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Abstract

Recently the notion of self�similarity has been shown to apply
to wide�area and local�area network tra�c� In this paper we
examine the mechanisms that give rise to the self�similarity
of network tra�c� We present a hypothesized explanation for
the possible self�similarity of tra�c by using a particular sub�
set of wide area tra�c� tra�c due to the World Wide Web
�WWW�� Using an extensive set of traces of actual user exe�
cutions of NCSA Mosaic� re�ecting over half a million requests
for WWW documents� we examine the dependence structure
of WWW tra�c� While our measurements are not conclusive�
we show evidence that WWW tra�c exhibits behavior that
is consistent with self�similar tra�c models� Then we show
that the self�similarity in such tra�c can be explained based
on the underlying distributions of WWW document sizes� the
e�ects of caching and user preference in 	le transfer� the e�ect
of user 
think time�� and the superimposition of many such
transfers in a local area network� To do this we rely on empir�
ically measured distributions both from our traces and from
data independently collected at over thirty WWW sites�

� Introduction

Understanding the nature of network tra�c is critical in order
to properly design and implement computer networks and net�
work services like the World Wide Web� Recent examinations
of LAN tra�c �
�� and wide area network tra�c ���� have chal�
lenged the commonly assumed models for network tra�c� e�g��
the Poisson distribution� Were tra�c to follow a Poisson or
Markovian arrival process� it would have a characteristic burst
length which would tend to be smoothed by averaging over a
long enough time scale� Rather� measurements of real tra�c
indicate that signi	cant tra�c variance �burstiness� is present
on a wide range of time scales�

Tra�c that is bursty on many or all time scales can be de�
scribed statistically using the notion of self�similarity� which is
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a property we associate with fractals�objects whose appear�
ance is unchanged regardless of the scale at which they are
viewed� In the case of stochastic objects like timeseries� self�
similarity is used in the distributional sense� when viewed at
varying scales� the object�s distribution remains unchanged�

Since a self�similar process has observable bursts on all time
scales� it exhibits long�range dependence� values at any instant
are typically correlated with all future values� Surprisingly
�given the counterintuitive aspects of long�range dependence�
the self�similarity of Ethernet network tra�c has been rigor�
ously established �
��� The importance of long�range depen�
dence in network tra�c is beginning to be observed in studies
such as �
��� which show that packet loss and delay behavior is
radically di�erent in simulations using real tra�c data rather
than traditional network models�

However� the reasons behind network tra�c self�similarity
have not been clearly identi	ed� In this paper we show that in
some cases� network tra�c self�similarity can be explained in
terms of 	le system characteristics and user behavior� In the
process� we trace the genesis of network tra�c self�similarity
back from the tra�c itself� through the actions of 	le trans�
mission� caching systems� and user choice� to the distributions
of 	le sizes and user event interarrivals�

To bridge the gap between studying network tra�c on one
hand and high�level system characteristics on the other� we
make use of two essential tools� First� to explain self�similar
network tra�c in terms of individual transmission lengths� we
employ the mechanism introduced in �
�� and described in �
���
Those papers point out that self�similar tra�c can be con�
structed by multiplexing a large number of ON�OFF sources
that have ON and OFF period lengths that are heavy�tailed�
as de	ned in Section ���� Such a mechanism could correspond
to a network of workstations� each of which is either silent or
transferring data at a constant rate�

Our second tool in bridging the gap between transmission
times and high�level system characteristics is our use of the
World Wide Web �WWW or Web� as an object of study� The
Web provides a special opportunity for studying network traf�
	c because it is a 
closed� system� all tra�c arises as the result
of 	le transfers from an easily studied set� and user activity is
easily monitored�

To study the tra�c patterns of the WWW we collected
reference data re�ecting actual WWW use at our site� We in�
strumented NCSA Mosaic ��� to capture user access patterns
to the Web� Since at the time of our data collection� Mo�
saic was by far the dominant WWW browser at our site� we
were able to capture a fairly complete picture of Web tra�c
on our local network� our dataset consists of more than half
a million user requests for document transfers� and includes



detailed timing of requests and transfer lengths� In addition
we surveyed a number of WWW servers to capture document
size information that we used to validate assumptions made in
our analysis�

The paper takes two parts� First� we consider the possi�
bility of self�similarity of Web tra�c for the busiest hours we
measured� To do so we use analyses very similar to those per�
formed in �
��� These analyses support the notion that Web
tra�c may show self�similar characteristics� at least when de�
mand is high enough� This result in itself has implications
for designers of systems that attempt to improve performance
characteristics of the WWW�

Second� using our WWW tra�c� user preference� and 	le
size data� we comment on reasons why the transmission times
and quiet times for any particular Web session are heavy�
tailed� which is an essential characteristic of the proposed
mechanism for self�similarity of tra�c� In particular� we ar�
gue that many characteristics of WWW use can be modelled
using heavy�tailed distributions� including the distribution of
transfer times� the distribution of user requests for documents�
and the underlying distribution of documents sizes available in
the Web� In addition� using our measurements of user inter�
request times� we explore reasons for the heavy�tailed distri�
bution of quiet times needed for self�similarity�

� Background

��� De�nition of Self�Similarity

For detailed discussion of self�similarity in timeseries data and
the accompanying statistical tests� see ��� ���� Our discussion
in this subsection and the next closely follows those sources�

A self�similar time series has the property that when ag�
gregated �leading to a shorter time series in which each point
is the sum of multiple original points� the new series has the
same autocorrelation function as the original� That is� given
a stationary timeseries X � �Xt� t � �� 
� ������ we de	ne the

m�aggregated series X�m� � �X
�m�
k � k � 
� �� �� ���� by sum�

ming the original series X over nonoverlapping blocks of size
m� Then if X is self�similar� it has the same autocorrelation
function r�k� � E��Xt � ���Xt�k � ��� as the series X�m� for
all m� Note that this means that the series is distributionally
self�similar� the distribution of the aggregated series is the
same �except for changes in scale� as that of the original�

As a result� self�similar processes show long�range depen�
dence� A process with long�range dependence has an autocor�
relation function r�k� � k�� as k � �� where � � � � 
�
Thus the autocorrelation function of such a process decays
hyperbolically �as compared to the exponential decay exhib�
ited by traditional tra�c models�� Hyperbolic decay is much
slower than exponential decay� and since � � 
� the sum of
the autocorrelation values of such a series approaches in	nity�
This has a number of implications� First� the variance of n
samples from such a series does not decrease as a function of
n �as predicted by basic statistics for uncorrelated datasets�
but rather by the value n�� � Second� the power spectrum of
such a series is hyperbolic� rising to in	nity at frequency zero
� re�ecting the 
in	nite� in�uence of long�range dependence
in the data�

One of the attractive features of using self�similar mod�
els for time series� when appropriate� is that the degree of
self�similarity of a series is expressed using only a single pa�
rameter� The parameter expresses the speed of decay of the
series� autocorrelation function� For historical reasons� the pa�
rameter used is the Hurst parameter H � 
� ���� Thus� for

self�similar series� 
�� � H � 
� As H � 
� the degree of
self�similarity increases� Thus the fundamental test for self�
similarity of a series reduces to the question of whether H is
signi	cantly di�erent from 
���

In this paper we use four methods to test for self�similarity�
These methods are described fully in ��� and are the same
methods described and used in �
��� A summary of the relative
accuracy of these methods on synthetic datasets is presented
in �����

The 	rst method� the variance�time plot� relies on the slowly
decaying variance of a self�similar series� The variance of X�m�

is plotted against m on a log�log plot� a straight line with slope
��� greater than �
 is indicative of self�similarity� and the pa�
rameter H is given by H � 
 � ���� The second method�
the R�S plot� uses the fact that for a self�similar dataset� the
rescaled range or R�S statistic grows according to a power
law with exponent H as a function of the number of points
included �n�� Thus the plot of R�S against n on a log�log plot
has slope which is an estimate of H� The third approach� the
periodogram method� uses the slope of the power spectrum of
the series as frequency approaches zero� On a log�log plot� the
periodogram slope is a straight line with slope �� 
 � 
� �H
close to the origin�

While the preceding three graphical methods are useful for
exposing faulty assumptions �such as non�stationarity in the
dataset� they do not provide con	dence intervals� The fourth
method� called theWhittle estimator does provide a con	dence
interval� but has the drawback that the form of the underly�
ing stochastic process must be supplied� The two forms that
are most commonly used are fractional Gaussian noise �FGN�
with parameter 
�� � H � 
� and Fractional ARIMA �p� d� q�
with � � d � 
�� �for details see ��� ���� These two models dif�
fer in their assumptions about the short�range dependences in
the datasets� FGN assumes no short�range dependence while
Fractional ARIMA can assume a 	xed degree of short�range
dependence�

Since we are concerned only with the long�range depen�
dence of our datasets� we employ the Whittle estimator as
follows� Each hourly dataset is aggregated at increasing levels
m� and the Whittle estimator is applied to each m�aggregated
dataset using the FGN model� The resulting estimates of H
and con	dence intervals are plotted as a function of m� This
approach exploits the property that any long�range dependent
process approaches FGN when aggregated to a su�cient level�
As m increases short�range dependences are averaged out of
the dataset� if the value of H remains relatively constant we
can be con	dent that it measures a true underlying level of
self�similarity�

��� Heavy�Tailed Distributions

The distributions we use in this paper have the property of
being heavy�tailed� A distribution is heavy�tailed if

P �X � x� � x��� as x��� � � � � ��

That is� regardless of the behavior of the distribution for small
values of the random variable� if the asymptotic shape of the
distribution is hyperbolic� it is heavy�tailed�

The simplest heavy�tailed distribution is the Pareto distri�
bution� The Pareto distribution is hyperbolic over its entire
range� its probability mass function is

p�x� � �k�x����� �� k � �� x � k�

and its cumulative distribution function is given by

F �x� � P �X � x� � 
� �k�x��



The parameter k represents the smallest possible value of the
random variable�

Our results are based on estimating the values of � for
a number of empirically measured distributions� such as the
lengths of World Wide Web 	le transmission times� To do so�
we employ log�log complementary distribution �LLCD� plots�
These are plots of the complementary cumulative distribution
�F �x� � 
� F �x� � P �X � x� on log�log axes� Plotted in this
way� heavy�tailed distributions have the property that

d log �F �x�

d log x
� ��� x � �

for some �� In practice we obtain an estimate for � by plotting
the LLCD plot of the dataset and selecting a value for � above
which the plot appears to be linear� Then we select equally�
spaced points from among the LLCD points larger than � and
estimate the slope using least�squares regression� Equally�
spaced points are used because the point density varies over
the range used� and the preponderance of data points near the
median would otherwise unduly in�uence the least�squares re�
gression�

In all our � estimates for 	le sizes we use � � 
��� meaning
that we consider tails to be the portions of the distributions
for 	les of 
���� bytes or greater�

An alternative approach to estimating tail weight� used in
����� is the Hill estimator �

�� The Hill estimator does not give
a single estimate of �� but can be used to gauge the general
range of �s that are reasonable� We used the Hill estimator
to check that the estimates of � obtained using the LLCD
method were within range� in all cases they were�

����� Testing for In�nite Variance

There is evidence that� over their entire range� many of the dis�
tributions we study may be well characterized using lognormal
distributions �
��� However� lognormal distributions do not
have in	nite variance� and hence are not heavy�tailed� In our
work� we are not concerned with distributions over their entire
range�only their tails� As a result we don�t use goodness�of�	t
tests to determine whether Pareto or lognormal distributions
are better at describing our data� However� it is important to
verify that our datasets exhibit the in	nite variance charac�
teristic of heavy tails� To do so we use a simple test based on
the Central Limit Theorem �CLT�� which states that the sum
of a large number of i�i�d� samples from any distribution with
�nite variance will tend to be normally distributed� To test
for in	nite variance we proceed as follows� First� form the m�
aggregrated dataset from the original dataset for large values
of m �typically in the range 
� to 
����� Next� we inspect the
tail behavior of the aggregated datasets using the LLCD plot�
For datasets with 	nite variance� the slope will increasingly
decline as m increases� re�ecting the underlying distribution�s
approximation of a normal distribution� For datasets with in�
	nite variance� the slope will remain roughly constant with
increasing m�

An example is shown in Figure 
� The 	gure shows the CLT
test for aggregation levels of 
�� 
��� and ��� as applied to two
synthetic datasets� On the left the dataset consists of 
�����
samples from a Pareto distribution with � � 
��� On the
right the dataset consists of 
����� samples from a lognormal
distribution with � � ���� 	 � ���� These parameters were
chosen so as to make the Pareto and lognormal distributions
appear approximately similar for log���x� in the range � to
�� In each plot the original LLCD plot for the dataset is the
lowermost line� the upper lines are the LLCD plots of the

aggregated datasets� Increasing aggregation level increases the
average value of the points in the dataset �since the sums are
not normalized by the new mean� so greater aggregation levels
show up as higher lines in the plot� The 	gure clearly shows
the qualitative di�erence between 	nite and in	nite variance
datasets� The Pareto dataset is characterized by parallel lines�
while the lognormal dataset is characterized by lines that seem
roughly convergent�

� Related Work

The 	rst step in understanding WWW tra�c is the collec�
tion of trace data� Previous measurement studies of the Web
have focused on reference patterns established based on logs
of proxies �
�� ���� or servers ��
�� The authors in ��� captured
client traces� but they concentrated on events at the user in�
terface level in order to study browser and page design� In
contrast� our goal in data collection was to acquire a complete
picture of the reference behavior and timing of user accesses
to the WWW� As a result� we collected a large dataset of
client�based traces� A full description of our traces �which are
available for anonymous FTP� is given in ����

Previous wide�area tra�c studies have studied FTP� TEL�
NET� NNTP� and SMTP tra�c �
�� ���� Our data comple�
ments those studies by providing a view of WWW �HTTP�
tra�c at a 
stub� network� In addition� our measurements of
Web 	le sizes are in general agreement with those reported in
�
�� Since WWW tra�c accounts for more than ��� of the
tra�c on the Internet and is currently growing more rapidly
than any other tra�c type �
��� understanding the nature of
WWW tra�c is important and is expected to increase in im�
portance�

The benchmark study of self�similarity in network tra�c is
�
�� 
��� and our study uses many of the same methods used
therein� However� the goal of that study was to demonstrate
the self�similarity of network tra�c� to do that� many large
datasets taken from a multi�year span were used� Our focus is
not on establishing self�similarity of network tra�c �although
we do so for the interesting subset of network tra�c that is
Web�related�� instead we concentrate on examining the rea�
sons behind that self�similarity� As a result of this di�erent
focus� we do not analyze tra�c datasets for low� normal� and
busy hours� Instead we focus on the four busiest hours in our
logs� While these four hours are self�similar� many less�busy
hours in our logs do not show self�similar characteristics� We
feel that this is only the result of the tra�c demand present in
our logs� which is much lower than that used in �
�� 
��� this
belief is supported by the 	ndings in that study� which showed
that the intensity of self�similarity increases as the aggregate
tra�c level increases�

Our work is most similar in intent to ����� That paper
looked at network tra�c at the packet level� identi	ed the �ows
between individual source�destination pairs� and showed that
transmission and idle times for those �ows were heavy�tailed�
In contrast� our paper is based on data collected at the appli�
cation level rather than the network level� As a result we are
able to examine the relationship between transmission times
and 	le sizes� and are able to assess the e�ects of caching and
user preference on these distributions� These observations al�
low us to build on the conclusions presented in ���� by showing
that the heavy�tailed nature of transmission and idle times is
not primarily a result of network protocols or user preference�
but rather stems from more basic properties of information
storage and processing� both 	le sizes and user 
think times�
are themselves strongly heavy�tailed�
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Figure 
� Comparison of CLT Test for Pareto �left� and Lognormal �right� Distributions

� Examining Web Tra�c Self�Similarity

In this section we show evidence that WWW tra�c can be self�
similar� To do so� we 	rst describe how we measured WWW
tra�c� then we apply the statistical methods described in Sec�
tion � to assess self�similarity�

��� Data Collection

In order to relate tra�c patterns to higher�level e�ects� we
needed to capture aspects of user behavior as well as network
demand� The approach we took to capturing both types of
data simultaneously was to modify a WWW browser so as to
log all user accesses to the Web� The browser we used was
Mosaic� since its source was publicly available and permission
has been granted for using and modifying the code for research
purposes� A complete description of our data collection meth�
ods and the format of the log 	les is given in ���� here we only
give a high�level summary�

We modi	ed Mosaic to record the Uniform Resource Lo�
cator �URL� ��� of each 	le accessed by the Mosaic user� as
well as the time the 	le was accessed and the time required to
transfer the 	le from its server �if necessary�� For complete�
ness� we record all URLs accessed whether they were served
from Mosaic�s cache or via a 	le transfer� however the traf�
	c timeseries we analyze in this section consist only of actual
network transfers�

At the time of our study �January and February 
����
Mosaic was the WWW browser preferred by nearly all users
at our site� Hence our data consists of nearly all of the WWW
tra�c at our site� Since the time of our study� the preferred
browser has become Netscape ���� which is not available in
source form� As a result� capturing an equivalent set of WWW
user traces at the current time would be signi	cantly more
di�cult�

The data captured consists of the sequence of WWW 	le
requests performed during each session� Each 	le request is
identi	ed by its URL� and session� user� and workstation ID�
associated with the request is the time stamp when the request
was made� the size of the document �including the overhead
of the protocol� and the object retrieval time� Timestamps
were accurate to 
� ms� Thus� to provide � signi	cant digits
in our results� we limited our analysis to time intervals greater
than or equal to 
 sec� To convert our logs to tra�c time
series� it was necessary to allocate the bytes transferred in
each request equally into bins spanning the transfer duration�
Although this process smooths out short�term variations in the
tra�c �ow of each transfer� our restriction to time series with

Sessions �����
Users ��

URLs Requested �������
Files Transferred 
���
��
Unique Files Requested ������
Bytes Requested ��
� MB
Bytes Transferred 
��� MB
Unique Bytes Requested 
��� MB

Table 
� Summary Statistics for Trace Data Used in This
Study

granularity of 
 second or more�combined with the fact that
most 	le transfers are short�means that such smoothing has
little e�ect on our results�

To collect our data we installed our instrumented version
of Mosaic in the general computing environment at Boston
University�s Computer Science Department� This environ�
ment consists principally of �� SparcStation�� workstations
connected in a local network� Each workstation has its own
local disk� logs were written to the local disk and subsequently
transferred to a central repository� Although we collected data
from �
 November 
��� through � May 
���� the data used
in this paper is only from the period 
� January 
��� to ��
February 
���� This period was chosen because departmen�
tal WWW usage was distinctly lower �and the pool of users
less diverse� before the start of classes in early January� and
because by early March 
���� Mosaic had ceased to be the
dominant browser at our site� A statistical summary of the
trace data used in this study is shown in Table 
�

��� Self�Similarity of WWW Tra�c

Using the WWW tra�c data we obtained as described in the
previous section� we show evidence that WWW tra�c might
be self�similar� First� we show that WWW tra�c contains traf�
	c bursts observable over four orders of magnitude� Second�
we show that for four busy hours from our tra�c logs� the
Hurst parameter H for our datasets is signi	cantly di�erent
from 
��� consistent with a conclusion of self�similarity�

����� Burstiness at Varying Time Scales

One of the most important aspects of self�similar tra�c is that
there is no characteristic size of a tra�c burst� as a result�
the aggregation or superimposition of many such sources does
not result in a smoother tra�c pattern� One way to assess
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 Second Aggegrations� �Actual Transfers�

this e�ect is by visually inspecting time series plots of tra�c
demand�

In Figure � we show four time series plots of the WWW
tra�c induced by our reference traces� The plots are produced
by aggregating byte tra�c into discrete bins of 
� 
�� 
��� or

��� seconds�

The upper left plot is a complete presentation of the entire
tra�c time series using 
��� second �
��� minute� bins� The
diurnal cycle of network demand is clearly evident� and day
to day activity shows noticeable bursts� However� even within
the active portion of a single day there is signi	cant burstiness�
this is shown in the upper right plot� which uses a 
�� second
timescale and is taken from a typical day in the middle of the
dataset� Finally� the lower left plot shows a portion of the 
��
second plot� expanded to 
� second detail� and the lower right
plot shows a portion of the lower left expanded to 
 second
detail� These plots show signi	cant bursts occurring at the
second�to�second level�

����� Statistical Analysis

We used the four methods for assessing self�similarity described
in Section �� the variance�time plot� the rescaled range �or
R�S� plot� the periodogram plot� and the Whittle estimator�
We concentrated on individual hours from our tra�c series� so
as to provide as nearly a stationary dataset as possible�

To provide an example of these approaches� analysis of a
single hour ��pm to �pm� Thursday � Feb 
���� is shown in
Figure �� The 	gure shows plots for the three graphical meth�
ods� variance�time �upper left�� rescaled range �upper right��
and periodogram �lower center�� The variance�time plot is lin�

ear and shows a slope that is distinctly di�erent from �
 �which
is shown for comparison�� the slope is estimated using regres�
sion as ������ yielding an estimate for H of ����� The R�S plot
shows an asymptotic slope that is di�erent from ��� and from

�� �shown for comparision�� it is estimated using regression
as ����� which is also the corresponding estimate of H� The
periodogram plot shows a slope of ����� �the regression line is
shown�� yielding an estimate of H as ����� Finally� the Whittle
estimator for this dataset �not a graphical method� yields an
estimate of H � ���� with a ��� con	dence interval of ������
������

As discussed in Section ��
� the Whittle estimator is the
only method that yields con	dence intervals on H� but short�
range dependence in the timeseries can introduce inaccura�
cies in its results� These inaccuracies are minimized by m�
aggregating the timeseries for successively large values of m�
and looking for a value of H around which the Whittle esti�
mator stabilizes�

The results of this method for four busy hours are shown in
Figure �� Each hour is shown in one plot� from the busiest hour
in the upper left to the least busy hour in the lower right� In
these 	gures the solid line is the value of the Whittle estimate
of H as a function of the aggregation level m of the dataset�
The upper and lower dotted lines are the limits of the ���
con	dence interval on H� The three level lines represent the
estimate of H for the unaggregated dataset as given by the
variance�time� R�S� and periodogram methods�

The 	gure shows that for each dataset� the estimate of H
stays relatively consistent as the aggregation level is increased�
and that the estimates given by the three graphical methods
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Figure �� Graphical Analysis of a Single Hour

fall well within the con	dence intervals on H� The estimates
of H given by these plots are in the range ��� to ���� consistent
with the values for a lightly loaded network measured in �
���
Moving from the busier hours to the less�busy hours� the esti�
mates of H seem to decline somewhat� and the variance in the
estimate of H increases� which are also conclusions consistent
with previous research�

Thus the results in this section show evidence that WWW
tra�c at stub networks might be self�similar� when tra�c de�
mand is high enough� We expect this to be even more pro�
nounced at routers� where tra�c from a multitude of sources
is aggregated� In addition� WWW tra�c in stub networks
is likely to become more self�similar as the demand for� and
utilization of the WWW increase in the future�

� Explaining Web Tra�c Self�Similarity

While the previous section showed evidence that WWW tra�c
can show self�similar characteristics� it provides no explanation
for this result� This section provides a possible explanation�
based on measured characteristics of the Web�

��� Superimposing Heavy�Tailed Renewal Processes

Our starting point is the method of constructing self�similar
processes described by Mandelbrot �
�� and Taqqu and Levy
���� and summarized in �
��� A self�similar process may be con�
structed by superimposing many simple renewal reward pro�
cesses� in which the rewards are restricted to the values � and

� and in which the inter�renewal times are heavy�tailed� As
described in Section �� heavy�tailed distributions have in	nite
variances and the weight of their tails is determined by the
parameter � � �� As the number of such sources grows large�
such a construction yields a self�similar fractional Gaussian
noise process with H � ��� �����

This construction can be visualized as follows� Consider a
large number of concurrent processes that are each either ON
or OFF� At any point in time� the value of the time series is
the number of processes in the ON state� If the distribution of
ON and OFF times for each process is heavy�tailed� then the
time series will be self�similar� Such a model could correspond
to a network of workstations� each of which is either silent or
transferring data at a constant rate�

Adopting this model to explain the self�similarity of WWW
tra�c requires an explanation for the heavy�tailed distribution
of ON and OFF times� In our system� ON times correspond
to the transmission durations of individual WWW 	les� and
OFF times correspond to the intervals between transmissions�

So we need to ask whether WWW 	le transmission times and
quiet times are heavy�tailed� and if so� why�

Unlike some previous wide�area tra�c studies that concen�
trate on network�level data transfer rates� we have available
application�level information such as the names and sizes of
	les being transferred� as well as their transmission times� In
addition� our system is 
closed� in the sense that all our tra�c
consists of Web 	le transfers� Thus to answer these questions
we can analyze the characteristics of our client logs�

��� Examining Web Transmission Times

����� The Distribution of Web Transmission Times

Our 	rst observation is that WWW 	le transmission times ap�
pear to show heavy�tailed characteristics� Figure � �left side�
shows the LLCD plot of the durations of all 
��
�� trans�
fers that occurred during the measurement period� The 	gure
shows that for values greater than about ����� the distribu�
tion is nearly linear � consistent with a hyperbolic upper tail�
However� the data does appear to have some curvature� the
residuals are all negative� then positive� then negative again�
It�s not clear whether this deviation from an exact power�law
would be re�ected in a larger dataset� or whether it represents
a true divergence from power�law behavior� as a result it is
hard to draw de	nitive conclusions about power�law behavior
from this plot� Although this plot is not conclusive� we show
next that despite these deviations� this distribution shows ev�
idence of in	nite variance� which is also characteristic of the
power�law distribution�

An important question is whether it is a correct model of
the data to 	t a line to the upper tail in Figure � �implying
in	nite variance�� To answer this question we use the CLT
Test as described in Section ����
� The results for our dataset
of transmission times is shown in Figure �� The 	gure clearly
shows that as we aggregate the dataset� the slope of the tail
does not change appreciably� That is� under the CLT Test�
transmission times behave like the Pareto distribution �left
side of Figure 
� rather than the Lognormal distribution �right
side of Figure 
�� While tests such as the CLT Test cannot be
considered a proof� we conclude that our assumption of in	nite
variance seems justi	ed for this dataset�

A least squares 	t to evenly spaced data points greater than
���� �shown in the 	gure� right side� R� � ����� has a slope of �

��
� which yields an estimate of � � 
��
 for this distribution�
with standard error 	� � ������� The result of aggregating a
large number of ON�OFF processes in which the distribution

�The �� values given here and below are the standard error of � as
a coe�cient in the least�squares 
t used to estimate �	
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Figure �� Whittle Estimator Applied to Aggregated Datasets
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Figure �� CLT Test For WWW File Transmission Times

of ON times is heavy�tailed with � � 
��
 should yield a self�
similar process withH � ����� While our data generally shows
values of H in the range ��� to ���� the measured value of H
should rise with increasing tra�c� Therefore we expect that
in the limit� a value of H � ��� for high levels of Web tra�c
is possible�

����� Why are Web Transmission Times Heavy�Tailed	

An initial hypothesis relating tra�c demand to 	le size might
be that WWW tra�c re�ects the random selection of WWW
	les for transfer� In particular if users selected 	les for transfer
by following links without regard to the size of the 	le being
transferred� the size of transfers might represent essentially
random samples from the distribution of WWW 	les� This is
intuitively appealing since links as presented by Mosaic don�t

directly encode a notion of 	le length�
To test this hypothesis we studied the distribution of WWW

	le sizes� First� we looked at the distribution of sizes for 	le
transfers in our logs� The results for all 
��
�� transfers is
shown in Figure �� which is a plot of the LLCD of transfer
sizes in bytes� Although the slight curvature again prevents
de	nitive conclusions� the 	gure shows that for 	le sizes greater
than about 
��� bytes� transfer size distribution seems reason�
ably well modeled by a Pareto distribution� the linear 	t to the
points for which 	le size is greater than 
��� yields an estimate
� � 
��� �R� � ����� 	� � ������� The fact that the distribu�
tion of transfer sizes in bytes is heavier�tailed �� � 
���� than
the distribution of transfer durations in seconds �� � 
��
�
indicates that large 	les are transferred somewhat faster per
byte than are small 	les� this may be a result of the 	xed
overhead of TCP connection establishment and the slow�start
congestion control mechanism of TCP�

Interestingly� the authors in ���� found that the upper tail
of the distribution of data bytes in FTP bursts was well 	t to
a Pareto distribution with ��� � � � 
�
� Thus our results
indicate that with respect to the upper�tail distribution of 	le
sizes� Web tra�c does not di�er signi	cantly from FTP tra�c�
however our data also allow us to comment on the reasons
behind the heavy�tailed distribution of transmitted 	les�

There are a number of reasons why the sizes of Web 	les
that were transferred in our logs might follow a heavy�tailed
distribution� First� the distinctive distribution of transfer sizes
might be determined mainly by user preferences� Second� the
distribution of transfer sizes might be determined by the ef�
fect of Mosaic�s caching algorithms� since transfers only re�ect
the user requests that miss in Mosaic�s cache� Finally� the
distribution of transfer sizes might be based on the underly�
ing distribution of 	les available on the Web� Surprisingly� we
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Figure �� LLCD of Transmission Times of WWW Files
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Figure �� LLCD of Size of WWW Files Transferred

	nd that the latter reason is the fundamental one in creating
the heavy�tailed distribution of transfer sizes� In fact� the dis�
tribution of 	les found on the Web is strongly heavy�tailed�
and the e�ects of caching and user preference transform a less
heavy�tailed distribution of user requests into a set of cache
misses that strongly resembles the heavy�tailed distribution of
available 	les�

To demonstrate this fact we 	rst show the distribution of
the ������ unique 	les transferred in our logs� This distri�
bution is shown in Figure � as a LLCD plot� As before�
some curvature of the plot prevents a conclusive identi	ca�
tion of power�law behavior� However� the 	gure suggests a
hyperbolic tail for 	le sizes greater than 
��� bytes� On the
right� the least�squares 	t is shown to the sampled distribu�
tion� The measured value of � for this distribution is 
���
�R� � ����� 	� � ������� not signi	cantly di�erent from the
measured � for all 	les transferred� the CLT Test plot �not
shown� also shows the parallel lines suggestive of in	nite vari�
ance�

We considered the possibility that the heavy�tailed distri�
bution of unique WWW 	les might be an artifact of our traces
and not representative of reality� For comparison purposes we
surveyed �� Web servers scattered throughout North America�
These servers were chosen because they provided a usage re�
port based on www�stat ��� ����� These usage reports provide
information su�cient to determine the distribution of 	le sizes
on the server �for 	les accessed during the reporting period��
In each case we obtained the most recent usage reports �as of
July 
����� for an entire month if possible�

Remarkably� the distribution of available 	les across the ��
Web servers surveyed resulted in a value of � � 
��� �R� �

����� 	� � ����� which is very nearly the same as that of 	les
requested by our users� The distribution of available Web 	les
is shown in Figure �� Note that although Figures � and �
appear to be very similar� they are based on completely dif�
ferent datasets� Thus� from a distributional standpoint� our
data indicates that transferred 	les can be considered to be a
random sample of the 	les that are available on Web servers�
Note that since www�stat reports only list 	les that have been
accessed at least once during a reporting period� our compari�
son is between 	les transferred in our traces� and the set of all
	les accessed at least once on the selected Web servers�

If WWW 	les are in fact heavy�tailed� one possible ex�
planation might be that the explicit support for multimedia
formats may encourage larger 	le sizes� thereby increasing the
tail weight of distribution sizes� While we 	nd that multime�
dia does increase tail weight to some degree� in fact it is not
the root cause of the heavy tails� This can be seen in the plot
on the right side of Figure ��

The right side of Figure � was constructed by categoriz�
ing all server 	les into one of seven categories� based on 	le
extension� The categories we used were� images� text� audio�
video� archives� preformatted text� and compressed �les� This
simple categorization was able to encompass ��� of all 	les�
From this set� the categories images� text� audio� and video
accounted for ���� The cumulative distribution of these four
categories� expressed as a fraction of the total set of 	les� is
shown on the right side of Figure �� In the 	gure� the upper
line is the distribution of all 	les� which is the same as the plot
shown in Figure �� The three intermediate lines� from upper
to lower� are the components of that distribution attributable
to images� audio� and video� respectively� The lowest line is
the component attributable to text �HTML� alone�

The 	gure shows that the e�ect of adding multimedia 	les
to the set of text 	les serves to increase the weight of the tail�
However� it also suggests that the distribution of text 	les
may itself be heavy�tailed� Using least�squares 	tting for the
portions of the distributions in which Log���x� � �� we 	nd
that for all 	les available � � 
��� �as previously mentioned�
but that for the text 	les only� � � 
��� �R� � ����� 	� �
������� The e�ects of the various multimedia types are also
evident from the 	gure� In the approximate range of 
���� to
������ bytes� tail weight is primarily increased by images� In
the approximate range of ������ to ������� bytes� tail weight
is increased mainly by audio 	les� Beyond ������� bytes� tail
weight is increased mainly by video 	les�

Finally� we consider the potential e�ects of caching in gen�
eral� and Mosaic caching in particular� To evaluate the poten�
tial e�ects of caching in general� we used our traces to measure
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Figure �� LLCD of Size of Unique WWW Files Transferred
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the relationship between the number of times any particular
document is accessed and the size of the document� In ����
we showed that there is an inverse correlation between 	le
size and 	le reuse� This relationship suggests that systems
that perform caching on WWW objects will tend to increase
the tail weight of the data tra�c resulting from misses in the
cache as compared to the tra�c without caching�

To test this hypothesis for the particular case of Mosaic� we
measured the distribution of all ������� URLs requested in our
logs� whether the URL was served from Mosaic�s cache or via
a network transfer� The results yield an estimate of tail weight
for URLs requested of � � 
�
� �R� � ����� 	� � ����
�� This
shows that the actual set of requests made by users is not as
heavy�tailed as the distribution of transferred 	les� but that
the e�ect of caching is to transform the set of requests into a
set of transfers that is quite similar to the set of available 	les�

��� Examining Quiet Times

In subsection ���� we attributed the self�similarity of Web traf�
	c to the superimposition of heavy�tailed ON�OFF processes�
where the ON times correspond to the transmission durations
of individual Web 	les and OFF times correspond to periods
when a workstation is not receiving Web data�

In ���� we present analyses similar to those in this paper
showing that OFF times exhibit two regimes� The important
regime is determined by user behavior and appears to exhibit
heavy�tailed characteristics with � approximately 
��� Com�
paring the distributions of ON and OFF times� we 	nd that
the ON time distribution is much heavier tailed than the OFF
time distribution� Thus we feel that the distribution of 	le

sizes in the Web �which determine ON times� is likely the pri�
mary determiner of Web tra�c self�similarity��


 Conclusion

In this paper we�ve shown evidence that tra�c due to World
Wide Web transfers shows characteristics that are approxi�
mately consistent with self�similarity� More importantly� we�ve
traced the genesis of Web tra�c self�similarity� although our
data are inconclusive� we�ve shown that transmission times
may be heavy�tailed� primarily due to the distribution of Web
	le sizes� In addition� we show evidence that silent times also
may be heavy�tailed� primarily due to the in�uence of user

think time�� In addition� we�ve shown that the distribution
of user requests is lighter�tailed than the set of available 	les�
but that the action of caching serves to make the distribu�
tion of actual 	les transferred similar to the more heavy�tailed
distribution of available 	les�

These results seem to trace the causes of Web tra�c self�
similarity back to basic characteristics of information organi�
zation and retrieval� The heavy�tailed distribution of 	le sizes
we have observed seems similar in spirit to Pareto distribu�
tions noted in the social sciences� such as the distribution of
lengths of books on library shelves� and the distribution of
word lengths in sample texts �for a discussion of these e�ects�
see �
�� and citations therein�� In fact� in other work ��� we
show that the rule known as Zipf�s Law �degree of popularity
is exactly inversely proportional to rank of popularity� applies

�This conclusion is supported by recent work by Taqqu� which shows
that the value of Hurst parameter H is determined by whichever distri�
bution is heavier�tailed	����



quite strongly to Web documents� The heavy�tailed distribu�
tion of user think times also seems to be a feature of human
information processing �e�g�� ��
���

These results suggest that the self�similarity of Web traf�
	c is not a machine�induced artifact� in particular� changes
in protocol processing and document display are not likely
to fundamentally remove the self�similarity of Web tra�c �al�
though some designs may reduce or increase the intensity of
self�similarity for a given level of tra�c demand��

A number of questions are raised by this study� First� the
generalization from Web tra�c to aggregated wide�area tra�c
is not obvious� While other authors have noted the heavy�
tailed distribution of Unix 	les �
�� and of FTP transfers �����
extending our approach to wide�area tra�c in general is di��
cult because of the many sources of tra�c and determiners of
tra�c demand�

A second question concerns the amount of demand required
to observe self�similarity in a tra�c series� As the number
of sources increases� the statistical con	dence in judging self�
similarity increases� however it isn�t clear whether the impor�
tant e�ects of self�similarity �burstiness at a wide range of
scales and the resulting impact on bu�ering� for example� re�
main even at low levels of tra�c demand�
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