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1 Introduction

Predictability — the ability to foretell that an im-
plementation will not violate a set of specified re-
quirements — is a crucial, highly desirable prop-
erty of responsive embedded systems. This pa-
per overviews a development methodology for re-
sponsive systems, which enhances predictability
by eliminating potential hazards resulting from
physically-unsound specifications.

The backbone of our methodology is the
Time-constrained Reactive Automaton (TRA)
formalism [3, 4], which adopts a fundamental
notion of space and time that restricts expres-
siveness in a way that allows the specification of
only reactive, spontaneous, and causal compu-
tation. Using the TRA model, unrealistic sys-
tems — possessing properties such as clairvoy-
ance, caprice, infinite capacity, or perfect timing
— cannot even be specified. We argue that this
“ounce of prevention” at the specification level
is likely to spare a lot of time and energy in the
development cycle of responsive systems — not
to mention the elimination of potential hazards
that would have gone, otherwise, unnoticed.

The TRA model is presented to system de-
velopers through CLEOPATRA.Y The CLEOPATRA
language features a C-like imperative syntax for
the description of computation, which makes it
easier to incorporate in applications already us-
ing C. It is event-driven, and thus appropri-
ate for embedded process control applications.

*This research is supported by NSF/CCR-9308344.

'A Cbased Langnage for the Event-driven Object-
oriented Prototyping of .Asynchronous 7ime-constrained
Reactive Automata.
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CLEOPATRA is object-oriented and compositional,
thus advocating modularity and reusability. The
physical correctness of the TRA formalism com-
plemented with a strong typing system prevents
incorrect or unrealistic specifications from being
expressed. This saves system developers from
having to debug many specification errors dur-
ing the implementation stage. CLEOPATRA is se-
mantically sound; its objects can be transformed,
mechanically and unambiguously, into formal
automata for verification purposes. Since 1989,
an ancestor of CLEOPATRA has been in use as
a specification and simulation language for em-
bedded time-critical robotic processes. [2, 5, 1].2

2  CLEOPATRA

In CrLeoOPATRA, systems are specified as inter-
connections of TRA objects. Each TRA object has
a set of state variables and a set of channels.
Any event in the system is represented by an ac-
tion (value) signaled on a given channel. The oc-
curence of an event may trigger a change of state.
Time-constrained causal relationships between
events occuring on different channels, and the
computations (state transitions) that they trig-
ger, are specified using Time-constrained Event-
driven Transactions (TETs). The behavior of
a TRA object is described using TETs. TRA ob-
jects can be composed together to specify more
complex TRAs.

2A compiler that allows the execution of CLEOPATRA
specifications has been developed [6], and is available via
FTP from cs.bu.edu:/bestavros/cleopatra/.



2.1 Classes and Objects

A TRA object specification in CLEOPATRA con-
sists of two components: a header and a body. A
TRA object header specifies its name, the parame-
ters needed for its instantiation, and its signature
(type). An object’s body specifies its behavior.

In  CreorPATRA, TRA objects are defined
in classes. For example, Figure 1 shows the
CLEOPATRA specification of the class of integra-
tors that use trapezoidal approximation.

TRA-class integrate(double TICK, TICK_ERROR)
in(double) -> out (double)

{

state:

double x0 = 0, x1 =0, y = 0;
act:

in(x1) -> :

init () ,out() -> out(y):
within [TICK-TICK_ERROR“TICK+TICK_ERROR]
commit { y = y+TICK#(x0+x1)/2; x0 = x1; }

Figure 1: Class of trapezoidal integrators.

In the specification of integrate given
in Figure 2, the class parameters TICK and
TICK_ERROR have to be specified before instan-
tiating an object from that class. Furthermore,
the header of integrate specifies that objects of
that class have a signature consisting of an input
channel in and an output channel out. Both in
and out carry actions whose values are drawn
from the set of reals. In CLEOPATRA, the start
channel of any given TRA-class is called init.
Upon the instantiation of a given TRA object,
an event on init is generated by the system.
Start channels do not have to be explicitly in-
cluded in the header of a TRA-class. For exam-
ple, in the definition of the integrate TRA-class
given in Figure 1, there is no mention of any
init channels in the external signature specified
in the header, yet, init is used later in the body
of integrate.

The body of a TRA class determines the be-
havior of objects from that class. Such a behav-

ior can be either basic or composite. The de-
scription of a basic behavior involves the speci-
fication of a state space in the state: section,
the specification of an initialization of that space
in the init: section, and the specification of
a set of TETs in the act: section. The be-
havior of an object belonging to the TRA-class
integrate shown in Figure 1 is an example of
a basic behavior. Composite behaviors, on the
other hand, are specified by composing previ-
ously defined, simpler TRA-classes together in
the include: For example, in Fig-
ure 2, the class ramp is defined by composing
the integrate and constant classes together.

section.

TRA-class ramp() -> y(double)
{
internal:
x(double) -> ;
include:
constant -> x() ;
integrate x() -> y() ;
¥

Figure 2: A ramp generator in CLEOPATRA

2.2 TETs

A TET describes the reaction of a TRA to a sub-
set of events. Such a reaction may involve re-
sponding to triggers and /or firing action(s). Fig-
ure 3 explains the relation between the triggering
and firing of actions using TETSs.

The description of a TET consists of two
parts: a header and a body. The header of a
TET specifies a set of triggering channels (trig-
ger section) and a controlled channel (fire sec-
tion). The trigger section specifies the effect of
the triggering actions on the state of the TRA.
A TET with no triggering section is triggered
every time an action is signaled on any channel
of the TRA. The fire section specifies the action
value to be signaled on the controlled channel as
a result of firing the TET. This value can be any
expression on the state of the TRA. An absent
expression means that a random value from the
signaling range of the controlled channel is to be
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Figure 3: The TET structure

signaled. The body of a TET describes possi-
ble reactions to the TET triggers. Fach reaction
is associated with a disabling condition, a time
constraint, and a state transformation schema.

For example, the first TET of the
integrate class shown in Figure 1 is an exam-
ple of a transaction with only a trigger section.
Every time an action is signaled on the input
channel in, its value is stored in the state vari-
able x1, thus, resulting in a potential input tran-
sition. The second TET of the integrate class,
on the other hand, is an example of a transaction
with both a trigger section and a fire section. In
particular, every time an action is signaled on
one of the triggering channels (init or out) an
output action is fired on out after a delay of TICK
+ TICK_ERROR units of time elapses.

Each reaction in the body of a TET is as-
sociated with three pieces of information: A dis-
abling condition, a time constraint, and a state
transformation schema. The disabling condition
(unless clause) is a predicate on the state of the
TRA. In order to be committed, a reaction’s
disabling condition has to remain false from
when the reaction is triggered until it commits.
Thus, an intended reaction is aborted if the dis-
abling condition becomes true at any point in
time after the reaction is scheduled. The ab-

sence of a disabling condition in a reaction im-
plies that, once scheduled, it cannot be disabled.
The time constraint (within clause), determines
a lower and upper bound for the real-time delay
between scheduling a reaction and committing
it. In accordance with the physically-correct na-
ture of the underlying TRA formalism, this de-
lay must be greater than zero. The absence of a
time constraint from a TET specification implies
that the causal relationship between the trigger
and its effect is unconstrained in time. A lower
bound of 0 and an upper bound of oo is assumed
in such cases. The state transformation schema
(commit clause) specifies a method for comput-
ing the next state of the TRA once a reaction is
committed. This computation is assumed to be
atomic and instantaneous. An absent commit
clause implies that committing the reaction does
not cause any state changes.

2.3 An Example

Figure 4 shows the specification of a finite FIFO
element in CLEOPATRA. Values fed into the FIFO
element are delayed for some amount of time be-
fore being produced as outputs.

TRA-class fifo(int N)
in(float) -> out(float), overflow(), ack()

{

state:
float y[N1;
int i, j;
bool £;
act:

init() -> ack():
before DLY_MIN
commit { i = 0; j =
in(y[i]) -> ack():
before DLY_MIN
commit { i = (i+1)%N ; if (i==j) £ = TRUE ;}
in() => out(y[jl):
unless (f)
within [DLY_MIN DLY_MAX]
commit { j = (G+1UN ; }
in() -> overflow():
unless (!'f)
within [DLY_MIN DLY_MAX]

H

0; £ = FALSE;}

Figure 4: A finite FIFO delay element.



The header of the fifo TRA-class identifies
the channel in as input, and the channels out,
ack and overflow as outputs. The signaling
range for channels in and out is the set of float-
ing point numbers, whereas the signaling range
for channels ack and overflow consists of only
one value. The body of the fifo TRA-class con-
tains two sections. In the state: section, the
state space of a fifo object is described by four
state variables: a vector y[] of N floating point
values, two integer values i and j, and a boolean
value £. In the act: section, the behavior of a
fifo object is described by four TETs.

The first TET establishes a causal relation-
ship between events signaled on init and those
signaled on ack. Firing an action on init (the
trigger) causes the firing of an action on ack (the
result) after a delay of at most DLY_MIN. The sec-
ond TET establishes a similar causal relationship
between in and ack. The third TET establishes
a causal relationship between events signaled on
in and out. Firing an action action on in causes
the firing of an action on out after a delay of at
least DLY MIN and at most DLY MAX, provided that
the FIFO did not overflow as of the last initializa-
tion. The fourth TET can be explained similarly.

Each TET specifies up to two possible state
transitions. For example, the second TET of
the FIFO in Figure 4 specifies that the value of
a triggering event on in be stored in the state
variable y[i], thus resulting in a possible state
change. In accordance with the TRA formalism’s
input enabling property [9], this transition can-
not be blocked or delayed; it is an input tran-
sition. The second state transition induced by
this TET occurs with the firing of an action on
ack, resulting in the adjustment of the values of
the state variables 1 and £. The value of the
action signaled on a local (output or internal)
channel does not reflect the state change associ-
ated with it. Thus, in the fourth TET, the value
signaled on the out channel, namely y[j], does
not reflect the changes introduced in the commit
clause, namely advancing the pointer j.

2.4 Case and Point!

It is important to realize that £ifo objects will
behave as expected only if inputs from the envi-
ronment meet certain conditions. In particular,
the value of the index i is not incremented as
a result of an input on the channel in until at
least DLY _MIN units of time elapse following the
signaling of that input. It follows that an erro-
neous behavior will result if two or more events
are signaled on the channel in in a duration of
time shorter than DLY MIN. To avoid such a ma-
lignant behavior, the environment must wait for
an acknowledgment ack() or else, must wait for
at least DLY_MIN before signaling a new input.
Such correctness (safety) conditions can be ver-
ified using TRA-based verification techniques [4].

We argue that any finite implementation
of a fifo object (discrete-event delay element)
must have a finite capacity, which must not
be exceeded for a correct behavior. Using
CLEOPATRA, it is impossible to specify a fifo
class that behaves correctly independent of its
environment’s behavior.
of our abidance by the causality and spontane-
ity principles, which are preserved by the TRA
model. As we mentioned at the outset of this
paper, it is our thesis that preventing the spec-
ification of physically-impossible objects is de-
sired. At the least is spares system developers
from trying to implement the impossible.

This is a direct result

2.5 CLEOPATRA-based Simulation

We have developed a compiler that transforms
CLEOPATRA specifications into an event-driven
simulator for validation purposes. We have
used this system extensively in the specifica-
tion and analysis of sensori-motor robotics ap-
plications [5] and in the behavioral simulation
of complex autonomous creatures [2]. Figure 5
shows the different stages involved in the compi-
lation and execution of specifications written in
CLEOPATRA.
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Figure 5: CLEOPATRA simulation environment.

At the heart of this process is a one-pass
preprocessor, written in C, which parses user-
defined CLEOPATRA specifications, augmented
with system-defined TRA classes,® and generates
an equivalent C simulator. This C simulator con-
sists of three components. The first is a header
(.h) file, which includes type definitions for the
state space of the various TRA classes in the spec-
ification. The second is a schema (.s) file, which
includes definitions for the state transition func-
tions of the various TETs. The third is the code
(.c) file, which includes the simulator initializa-
tion and control structure along with the instan-
tiation code for the various TRA classes, includ-
ing main. The final step of this process involves
the invocation of the C compiler to produce an
executable simulator.

A library of system-defined TRA-classes is
available for debugging and performing 1/0
in CLEOPATRA. System-defined TRA-classes are
themselves specified in CLEOPATRA. They are
different from user-defined TRA-classes in that

?System-defined TRA classes are mainly for i/o and de-
bugging purposes.

they have access to global information known
only to the simulator. For instance, system-
defined objects have access to the simulator’s
perfect clock, _clk, whereas user-defined TRA-
classes have to maintain their own locally per-
ceived clocks, if needed.

C functions can be called from within a
CLEOPATRA specification.
mantics of the TRA formalism, however, only
functions with no side effects should be used. In
other words, C function should be restricted to
act as pure operations on the state variables of
an object. It should not reach beyond the bound-
aries of the state space of that object. Also, it
should not alter the structure of the state space
of the object in any way. Most of the C prepro-
cessor utilities are available in CLEOPATRA. This
includes simple and parameterized macro defi-
nition and invocation, constant definition, and
nested file inclusion.

To maintain the se-

The simulator has proven to be quite effi-
cient. This is due primarily to the causal and
compositional nature of the TRA model, which
tend to localize the computation triggered by the
occurrence of an event within the boundaries of
few TETs. The number of simulated events per
second (seps) depends on a number of factors:
the average channel fan-out, the average num-
ber of TETSs per TRA, and the complexity of the
event-driven computation. It does not depend,
however, on the size of the state space or on the
amount of TRA nesting. For an application with a
fan-out of 1 and an average of 2.4 TETs per TRA,
and an O(1) event-driven computational com-
plexity, the compiled CLEOPATRA specifications
executed at a rate of almost 19,500 seps.* The
performance of a simulator for the same appli-
cation hand coded directly in C performed only
slightly better. Namely, it executed at a rate of
almost 20,000 seps. The performance of the sim-
ulator degrades considerably when extensive I/0
and tracing operations are performed.

*All simulations were performed on a SPARCstation
SLCTMworkstation.



3 Conclusion

Predictability can be enhanced in a variety of
ways. It can be enhanced by restricting expres-
siveness as was done in Real-Time Euclid [8], by
sacrificing accuracy as was done in the Flex sys-
tem [7], or by abstracting segmented resources
as was done in the Spring kernel [10]. The
TRA-development methodology we are advocat-
ing here introduces one more way of improving
predictability, that of allowing only physically-
sound specifications. Pursuing the ideas pre-
sented in this paper will undoubtedly provide us
with one more handle in our persistent quest for
predictable systems. An interesting question to
be addressed in the future would be whether this
and other handles can be combined in any useful
way to guarantee predictability.

Our experience with the TRA development
methodology in the design, simulation, and anal-
ysis of asynchronous digital circuits, sensori-
motor autonomous systems, and intelligent con-
trollers confirms its suitability for the specifica-
tion, verification, and validation of many embed-
ded and time-critical applications. Its usefulness
in the implementation of such systems, although
promising, is yet to be established.

A fruitful direction for future research
would be to automate the process of trans-
forming TRA-based physically-sound time-critical
specifications into provably-correct implementa-
tions given appropriate resources. Such research
will have two complementary — experimental
and theoretical — components. The experimen-
tal component would involve the development of
a compiler to transform CLEOPATRA specifica-
tions into predictable real-time programs, given
a dedicated computing platform. The theoretical
component would aim at devising efficient veri-
fication algorithms that can be automated and
incorporated in the CLEOPATRA compiler.
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