
In ACM SIGPLAN Notices, December 1994.

ACM SIGPLAN
Workshop on Language� Compiler� and Tool Support

for Real�Time Systems
June ��� ����

Orlando� Florida
�Summary of the workshop�

Azer Bestavros �best�cs	bu	edu�
Richard Gerber �rich�cs	umd	edu�

Steve Masticola �masticol�scr	siemens	com�

The 
rst ACM SIGPLAN Workshop on Language� Compiler� and Tool Support for Real�Time
Systems was held on June ��� ����� in conjunction with the annual conference on Programming
Language Design and Implementation	

The workshop was well attended by researchers in both the programming language and real�time
communities	 The synergy between the two communities was remarkable and exciting� discussions
were lively� and many attendees claimed that the workshop had stimulated new research ideas that
they were going to pursue	

The workshop was also notable for its level of discourse	 Problems and ideas were traded freely�
cleanly� and with almost a complete absence of confusing jargon	 �Novices
 and �experts
 mingled
freely� there was signi
cantly more free�wheeling participation than one 
nds at established venues	

For a 
rst meeting� the turnout was also surprisingly international � with papers from the UK�
Germany� France� Canada and Austria	

Based on this promising start� a second meeting of th Workshop will be held in ����� in con�
junction with the ��� PLDI conference in La Jolla� CA	

This report summarizes the presentations given at the workshop	 The summaries here have been
rearranged to group similar topics together	 For each of the papers described here� the presenter�
rather than the full set of authors� is given	

Topics� Themes and Controversial Questions

Bill Pugh and Tom Marlowe� in their roles as conference organizers� laid out the basic structure
of the workshop and the topics they planned to cover	 Then they asked Rich Gerber to posit a series
of �controversial questions� statements� and examples�
 with the intention of seeding the discourse
for the remainder of the day	 The issues raised by Pugh� Marlowe and Gerber included�

�a� The di�culty of performing good timing analysis in the face of more complicated architectures
�e	g	� with hierarchical caches� multiple pipelines� shared and local memory� etc	�	

�b� The desire � on the part of many managers and engineers � to have complete traceability
down to the machine�code level	 �Reasons for this include inevitability of instruction�level
debugging� etc	�

�c� The implications of RISC architectures on embedded systems development� with respect to
the compiler�s e�ect on the code produced� its readability� etc	

�d� The e�ect of generic compiler transformations in general� How the common reordering opti�
mizations can inject errors in a real�time application by �misinterpreting
 the programmer�s
intentions	

�



�e� How compiler techniques can help programmers tune code �while preserving intended seman�
tics�� either automatically� or by simply identifying blocks that the programmer can move
selectively � perhaps with graphical tools	

�f� How data��ow analysis techniques presented at PLDI conferences can be used in automated
veri
cation	

�g� How Ada and Posix ����	��based systems can be used to support real�time systems	

�h� That there are tremendous opportunities for programming language researchers in this do�
main� if they decide to pursue them	

Gerber� a professor at the University of Maryland� sought to stimulate lively debate	 His most
memorable �provocation
 was the proposition that the applicability of static� a priori timing anal�
ysis is exaggerated	 His claim is that modern architectures are incredibly complicated� modeling
pipelines� caches� shared memories� register windows� etc	 using vendor�supplied benchmarks has
become nearly impossible	 This position provoked spirited discussion which continued throughout
the day� both inside and outside the sessions	

Gerber also observed that� when judging a system�s performance� the end�to�end constraints are
the only meaningful ones� examples are end�to�end response time� jitter� update rate and temporal
correlation of input samples	 He claimed that the periods of component processes � which worry
software researchers � are just the artifacts used to achieve the original constraints	 Since the
intermediate deadlines are often selected by design engineers without careful thought� our e�orts
spent in meeting them are often wasted time	

Gerber identi
ed the major requirements for a real�time programming language� a source�
level syntax for timing constraints� an unambiguous semantics which characterize the constraints�
compiler technologies which preserve the semantics� and solid runtime support to carry out the
programmer�s intentions	

Working Lunch� After the morning session� the participants shared a working lunch� during
which the �compiler
 and the �real time
 researchers were randomly distributed at the small
tables	 Some of the seed questions were informally pursued	 For example� at one table David
Chase �Thinking Machines� and Steve Tjiang �Synopsis� suggested how special RISC compilers
could help alleviate the problems identi
ed in �c���d� above	

Keynote Tutorial� Ada ���

Ted Baker of Florida State University� who is working on the runtime system for the Gnu Ada
project� gave a tutorial talk on the Ada ��� extensions for real�time support	 Ada ��� includes
extensions for object�oriented programming� numeric libraries� and real�time systems	 In contrast
to Ada ���� which is a single monolithic standard� Ada ��� includes a core language and extensions
�including one for scheduling	� The legality of subsetting was emphasized in the new standard	

Features for real�time support include�

� Data sharing� both volatile and protected objects	

� Asynchronous transfer of control� it overcomes many of the original problems with the syn�
chronous �rendezvous�
 it incorporates timeouts� and it has a clean semantics for exceptions	

� DELAY UNTIL h
xed timei� i	e	� for absolute timing constraints	 Questions about �implemen�
tation
 and �veri
cation
 issues of code containing such a construct were raised	

�



� Additional TIME types	

� Entry service reordering via �requeue
 statement	

� Interrupt handling via �protected procedures	


� Priority�based scheduling� along with priority ceilings� and the ability to dynamically adjust
priorities	

� Low�level tasking primitives� SELECT hinterrupt handleri THEN ABORT habortable codei	 This
construct can support timeouts	

Presentations on Language Design

Eric Rutten� SIGNAL� SIGNAL is a data �ow language with notions of instantaneous reac�
tions �clock� signal� etc	� Its target applications are reactive systems �signal processing� robotics�	
SIGNAL�s approach is to de
ne tasks and time intervals as primitive constructs	

�Signals
 are typed values indexed by time	 �Events
 are signals whose presence is the only
important feature �i	e	� clocks	� Equations are relations on data values and clocks	

Carlos Pereira� C���Real�Time UNIX� Carlos Pereira �University of Stuttgart� gave a
talk on a real�time C�� environment� built on top of the QNX Posix�compliant kernel	 The goal
of this language is the rapid prototyping of real�time systems� using standard C�� style templates	
To maintain real�time control� Pereira has imposed a antisymmetric� �communicates�with
 relation
on object classes� Active classes map �client instances
 to RT�UNIX processes� whereas interface
objects de
ne �server instances
 to assist in interprocess communication	

Paul Dasiewicz� Realtime programming in RTX�PARLOG� In concurrent logic pro�
gramming� there is typically no support for real�time programming	 Dasiewicz addresses this in
RTX�PARLOG	 This support takes the form of abstract data types for �time
 and �duration�
 a
scheduler with selective scheduling parameters �priority and task duration�� and process timeouts	
Garbage collection can be dynamically scheduled	 RTX�PARLOG can generally produce only one
solution to a program� since backtracking between processors is mostly eliminated due to guarded
committed choice	

Presentations on Timing Constraint Validation

Roderick Chapman� SPARK Ada formal methods� Roderick Chapman of the University
of York �England� described SPARK Ada� a subset of Ada designed to be used in formal proofs
of correctness of realtime systems	 Chapman�s proof system can not only prove the worst case
execution time� but can also identify the program path which yields the worst case	

Chapman divides the set of paths within a procedure into �modes�
 one for each call site	 This
has interesting parallels with Landi aliasing and Pande def�use analysis� a mode would correspond�
in abstract interpretation terms� to the �gamma� concretization of an assumed alias or assumed
reaching de
nition	

This work stems from an ongoing partnership between York and British Aerospace� it is a nice
prototype for sound industrial�university collaborations	

�



Alex Vrchoticky� Compilation Support for Execution Time Analysis� Compilation ob�
scures the relationship between source and transformed code	 Vrchoticky presented his timing tree
data structure as a partial remedy to this problem	 A timing tree is unchanged by local pro�
gram transformations� and can in theory recover the timing assumptions of the original program	
Presently this method cannot represent irreducible �ow�graphs� or �strong
 deviations between the
source and generated code �e	g	� those caused by loop unrolling	�

Azer Bestavros� Toward Physically Correct Speci�cations� Azer Bestavros of Boston Uni�
versity spoke of a formal model and of a simulation�programming language �called �Cleopatra
�
for embedded control applications	 The model�language prohibit users from specifying systems
with certain physically�impossible features �e	g	� lossless channels� exact delays� simultaneous de�
pendencies� and constrained input transitions	� Bestavros argued that this �ounce of prevention

at the speci
cation level is likely to spare a lot of time and energy in the development cycle � not
to mention the elimination of potential hazards that� otherwise� would go unnoticed	 Plans for a
Cleopatra�based programming environment to control robotics devices were mentioned	

Kannan Narasimhan� Portable Execution Time Analysis� Narasimhan described an ex�
tensible� pipeline�analysis tool for automated timing predictions	 The tool uses a generic abstract
architecture language to describe the CPU at hand� and can thus be applied to most RISC machines	
Thus far the tool has been tested on the MPC��� �power PC�� Sparc and R���� processors	

Presentations on Cache Modeling

Swagato Basumallick� Realtime Cache Survey� SwagatoBasumallick of Iowa State reviewed
several approaches for dealing with caches in realtime systems	 �Caches are problematic for realtime
computing� since they make it hard to predict the execution time of basic blocks	� The methods
reviewed were�

� Analysis by synthesis� Get the compiler to generate code whose behavior is easy to predict	

� Graph coloring� Prove that cache lines are clear of interference	

� Extended timing schema� Maintain state of cache information �must�hit� must�not�hit� may�
hit� for each source statement	 �See Mueller� below	�

Basumallick advocated static scheduling to give a more global view of execution time requirements	
However methods like static�priority dispatching could succeed� given a priori knowledge of the
worst�case preemption overhead for every task pair	

Frank Mueller� Predicting Instruction Cache Behavior� Frank Mueller of Florida State
University described a tool to predict the behavior of instruction caches	 Mueller uses a �static
cache simulator
 to determine which program lines are potentially cached	 Program lines are
divided into one of four categories on the basis of this analysis� Always Hit� Always miss� First
Miss� then always hit� and Con�icts �miss sometimes� hit sometimes�	

Using this foundation� the instructions are annotated with a �fetch from memory
 bit for
schedulability analysis� etc	

In a later talk ��Debugging Realtime Applications
�� Mueller described the use of the static
cache analyzer during dynamic testing	 The idea is to instrument the program so that� in e�ect� it
simulates its own cache behavior	 Routines are linked in to provide hooks for a debugger to access

�



the simulated cache state and execution time	 This approach eliminates direct probe e�ect at the
cost of a slowdown and some inaccuracy	

Presentations on Architecture and Systems

Rajiv Gupta� Non�intrusive Monitoring� Rajiv Gupta of the University of Pittsburgh pre�
sented a simple way to insert monitoring code into real�time computations	 The idea is to 
nd time
periods that are necessarily idle	 Instrumentation code is inserted within these periods	 If it is not
possible to instrument all the program points of interest at once� multiple runs are performed with
di�erent parts instrumented	 This talk provoked signi
cant debate	 Some participants advocated
using such methods as aggressively as possible� selectively creating �or widening� idle times in or�
der to insert instrumentation code	 Others disagreed� arguing that the �temporary
 delay slots
will e�ect the behavior of other processes in the system	 These researchers suggested that once
instrumentation code is placed in a module� it should remain there for good	

Kevin Nilsen� Realtime Garbage Collection� Nilsen stressed the need to manage memory
�via garbage collection or explicit allocation�� and to control the time and space requirements of
garbage collection	 He described a hardware garbage collection memory manager �GCMM� device
to redirect accesses to memory during garbage collection� while it is in the process of being moved	 A
major requirement of the hardware is that it not require special modi
cations to the processor	 The
GCMM supports a ��� microsecond latency time for allocate� deallocate� and access of memory� and
has an average throughput � times higher than programs with explicit memory allocation �malloc�	

Mohamed Younis� Speculative Execution� Timeliness via speculation has been used in
hardware design �fast adders� and in real�time databases �speculative concurrency control�	 You�
nis argued that� in general� speculative execution can be used to speed up programs� but only
where retraction of a speculatively executed code block would not cause a missed deadline	 Source
transformations may expose opportunities for speculative execution	

Wrapup
Following the technical presentations� a set of short �wrapup
 talks were given by Rich Gerber�

Rajiv Gupta� Vivek Nirke� Alex Vrchoticky� and Mohamed Younis	 Their objective was to identify
to how programming languages and compiler techniques can help ease the real�time design and
implementation process	 Major points are are included in the following section	

What came out of all of this�

It was generally agreed that several new areas should be pursued� and can be translated into
hard results	 They are�

A� Languages and System Support�

� Languages for multimedia� generics for graphics� etc	 are taken very seriously by the industrial
real�time community� but are relatively neglected by researchers	 Yet in many ways the prob�
lems are more challenging than those in hard real�time� and they require sound programming
language support and tools	

� Statistical real�time constraints� Most control systems over�sample to conservatively maintain
the real�time constraints	 Radical over�sampling doesn�t scale up to support large systems�

�



nor is it desired in multi�media systems	 Constraints should allow for statistical �softness

in sampling and update jitter	 Requirements languages should be capable of incorporating
such constraints� programming languages to support these� and �exible runtime systems to
run the applications	 Also� automated tools would be useful to analyze and prototype such
application	

� There has been a proliferation of industrial real�time kernels� which are well�supported�
lightweight� and incorporate sound real�time principles	 To name three� QNX� VxWorks
and LynxOS all support very low IPC latencies �around �� microseconds�� programmable
timer�interrupt response within the same range� and priority�based scheduling	 This being
the case� there seems to be little further justi
cation for universities or research labs to be in
the realtime kernel�building business	 Instead we can focus our e�orts on what we do best�
new design technologies� experimental applications� networks� etc	� using o��the�shelf kernels
and hardware platforms for our work	

� Object�oriented programming is here to stay	 C�� has emerged as the leading production
language and Ada�x is incorporating many OO structuring paradigms	 This being the case�
we shouldn�t overlook these technologies in real�time systems	 The challenges lie in supporting
dynamic binding� garbage collection� etc	

B� Timing analysis�

� This is becoming a harder problem� but some vendors �like Sun� are modifying their archi�
tectures to accommodate real�time concerns	 For example� the unpredictability inherent in
Jump�and�link has led to a modi
cation to the register windowing	 �In future architectures�
register spills will not trap to the kernel	� This change was made primarily for real�time
applications� since Solaris is being marketed to them	

� Nonetheless� tight bounds on timing estimates are getting harder to achieve	 Compiler tech�
niques can help in two ways�

�	 By transforming the code to achieve better worst�case performance� accounting for
caches� pipelines� etc	

�	 By helping obtain better coverage in pro
ling samples� i	e	� by lowering the variance
between di�erent execution time readings on similar traces	

� No �pure
 approach will su�ce in timing analysis	 In the design phase� we have to develop
better statistical methods � or perhaps better learn how to use the ones we have� e	g	� Marko�
vian models� simulation� etc	 When the code is written� static analysis can be used as a 
rst
pass � with certain re
nements for caches� pipelines� etc	 But nothing beats measuring a pro�
gram�s time on its �perhaps emulated� platform	 For this we need better pro
ling�monitoring
techniques� and superior ways of achieving reasonable coverage	

C� Program Transformation Techniques�

� Partial evaluation �and abstract interpretation� can produce better code� and is amenable to
programs where variable de
nitions can be determined before schedule�time	

� Transformations such as loop�invariant code motion can radically improve real�time programs�
especially in obtaining schedulability	 But code cannot be optimized for average case behavior�

�



instead worst�case behaviors should be targeted	 Thus generic back ends cannot be used� and
should be customized for real�time applications	 �The PLDI compiler folks had constructive
ideas to accomplish this	� However� it was agreed that transformation techniques should not
be carried out without the programmer�s knowledge� instead� programmers should selectively
apply them �perhaps using a graphical front�end�	 This would maintain traceability	

D� Tools for Design Methodology�

� It was generally agreed that this is perhaps the most important problem	 Topics addressed
were appropriate models and logics� analysis techniques� and means of achieving design re�

nement	

� A big problem is �tuning
 the system�s processes to achieve the end�to�end constraints	 Com�
piler techniques can help here� by selectively �cloning� shared servers and eliminating dead
code	

� Any system is destined to fail it is poorly designed� or if its design is incorrectly translated
into an implementation Thus a signi
cant challenge is design re
nement for mission�critical
systems� Checking high�level� functional specs �perhaps via theorem provers or methods
like Pugh�s Omega Test�� re
ning the spec into a more concrete system spec� checking its
consistency via simulation� model�checking� etc	� developing the code with the aid of the
abovementioned tools� so that it conforms to the system specs� tuning it via compiler�assisted
transformation tools� and building clean and lightweight runtime systems to interact with the
kernel intrinsics	 This community seems to have a handle on many of these issues� and it may
produce solid research toward the eventual goal	

� It was generally agreed that fully automatic technologies will not su�ce to solve these prob�
lems	 The key is to 
nd the right paradigms for user interaction	

Future of the Workshop

The strong consensus was that SIGPLAN should continue the workshop next year� in fact�
when Tom Marlowe called for volunteers for the organizing committee� several participants quickly
stepped forward	 Many of the �pure
 industrial compiler folks expressed interest in submitting
papers and participating on panels	

Industrial kernel people might pro
tably be recruited to attend� especially folks from QNX�
Wind River� OSF and SUN �which is trying to put real�time functionality into Solaris�	 Finally�
it is imperative to include several applications builders �i	e	� �customers
�� especially in control
systems and interactive graphics	

For More Information

Postscript copies of some papers in the proceedings are available via anonymous FTP�

ftp�cs�umd�edu��pub�faculty�pugh�sigplan�realtime�workshop���

or via the World�Wide Web

http���www�cs�umd�edu��pugh�sigplan�realtime�workshop���

�


