-up delay for each request

client receiving bandwidth (in units of object playback rate)

(]

S|awm g 2w >N

Table 1: Notations used throughout this paper.

The bound is derived by considering an arbitrarily small portion of served—i.e,, the expectation of. To do so, it suffices to derive the
the object at offset. This portion is multicasted. Later requests probability density function of, denotedf(.). We do so below.

may join the multicast, until the first request after timavhich has

missed this portion. On average, the server needs to multicast thisConsider the arrival procegsX }, where eveniX is the playout of
portion again after time: + 1/X. This bound can be extended by the byte by some request. It is obvious that this arrival process is

adding a start-up delayas follows: a Poisson process with an arrival rdte= A\S/T = N/T. That
T is, on average the byte is played adttimes inT. As we ex-
Bdelay,sequential / _ dz plained earlier, the playout of the byte by some request at a given
emm— o THd+1/A moment does not necessarily mean a multicast of the byte at that
— In( N +1) @ precise moment. Thus, what we are interested in is_ another ar-
Ad+1 ’ rival process—namely those arrivals {IX } that necessitate that

the byte bemulticasted again. Let{X’} denote such an arrival

For periodic broadcast protocols which assume arbitrary large process and let’ denote the arrival rate for this process.

the above lower bound is:

pgreriodic,sequential _ ln(z +1). ®) Arrivals in { X'} are clearly a subset of arrivals {iX'}. Specifi-
manvmm d cally, an arrival in{ X'} that could have retrieved the byte at time
0 must be excluded frod X'} since such an arrival would not
In summary, with sequential access, (1) the lower bound on the rgquire a re-multicas_ting of the byte at time_Assume thz_at an ar-
required server bandwidth for any protocol providing immediate bitrary X occurs at timez. If z < 5, then with probabilityz /S
service grows logarithmically with request arrival rate, and (2) the it is also an event of X'}. If = > S, thenX is certainly (with
lower bound on the required server bandwidth for any protocol pro- Probability 1) an event of X"}. Therefore, the arrival rata’ is a
viding delayed service grows logarithmically with the inverse of the function of the arrival timex:
start-up delay. These results provide the basic scalability arguments , Az/S, ifz<S
of multicast delivery under a sequential access model. A(z) = { A, ifr>S

3. MULTICAST DELIVERY
WITH NON-SEQUENTIAL ACCESS

In this section, we consider non-sequential access and derive tight
lower bounds on the required server bandwidth for any protocol
providing immediate service and delayed service. We assume that
client receiving bandwidth is unlimited.

This observation is made more clear in the illustration below.

Al (@)

3.1 Scalability of Immediate ServiceProtocols
We consider protocols that provide immediate service under the ° s Time
simple non-sequential access model described in the last section.
Let us consider an arbitrarily small portion of the object, say a byte. Whenx = 0, A’(z) = 0, since certainly an event ¢fX } is not that
Assume that at time 0, this byte is multicasted. The question is, of {X'}. Whenx increasesA’(z) increases linearly untit = S.
when does it need to be multicasted again? Whenz > S, an event off X } is certainly an event of X'}, so
AN (z) = A.
Consider the random variabtewhich is the time elapsed until this )
byte must be multicasted again+-e., 7 is the latest point in time We are now ready to derive the marginal and density functions of
beyond which a request would be delayed if the byte were not mul- the random variable. To do so, we first compute the expected
ticasted again. Clearly, at time this byte must be immediately = number of eventX’ before timez.
needed by some request because, otherwise, the multicasting of the ©
byte could have waited, which by definition ofis not the case. a(z) / A (z)dz
0
Az

Such a request must have been initiated after time O because, oth-
erwise, the byte could have been retrieved from the multicast at S ifx <S8
time 0. Our ultimate goal is to compute how frequently the byte is a Az — g), ifx >S9
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Figure 3: Lower bound on required server bandwidth for im-
mediate service protocols, varying with the number of simulta-
neousrequests NV and segment request arrival rate M.

Notice that the probability that there is no arrival over time interval
(0, z) is equal toe~*(®) since the arrivals are independent. Hence,
the marginal distribution function af is:

F(x) P{r >z}
1 — P{no arrival in interval(0, z) }

Ax?
1—e 25,
{ 1— e_A(x_%),

Consequently, the probability density function is:
dF(x)

dx
{ Az
The remainder of the derivation is straightforward. We compute the
expectation of- as follows:

/00 zf(x)dx

0

[25 3 AS,
AR
where the incomplete gamma functigfa, b) = job % te %dz.

Finally, we obtain the average required server bandwidth as

.
Elr]

ifxe<S
if x> S8

f(x)

_ Az?
e 25

Ae A=

, ifz <S
ifx>S8
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SubstitutingA with N/T and.S with NT'/M, we obtain the fol-
lows

(S+4)

B 1

N2 SN2 N ' @
zar) T e (57 + %)

2 3
\/ M’V(§,

The above, seemingly complex result can be greatly simplified.
WhenN? > 2M, the incomplete gamma functioy(2,

2|

2
29 m) ap-
proaches the complete gamma funct'm(rg—, 00) = +/m/2 very

_N2 _ N2

fast. Also, since: 27 approaches zero very fast_,zjﬂvf (% + %)
is insignificant. HenceB ~ /2M/m ~ 0.797+/ M. This means
that whenM is of the same order a¥, the required server band-

width is at the order o/ N. This lower bound is much higher

100

Pl
nnnnnnnn

Bandwidth
Bandwidth
B
1

L L L
400 600 800

(a) Linear-scale (b) Log-scale

Figure 4: Lower bound varying with N when M isfixed.

than the logarithmic bandwidth requirement of stream merging for
sequential requests.

Generally, whenM increases,B also increases. For example,
when2M = N?, we compute the lower bound to 2~ 0.54N,
which is comparable to the required server bandwidth under a uni-
cast service. Further increasidg results in diminishing the ad-
vantage of multicast delivery, especially when multicast overhead
is taken into consideration.

For the general case, it is easy to numerically solve equation (4).
We have done so by varying from 1 to 1000 and varying/ from

N to 100N. The results are shown in Figure 3. From Figure 3(a),
we observe that the required server bandwidth increases very fast
when M increases{ decreases sinc& = NT'/M). Eventually,

it is close to that of a unicast service. Notice that for sequential
access, stream merging techniques have the required server band-
width lower boundog(N + 1), which would be at the bottom of

the plot (not shown here). Figure 3(b) shows the same plot except
that the axes are in log-scale. We observe that the log-value of the
lower bound is approximately linear to those Mfand M. This

is because of the power-law relationship betwéemnd N: the
lower bound on bandwidth is at the ordergV whenM is close

to NV, and when) increases to the order 6¢2, the lower bound
increases to the order of.

In Figure 4, to better illustrate the lower bound’s behavior, we plot-
ted it by fixing M at several values, but varying up to M. Note
that here\ is fixed, so increasingy means increasing. As can

be observed from the figure, whé¥i is small, the required server
bandwidth increases linearly with. When N is large, the re-
quired server bandwidth is bounded by the congiara7+/M.

Note: The analysis we presented in this section assumes constant
segment sizes. For the general case, when the segment size is vari-
able, we found it difficult to derive the lower bound analytically.
More details are given in Appendix.

3.2 Scalability of Delayed Service Protocols

We now focus on the more general case—protocols that provide
service within a fixed delay. We use the non-sequential access
model described in the last section. Requests are satisfied in a
slightly different way. Each client tolerates waiting for an inter-
val of d time units (bytes) before it plays the requested segment
of the object. During this interval, the client joins other streams
to retrieve the bytes that will be played. Once the client starts to
play the object, it continues retrieving later bytes whenever avail-
able. The client initiates a stream for those bytes that can not be
retrieved from other ongoing streams. It is obvious that the imme-
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Figure 5: Lower bound on required server bandwidth for de-
layed service protocolsvaryingwith N and M. Thedelay is set
to several typical values.

diate service model is a special case of this delayed service mode
whend = 0.

As before, assume that an arbitrary byte is multicasted at time 0.
Let 7 denote the time when the byte must be multicasted again.
Compared to the immediate service case, the expectatioriref
creases byl. Hence, we can derive the lower bound of the required
server bandwidth to be
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If d = 0, this lower bound is consistent with equation (4). When
d/T is still very small compared tq/1/M, this lower bound is
close to that of immediate service. Generally, wlhkimcreases,
this lower bound decreases. However, the rate at which the lower
bound decreases is no higher than the inversd.ofThis sug-
gests that the use of delayed service is less effective under a non
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Figure 6: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N and segment request arrival
rate M.

4. SIMULATION RESULTS

The lower bounds of the previous section were derived using an
ideal non-sequential access model assuming independent arrivals
and constant segment sizes. To validate these lower bounds and to
establish their robustness under more realistic conditions, we per-
formed extensive simulations which we describe in this section.

4.1 Immediate Service

We have written a simulator for a protocol that provides immediate
Iservice. Assuming unlimited client receiving bandwidth, a client
retrieves later bytes from ongoing streams whenever possible. If a
byte cannot be obtained in this way before the time of play, it is
multicasted as late as possible (at the time of play) so that other
clients can fully utilize it. We varied a number of simulation pa-
rameters:N from 1 to 1000 andV/ from N to 100N. The results

are shown in Figure 6. To obtain each point in the figure, we ran the
simulator many times and took the average bandwidth. For clarity,
the confidence interval is not shown.

Comparing Figure 6 with Figure 3, we find that in all cases, the
average required server bandwidth obtained through simulation is
very close to that of our numerical analysis. This is expected since
the derived lower bound isght.

Figure 7 shows the average bandwidth for some special cases. The
figure shows the required server bandwidth obtained through sim-
ulation, the lower bound, and the required server bandwidth (also
obtained through simulation) for sequential access for comparison
purposes.

sequential access model than it is under a sequential access model.

Recall that for sequential access, periodic broadcasting techniques s

reduce bandwidth requirement linearly by increasing service delay
logarithmically.

It is straightforward to numerically solve equation (5). We have
done so by varyingv from 1 to 1000, varying/ from N to 100N,
and choosing typical values fat (0.0017", 0.0057", 0.027", and
0.17T). Results are shown in Figure 5. We observe that whéen
small, for examplel = 0.0017, the lower bound on bandwidth
is close to that of immediate service shown in Figure 3. Wtien

Non-sequential simulated -+
Non-sequential Lower Bound ~---
r Sequential simulated —+—

Non-sequential simulated -+
Non-sequential Lower Bound -+

40 Sequential simulated —+—

@
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N
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T
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(b) S = T/16

increases, the lower bound decreases. For all the cases, the lower

bound is no larger thaii/d.

It is important to notice that, whed is larger, the lower bound
approacheég faster agV and M increase. Further increases/éf
and M do not result in higher bandwidth requirement.

Figure 7: Comparison of the scalability of multicast deliv-
ery for immediate service protocols under sequential and non-
sequential access models. Non-sequential requests are gener-
ated such that each request starts from a random point in the
media obj ect.
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Figure 8. Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N and segment request arrival
rate M. Mean segment sizeis NT'/M.

In particular, Figure 7(a) shows the case whdn= 4N. That is

S =1T/4,i.e, each client randomly requests a segment whose size
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Figure 9: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of simultaneous requests N and segment request arrival
rate M. Requests are generated using an ON-OFF model. ON-
segment (request duration) and OFF-segment (jump distance)
follow Pareto distribution.

is equal to one-fourth of the whole object. Figure 7(b) shows the 4.1.2 Effect of Request Correlations

caseM = 16N. ThatisS = T/16.

Our simulations so far were obtained under an assumption that re-
quests are not correlated and that they start anywhere in the object.

From Figure 7 we observe that the required server bandwidth for In the set of simulations we describe next, these assumptions were
non-sequential access increases quite fast. Both the results fronvemoved. To do so, we generated requests that exhibit characteris-
simulation and the lower bound are much higher than those for se-tics observed in real streaming access workloads.
guential access. We have also compared the required server band-
width for sequential access with its theoretical value (not shown), We adopt the following model for client inter-activity. Each client
log(N + 1), and found that they match well. starts asession from the beginning of an object. After receiving
a segment of the object (the ON-segment), the client skips a por-
For sequential access, the required server bandwidth increases logtion of the object (the OFF-segment). This process repeats until a
arithmically with request arrival rate. For non-sequential access, request or a jump goes beyond either end of the object.
the required server bandwidth increases with the square ragt of
In addition, we observed that whédd = 16NV the required server  In prior studies that characterized streaming access workloads [34,
bandwidth is roughly twice that obtained whéfi = 4N. This 4], it has been observed that the distributions of ON-segments tend
is consistent with the fact that the lower bound approximately in- to be heavy-tailed. In particular, the Pareto distribution was found
creases as the square root\df to be a close fit. Thus, in our simulations, we generated requests
that exhibited such properties. For ON periods, we used a Pareto
4.1.1 Effect of Variable Segment Sze distribution with parametesr = 2 and we set the scale parameter
Note that in our analysis (last section) and in the above simulations, ¥ {0 achieve an average segment siz& ¢t N'7'/M. For OFF pe-
we assumed that the segment size is a constaujual toNT'/M. riods, we also used a Pareto distribution with parameter 2 and
In more realistic workloads, the segment size can vary according to We Set the scale parametetto achieve an average jump distance
some distribution. Thus, one question is whether the lower bound 0f /2. Results from these simulations are shown in Figure 9.
still holds for various distributions of.
In other simulation experiments (not shown) we changed the aver-
To answer this question, we generated segment sizes that followad€ jump distance, as well as other parameters. Our results suggest
a uniform distribution and a Pareto distribution, respectively. The that the required server bandwidth appears not to be very sensitive

mean segment size 5 = NT'/M. For the uniform distribution,
we let the segment size vary between 0 &$d For the Pareto
distribution, we set its shape parameter= 2.0 and computed its
scale parametet to ensure a mean segment sizeSof= NT /M.

to these variations.

Figure 9(a) shows the results when only forward jumps are allowed.
That is, each client requests a segment and skips a segment to con-

shown) and found that the corresponding effects on the required "esults when 33% of the jumps were backward jumps. Comparing
server bandwidth were negligible. these results to the lower bound in Figure 3 and the simulation re-

sults in Figure 6 and 8, we found the required server bandwidth to

Figure 8 shows the results we obtained from simulations with vari- e very close.
able segment sizes. Comparing these results with those obtained ) ) ) )
under a constant segment size assumption (shown in Figure 6), ascomparing Figure 9(b) to Figure 9(a), we found that with back-

well as the lower bounds (shown in Figure 3), we found that the ward jumps, the required server bandwidth decreases slightly. We
differences are almost negligible. have estimated the difference and found it to be up to 15%. This

can be explained as follows. In our simulation, we assumed that

The above results lead us to conclude that with variable segment€ach client has a large enough buffer to keep the segments of the

sizes, the required server bandwidth also increases as the squar@bject that have been played. With backward jumps, it is possi-
root of request arrival rate. ble that the client plays a portion of the object kept in the buffer.

This is equivalent to introducing a start-up delay for the request.
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Figure 10: Required server bandwidth for immediate service
protocols obtained through simulation, varying with the num-
ber of smultaneousrequests N. M isset to several values. Re-

Figure 11: Required server bandwidth obtained through ssimu-
lation varyingwith N and M. Thedelay isset to several typical
values.

quests are generated using an ON-OFF moddl.

The results of our simulations are shown in Figure 11. Comparing
Hence, it reduces the required server bandwidth. Nevertheless, théhose results to the ones anticipated in Figure 5, we find that, in
presence of backward jumps does not change the asymptotic squaréll cases, the average required server bandwidth obtained through
root lower bound. simulations is close to that we obtained through analysis.

From Figure 9, we also observe that whihis small, the required Figure 12 shows how the required server bandwidth varies with de-
server bandwidth appears lower than those in Figures 3, 6, and 8.lay d. We chooseM = 4N, i.e,, each request retrieves one-fourth
This is expected. When/ is smaller, the average request dura- of the whole object. Figure 12(a) shows results wién= 50,
tion is closer tdl’, and since the clients start to retrieve the object representing a less popular object, and Figure 12(b) shows the case
from the beginning, requests tend to be “sequential”. To understandwhen N = 1000, representing a highly popular object. In each
this more clearly, we zoom in on the plot in Figure 9(a). In Fig- case, we plot the lower bound for non-sequential access, as well as
ure 10, we show several special cases wheénr= 2N, M = 4N, that obtained through simulations. In addition, for comparison pur-
M = 8N, andM = 16N. Note that whenM is smaller,e.g., poses, we also plot the bandwidth-delay relationship for sequential
M = 2N, the average request duration7Zi$2. In this case, ac- access. In particular, we plot the minimum required server band-
cess is closer to “sequential”, and the required server bandwidth iswidth for periodic broadcasting in equation (3), and the required
closer to the lower bound for sequential access. This is evident in server bandwidth measured from simulation for stream merging
Figure 10(a). WhenV/ increases, access becomes “less sequen- (@assuming unlimited client receiving bandwidth). Our observations
tial”, resulting in a required server bandwidth that is more accu- are summarized as follows.
rately predicted by the lower bound for non-sequential access. This
is evident in Figure 10(b)-(d). To summarize, with only very few First, the required server bandwidth under a non-sequential access
jumps during the time of a complete object playout, the required model is much higher than that under a sequential access model.
server bandwidth increases at least as the square root of the requedihe difference is more pronounced for more popular objects. No-
arrival rate. tice that whend — 0, the lower bound on required bandwidth
under a non-sequential access model is cloge®7v/M which
is much higher than thieg (N + 1) lower bound under a sequential
g-access model.

4.2 Delayed Service

We have also used simulations to validate the required server ban
width of delayed service protocols. We varied simulation parame-
ters N from 1 to 1000 and varied/ from N to 100N. We chose
typical values forl—namely0.0017", 0.0057", 0.02T", and0.17".

Second, under a sequential access model, stream merging tech-
niques achieve lower required server bandwidth than broadcasting
when delay is small. This is more obvious for less popular objects.

In each simulation run, we first generate a sequence of requests.| IS IS because stream merging has a lower bourldgdfV + 1)

: . : : hend — 0, whereas broadcasting techniques have a lower bound
Each request is delayed for timieDuring this delay, later bytes are w ! .
fetched from ongoing streams whenever possible. When a client is oflog(T/d+1). Sowheni < T/N, the required server bandwidth

playing the object, later bytes can be still retrieved from ongoing for broadcasting is hlgher. In fact, in this f_|gure, the simulation re-
streams. Any byte that cannot be obtained in this manner is re- sults for stream merging under a sequential access model are close

trieved from the server directly, ara late as possible such that 1 the bound given in equation (2).
later clients can fully utilize it.
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Figure 12: Required server bandwidth varying with d. Figure 13: Reguired server bandwidth of immediate service
protocols when client receiving bandwidth islimited.

5. IMPACT OF LIMITED BANDWIDTH

So far, we assumed that clients have unlimited receiving bandwidth From this figure, we observe that when a client’s receiving band-
(n = o0). This section uses simulations to study how limited client width is limited, the required server bandwidth is only slightly
receiving bandwidth affects the scalability of multicast delivery for higher. For example, whe®V' = 1000 andn = 1.5 (i.e, one-
immediate service protocols. In order for multicast delivery to be third of the client bandwidth is used for prefetching), our simula-
possible, the client receiving bandwidth> 1.0 must hold. tions indicate that the required server bandwidth is about 1.69 times
that required under unlimited client receiving bandwidth assump-
In the context of sequential access, there are advanced techniqueion (n = o). Whenn = 2, our simulations indicate that the re-
for scheduling client requests using multicast streams. E&g€r quired server bandwidth is very close to that under unlimited client
[18] proposed severdiierarchical multicast stream merging tech- receiving bandwidth assumption. We estimate that the difference
niques which progressively merge asynchronous client requests intds around 12% for large values @&f. These results suggest that
larger and larger groups. One problem that must be addressed reeven with a limited client receiving bandwidth, it is possible for a
lates to the scheduling of these mergers. Several heuristic policiesprotocol to have required server bandwidth quite close to its lower
were proposed. In particular, assuming= 2, the closest target bound. In the next section, we study practical multicast delivery
policy requires each client to join the most recently initiated ear- protocols that achieve this goal.
lier stream that is still alive. Simulations showed that this policy

performs very close to the off-line optimal algorithm (with known 6. PRACTICAL MULTICAST DELIVERY

g"igtn:iquﬁ)arg:nmrﬁls |nrac1)(ilj\|/2rr:]ce), which is obtained by solving a The protocols considered in the previous sections either assume
y prog gp ’ unlimited client receiving bandwidth or are too sophisticated to be

Under a non-se . . 1practi(:al. For example, in the modified closest target merging pol-
-sequential access model, we modify the closest targe ; e )
. . o ) icy, each client may join and leave multicast streams frequently.
merging policy whem = 2. The key point is how we define the . X - .
closest target for each client. Since the requests may start anywhere Such a behavior may incur high overhead on servers. In this sec-
) ; : . : tion, we describe practical multicast delivery protocols and opti-
in the object, the closest target is not necessarily the most recently . L . -
L ; .~ mize them by minimizing the required server bandwidth.
initiated stream. Instead, we define the closest target of each client
as the multicast stream that will be played by the client in the near-
estfuture. The intuition behind this choice is that itis critical forthe 6.1  Protocols
client to prefetch the portion of the data that will soon be played. In We consider the following protocol which provides immediate ser-
addition, the closest target will be redefined when the target itself vice to the clientsThe server multicasts an object for every inter-
is merged or is terminated. val of length x. Each client joins the temporally closest multicast
stream. The missed portion of the requested segment isimmediately
Whenn < 2, we modify thebandwidth skimming technique [19]. unicasted from the server.
The following is a straightforward adaption of the bandwidth skim-
ming technique described in Section 2.1. Each multicast stream isThe above protocol is simple in that for each request, the client need
divided intok substreams, whereis a positive integer. Each sub-  only join one multicast stream. Also, the above protocol is readily
stream is then multicasted with rate equal @& times the object usable by a client whose receiving bandwidth is twice the object
playback rate. Each client is assumed to be capable of receiving atplayback ratej.e., n = 2. Both the multicast and unicast streams
least(k + 1) substreams simultaneously (thus= 1 + 1/k). The are sent at playback rate. Assuming that a client requests a seg-
closest target policy is then applied to the substreams: wheneverment which was most recently multicastedhits of time ago, then
the client has idle bandwidth, it listens to the substreams whose the client receives a unicast stream of lengtivhile concurrently
data will be played in the nearest future. The client may listen to prefetching data from that multicast stream.
up to(k + 1) substreams.
Notice that it is straightforward to generalize the above protocol
We developed a simulator for this stream merging/bandwidth skim- for clients with lower receiving bandwidth.e, 1 < n < 2. To
ming technique. Figure 13 shows the required server bandwidth do so, we again capitalize on the ideas from bandwidth skimming
we obtained through simulations in which we varied the number of techniques. Namely, each stream (both unicast or multicast) is di-

concurrent client$V. The value ofn is varied from1.125 to co. In vided intok substreams using fine-grained interleaving, wlieise
Figure 13(a), we set/ = 4N, i.e, S = T/4, each requestis for  a positive integer. Each substream is sent with rate equif %o
one-fourth of the object. In Figure 13(b), we gdt = 16N, i.e, times the playback rate. The clients can recéive- 1) substreams

S =1T/16. (thusn = 14 1/k). Assume a client requests a segment which was



most recently multicastetlunits of time ago. The client receives  to the maximum allowable start-up delay. The robustness of our
k unicast substreams immediately from the server and meanwhile analytical results have been confirmed using extensive simulations

it prefetches data from one multicast substream. Themits of under realistic workloads. Also, the impact of limited client receiv-
time later, the client need only receiye — 1) unicast substreams,  ing bandwidth was investigated. Finally, based on our findings, we
and can prefetch two multicast substreams. Anothanits of time proposed a practical, near-optimal multicast-based delivery proto-
later, the client need only receiyé — 2) can prefetch three mul-  col, which results in a server bandwidth requirement that is fairly
ticast substreams, and so on. Eventually, no unicast substream iclose to its lower bound under both abundant and limited client re-
needed. ceiving bandwidth assumptions.

6.2 Protocol Optimization Our findings suggest that for non-sequential access, multicast de-

To optimize our protocol, we determine the valuerpfvhich con- livery is noF a panacea for scalability.. Therefore, for .Iarge-scale
trols the frequency of multicasting the object. Assume that each content delivery applications that require non-sequential access of
request is for a segment of constant lengthwe first compute the large electronic artifacts, for example, interactive video delivery

average cost of unicast. Assume a client requests a segment Whici’?mcI real-time SOﬁW&r? dlstrlbutlc_)n, we should seek _a}lternatlve or
was most recently multicastedunits of time ago. From the de- complementary techniques that increase the scalability of stream-

scription of the protocols above, it is not difficult to find that the Ing delivery r_nec_hamsms. Such techniques include caching, buffer-

total duration of the unicast substream31§_, it = k(k +1)t/2, ing, and replication, among others.

assumingS > kt. On average this is equal igk + 1)z /4. Since

the sending rate i/ k times the playback rate, the number of bytes

unicasted igk + 1)z /4. Over a period of tim&’, there areM re-

quests, so there af& + 1) Mz /4 bytes unicasted on average. In ACKNOWLEDGMENTS

addition, over a period of tim&’, the object is multicasted’/x The authors would like to thank Mark Crovella for providing a few

times, so there aré? /z bytes multicasted on average. references on streaming access workload characterization. The au-
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We are now ready to optimize our protocol by minimizing the total ful and helpful comments.

cost of the protocol over a period of tiffé This cost is given by:

2
L + 1)M:c + T—

g(z) = . . .
1 APPENDIX: Variable Segment Size Analysis
It is not difficult to find the optimal solutiog™ = /(k + 1)MT Assume that the segment size is a random variable, following a
whenz* = 27//(k + 1)M. This yields a required server band-  distribution with a general density functiaity), a <y < b. The
width of \/(k + 1) M. mean segment size & We hope to follow the steps in Section 3

to compute the lower bound on the required server bandwidth.

Whenk = 1 andn = 2, the required server bandwidthlist14+/M,
which is approximately 1.773 times the lower bound given in equa-
tion (4). This means that such a simple protocol needs less than
twice the server bandwidth required for the rather impractical pro-
tocols we assumed in our simulations. Even whencreasesi(e.,
n approaches unity), the required server bandwidth for this simple x
protocol increases only as the square rook af 1. For example, /
when 33% of the client bandwidth is used for prefetchihg< 2 “
andn = 1.5), the required server bandwidth is only732v/M This expression is explained as follows. Hé«%y—) is the proba-
which is about 2.173 times the lower bound. bility density that the evenX occurs as a client requests a segment
of lengthy. Note that it is more likelyX occurs as the result of a
Although it is possible to further decrease the required server band-longer request. Iy < x, then certainly the ever is also an event
width by using more sophisticated protocols, or fine tuning the sim- of { X'} In this case” %dy gives the cumulative probability.

ple protocol we described here, the payoff from such an exercise is|f 4 > z, then with probabilityZ, the eventX is also an event of
fairly limited. Recall that in the last section, our simulation re- Y

sults have shown that when= 1.5, the sophisticated earliest tar-
get first merging algorithm we discussed requires server bandwidth
roughly equal to 1.69 times the lower bound—allowing only a lim-
ited “room for improvement” over the 2.173 times the lower bound
achieved using the protocol described above.

Let {X} and{X’} be as defined in Section 3. First we need to
computeA’(z), the arrival rate of X’}. Assume an arbitrank’
occurs at timez. The probability that thisX is also an event of
{X'} can be computed as

b
ygéy)dy+/m ygéy)gdy. ©)

{X'}. In this casej;’ %‘y) +dy gives the cumulative probability.

It is not difficult to verify that the deterministic model in Section 3
is a special case.

For the general case, equation (6) cannot be solved.

7. CONCLUSION We have considered several special cases with variable segment

In this paper, we have analytically derived tight lower bounds onthe sjzes including: (i) uniform distributiop(y) = 5,0 < y < 25;

required server bandwidth for protocols in a multicast environment ;4 (ii) exponential distribution(y) = Le~¥/S 25> 0. Although
=1 , )

when access to s_treaming objects is not sequential. In particu_lar, Weye are able to compute equation (6) and the exact expression of
have shown that in such systems, the required server bandwidth forA/(x) when we proceed as in Section 3, the derivation of the lower
any protocol providing immediate service grows as the square root bouna becomes increasingly complex. '

of the request arrival rate, and that the required server bandwidth
of any protocol providing delayed service is inversely proportional
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