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ABSTRACT
The traffic load sent to key-value (KV) stores varies over
long timescales of hours to short timescales of a few mi-
croseconds. Long-term variations present the opportunity
to save power during low or medium periods of utilization.
Several techniques exist to save power in servers, including
feedback-based controllers that right-size the number of al-
located CPU cores, dynamic voltage and frequency scaling
(DVFS), and c-state (idle-state) mechanisms. In this paper, we
demonstrate that existing power saving techniques are not
effective for KV stores. This is because the high rate of traffic
even under low load prevents the system from entering low
power states for extended periods of time. To achieve power
savings, wemust unbalance the load among the CPU cores so
that some of them can enter low power states during periods
of low load. We accomplish this by introducing the notion of
in-application CPU scheduling. Instead of relying on the ker-
nel to schedule threads, we pin threads to bypass the kernel
CPU scheduler and then perform the scheduling within the
KV store application. Our design, Peafowl, is a KV store that
features an in-application CPU scheduler that monitors the
load to learn the workload characteristics and then scales the
number of active CPU cores when the load drops, leading
to notable power savings during low or medium periods of
utilization. Our experiments demonstrate that Peafowl uses
up to 40-54% lower power than state of the art approaches
such as Rubik and 𝜇DPM.
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1 INTRODUCTION
In-memory Key-Value (KV) stores are non-persistent stor-
age backbones for an ever-growing number of large-scale
applications, ranging from graph processing in social me-
dia to event log processing in cybersecurity [53, 62], retail
shopping carts, machine learning parameter servers [34], se-
quences in distributed synchronization [25], and application
data caching [32]. Many of these applications exhibit a high
fan-out pattern, where responding to a single request re-
quires responses from hundreds of KV store services. Hence,
the tail latency of KV stores (slowest reply) often impacts
the overall performance [10, 13, 24, 42]. To meet strict tail
latency goals, service providers budget individual cache node
compute capacity for double or even triple normal peak re-
quest rates to allow for traffic spikes [4, 8, 15, 40, 56]. Cache
nodes, therefore, notably contribute to the cost and energy
consumption of data centers [18].
The traffic load sent to KV stores often varies both over

long timescales (e.g., minutes to hours) and short timescales
(e.g., microseconds to milliseconds) [1, 4, 36, 42, 58]. For
example, Facebook’s ETC workload follows a diurnal pat-
tern with 2× load variations over the course of a day [4].
On the other hand, Google’s Gmail workload exhibits mi-
cro bursts that result in sudden CPU usage spikes in the
span of microseconds [42]. Long-term variations present an
opportunity to leverage elastic KV stores to right-size the
amount of resources allocated to KV stores. However, it is
still an open challenge to build KV stores to elastically scale
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to short-term bursts in workloads. Bursty workloads cause
short term spikes and queueing delays that can significantly
increase tail latency [8, 27]. The goal of this work is to build
an elastic KV store that can effectively deal with short-term
variability to meet microsecond-scale tail-latency bounds
while gradually adjusting to long-term variability to achieve
energy-proportionality [27, 36].

One approach to building energy-proportional KV stores
is to use feedback-based controllers that monitor and mea-
sure the load, compare it to predefined thresholds, and scale
the number of active cores to save power during periods
of low or medium utilization [36, 64]. Feedback-based con-
trollers can adapt to diurnal variations; however, they are
too slow (operating at second-scale intervals) to cope with
short-term burstiness, lengthening tail latency [27]. Addi-
tionally, they rely on the operating system to schedule KV
store threads once the number of active cores is determined.
OS CPU schedulers (e.g., Linux CFS scheduler [43]), however,
operate at millisecond timescales, aggravating microsecond-
scale tail latency [3, 6, 31, 42, 47]. Another approach is to
exploit the latency slack (i.e., latency goal minus current
latency) and slow down [27] or delay request processing [8]
through DVFS and sleep states to save power while execut-
ing requests just in time. We will show that the short service
times and high arrival rates of KV stores do not provide
much opportunity for power saving with these approaches.
In this paper, we present Peafowl, an elastic in-memory

KV store designed to exploit load variability to save power
while maintaining lowmicrosecond-scale tail latency. Peafowl
gradually adapts to long-term variability to save power and
quickly copes with short-term variability to avoid tail la-
tency problems. The key insight behind Peafowl’s design
is to handle the scheduling in the application rather than
the operating system. OS schedulers are designed to support
general use cases that can tolerate millisecond-scale sched-
uling quantum slices, but they can introduce significant tail
latency issues for low latency applications. OS scheduling
can present even greater tail latency problems when the num-
ber of CPU cores is elastically scaled to save power. Peafowl
pins threads to CPU cores and performs all of the power-
aware scheduling within the application using in-application
knowledge to characterize the workload and rightsize the
number of active CPU cores in response to load.

This paper makes the following contributions:

• We show that current power-aware mechanisms are
ineffective when it comes to the short service time and
high arrival rate of KV stores.

• We demonstrate the effectiveness of in-application
scheduling for maintaining microsecond-scale tail la-
tency and leveraging in-application knowledge.

• We have implemented a prototype of Peafowl and ex-
tensively evaluated it to demonstrate its effectiveness
for real-world workload traces. The results demon-
strate that Peafowl is able to significantly save power
up to 36% while keeping tail latency at microsecond-
scale.

• Our implementation of Peafowl is publicly available
at https://github.com/showanasyabi/peafowl-kvs.

2 ELASTIC KV STORES
In this section, we study the essential properties of an elastic
KV store as a solution to achieve energy proportionality. We
then discuss why existing solutions are not able to address
the hard problem of energy proportionality in in-memory
KV stores.

2.1 Elastic KV store requirements
Energy proportionality. Several studies have reported that
KV store workloads operate frequently at low or medium
utilization due to the diurnal/periodic nature of user traf-
fic [4, 18, 66]. Therefore, elastic KV stores can exploit load
variability to enforce energy proportionality by scaling the
processing capacity to match the available work [36], lead-
ing to a significant reduction of power consumption during
low or medium utilization periods. Given the widespread
adoption of in-memory KV stores, low power consumption
of cache nodes during off-peak periods raises CPU efficiency
in data centers, where a even small improvement in CPU
efficiency saves millions of dollars and reduces data-center
footprints and environmental impacts [36, 42].

Microsecond-scale tail latency.Many applications that
exhibit a high fan-out pattern use KV stores as caches [13].
These applications can issue tens to hundreds of sub-requests
to satisfy a single user request [10, 11, 19, 36, 45, 57, 65].
The slowest response time to these sub-requests determines
the overall response time. For these applications, therefore,
the overall performance is determined by the tail of the
latency distribution (e.g., 99th percentile) rather than average
latency [8, 13, 21, 27, 36, 42], leading to many efforts to keep
tail latency of KV stores at microsecond scale [7, 13, 45]. We
argue that any solution for designing elastic KV stores must
not come at the expense of sacrificing tail latency.

Ease of deployment, Generality. Data centers such as
Google’s compute cluster host several types of applications
to raise the utilization [23, 42]. Therefore, solutions that rely
on significant modifications to the OS or device drivers are
less practical as they transform general-purpose machines to
single-purpose ones, which not only waste resources but also
require substantial maintenance and verification efforts [37].
More importantly, we argue that any suggested solution
must be readily deployable in data centers. Some existing
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Figure 1: Fraction of time spent in different idle states.
CPU cores cannot go to the deepest idle-state (C6) even
when the load is as low as 100K (10K per each core)
requests per second (RPS).
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Figure 2: The impact of OS scheduler on KV store tail
latency.WhenKV store threads are not pinned, the OS
CPU scheduler notably impacts tail latency.

solutions have built on the assumption that the hardware
offers particular features (e.g., per core DVFS [27] or resource
disaggregation [41]) that are not currently offered by all
hardware vendors, making these solutions less practical.

2.2 Existing systems
Unfortunately, existing solutions do not satisfy the combina-
tion of requirements outlined in Section 2.1. They fall into
the following categories:

Idle states. CPUs feature several power saving modes
called c-states (idle-states) to save power during idle peri-
ods [8, 9, 39]. Intel Xeon 6130 CPUs, for example, feature
C0 (shallowest), C1, C1e, and C6 (deepest) states. C0 is the
operational mode when the CPU executes instructions and
no power is saved. As the sleep mode gets deeper, more com-
ponents are turned off and more power is saved; however,
the CPU will require more time to wake up (i.e., return to C0
mode) [14, 17]. Intel Xeon 6130 CPUs require 133𝜇s to return
to C0 from C6. Since transitions to deep c-states are costly,
a CPU core enters a particular c-state only when it predicts
the next idle period is greater than a predefined threshold,
known as the target residency time of the c-state [8]. In other
words, the target residency time is the minimum idle period
for a specific c-state to be profitable energy-wise [26]. For
Intel Xeon 6130 CPUs, the target residency time for the C6
state is 600𝜇s. Although c-states can notably save power, KV
stores typically receive high arrival rates and short service
times (e.g., 6 to 33 𝜇s [8, 47]), which limit their effective-
ness [8, 36]. This is because idle periods are fragmented into
very short idle cycles, and hence CPUs cannot enter a deep
enough sleep state (e.g., C6) to be effective. To show this
phenomenon, we run a Memcached server with 10 worker
threads and measure the c-state residency time of CPU cores
under different request rates (see Section 4 for experimental
setup details). Figure 1 shows the fraction of time spent in
different c-states. As shown, CPU cores cannot go to deep
idle states (e.g., C6) even when the request rate is as low as
100K (10K per each core) requests per second (RPS).

DVFS and Request delaying. Modern processors sup-
port multiple clock-frequency steps [12, 55]. One approach
to save power is to exploit the latency slack (difference be-
tween the observed and the target tail latency) to slow down
request processing by adjusting the CPU frequency. At ev-
ery request arrival, when enough slack observed, the CPU
frequency is decreased to save power while meeting tail la-
tency constraints [27]. Although this approach is effective
for requests with large service times (> 250𝜇s) [29], the vari-
able and short service times of KV stores do not provide
enough opportunity to save power using this approach. This
is because the service time of KV store requests cannot be
extended enough to fill the latency slack due to limited DVFS
frequency ranges.
Another approach is to exploit latency slack to delay re-

quest processing [8]. Request processing is completed just-
in-time (before missing the deadline). This approach, in fact,
consolidates idle periods to meet the target residency time
of deep idle states (e.g., C6) more frequently. For this ap-
proach to be effective, the difference between the target tail
latency and the tail response time (tail service time + tail
queueing time) must be greater than the residency time of
deep idle states (600𝜇s for Intel Xeon 6130 CPUs), making
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this approach effective only when the latency constraints
are more relaxed (e.g., > 700𝜇s).

Feedback-based controllers. Feedback-based controllers
periodically measure the incoming rate or the observed la-
tency, compare them to predefined thresholds, and adjust the
number of cores allocated to the KV store application [36, 64].
These solutions are straightforward, but they are unre-

sponsive to short-term variability, leading to latency perfor-
mance degradation [27].
Moreover, if they adjust the number of allocated cores

in response to load variations, they will rely on the kernel
scheduler to handle the KV store threads once the number of
allocated CPU cores is adjusted. OS schedulers, however, are
not designed for scheduling at the granularity of microsec-
onds as time quanta are typically on the order of millisec-
onds [6, 42, 47]. Hence, they notably aggravate tail latency.
Figure 2 shows the impact of the OS scheduler on tail latency.
For this experiment, we run Memcached when its threads
(workers) are pinned to distinct CPU cores (the impact of OS
scheduler is eliminated) compared to when KV store threads
are not pinned (OS is in charge of scheduling). As shown, the
OS scheduler increases the tail latency by up to 230%, mak-
ing solutions that rely on the OS scheduler less appealing
in the presence of tight microsecond-scale tail latency goals.
Several research works [31, 47], in fact, suggest pinning each
KV store thread to a distinct core to eliminate the impact of
kernel schedulers on tail latency.

3 PEAFOWL DESIGN AND
IMPLEMENTATION

We introduce Peafowl, an elastic in-memory KV store to
reduce power consumption while maintaining microsecond-
scale tail latency. Peafowl achieves this by logically transfer-
ring the scheduling from the OS to the application. Peafowl
addresses the requirements outlined in Section 2.1 as follows:

1) Energy proportionality. Peafowl’s scheduler lever-
ages in-application knowledge to characterize the current
and peak load of the KV store. It carefully consolidates the
load among fewer CPU cores to reduce the number of active
cores during off-peak periods. Peafowl triggers the OS idle-
state (c-state) governor to save power for inactive cores. This
translates to notable power saving during low or medium
periods of utilization.

2) Keeping latency at microsecond scale. Peafowl in-
troduces the idea of performing scheduling within the KV
store application to maintain microsecond-scale tail laten-
cies. By managing the scheduling within the application,
Peafowl eliminates the millisecond-scale tail latency impact
of OS scheduling. Furthermore, in-application scheduling
allows Peafowl to monitor load in fine-grained intervals and

immediately distribute load when a core is overloaded to
avoid worsening tail latency.

3) Generality and ease of deployment. Peafowl works
with the Memcached protocol and is entirely implemented
in user space. It can meet tail latency goals ranging from
microseconds to milliseconds. Peafowl does not rely on third
party monitoring services or feedback-based controllers. It
does not require any OS modification or privileged compo-
nents. It does not assume any hardware feature other than
the c-state mechanism that is supported by almost all pro-
cessors currently adopted in data centers, making Peafowl
production-ready.

3.1 Peafowl Architecture
Figure 3 shows the architecture of Peafowl. Peafowl intro-
duces the idea of transferring the scheduling from the OS to
the application where there is more domain-specific knowl-
edge and control. This is accomplished by creating a worker
thread for all but one CPU core and pinning each worker
thread to a different core. The last remaining core has a
scheduler/management thread pinned to it for performing
all the in-application scheduling. We dedicate a core to the
scheduler to avoid potential interference, but as it is not on
the critical path, we believe this may not be necessary.

Scheduling every single KV request (e.g., get, set, update)
would introduce a significant scalability bottleneck, so the
key idea to make Peafowl scalable is to treat connections as
schedulable entities. Connections represent clients (e.g., web
applications) that send a multitude of KV requests over the
lifespan of the connection. Peafowl schedules connections
by assigning them a current worker and a home worker. If a
connection is currently served by its home worker, we call it
a resident connection. If it is served by another worker, we call
it a guest connection. Mirroring the behavior of Memcached,
Peafowl dispatches newly created connections among work-
ers in a round-robin fashion. It assigns this initial worker as
the connection’s home worker. Over time, Peafowl migrates
connections between workers to consolidate connections
onto a fewer number of active CPU cores during low load
periods. Peafowl triggers the OS c-state governor to put the
remaining inactive CPU cores in a deep-idle state, thereby
saving power.

By performing scheduling within the application, Peafowl
is able to take advantage of application-specific knowledge.
For example, each worker monitors its load and communi-
cates this to the scheduler. Peafowl also learns the peak load
of the incomingworkload to establish a baseline performance
goal. That is, Peafowl ensures that the performance during
low power periods with a few active CPU cores matches the
performance during peak loads with all CPU cores active.
Additionally, workers are able to independently respond to
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Figure 3: The architecture of Peafowl. Peafowl creates and pins one thread per CPU core. One thread functions as
the scheduler. Other threads function asworkers,monitoring user connections and accommodating their requests
(e.g., get, set, update). Workers also monitor the load for their connections and periodically update the scheduler
with their load. The scale down process is managed by the scheduler. (1) The scheduler instructs a worker (e.g.,
worker 2) to transfer a connection to another destination worker. (2) The worker sends a connection instance to
the other worker (e.g., worker 1) using sharedmemory. The scale up process is not coordinated with the scheduler.
(a) If a worker (e.g., worker 1) detects too high of a load, it sends a guest connection back to its home worker (e.g.,
worker 2).

load increases immediately without coordination with the
scheduler by transferring guest connections back to their
home worker. This conservative approach allows Peafowl
to maintain low tail latencies on par with the performance
using all CPU cores.

3.2 Energy-proportional Scheduling
Peafowl’s scheduling policy consists of two parts: scale-down
and scale-up. When load decreases, Peafowl’s scale-down
process will consolidate connections onto fewer CPU cores
and put inactive cores in a deep idle state to save power.
When load increases, Peafowl’s scale-up process will expand
to using more cores to avoid increasing tail latency. This is

similar to autoscaling (e.g., AutoScale [15]), but in the con-
text of CPU cores within a server rather than across servers.
Another key difference between Peafowl and autoscaling
web systems is that Peafowl is designed for KV store work-
loads with high request rates. This section describes how
Peafowl accomplishes this with low overhead on the critical
path.

3.2.1 Scale-Down Process. Peafowl scheduler is responsible
for coordinating the scale-down process. Each worker cor-
responds to a CPU core. Workers periodically report their
current load to the scheduler. When the scheduler sees that
the total load can be consolidated onto fewer workers (i.e.,
cores), it initiates the scale-down process.
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Peafowl uses a greedy algorithm for determining which
worker to scale down. First, it marks the worker with the
lowest load as the scale-down worker. Since it has the lowest
load, it is easier to pack its connections among the other
workers. Second, the scheduler selects among the remaining
active workers (excluding the scale-down worker) the one
with the lowest load as the destination worker. The scheduler
signals the scale-down worker to transfer one connection to
the destination worker. Upon completion, the scheduler will
repeat the process with a potentially different destination
worker to distribute the scale-down worker’s connections
across the remaining active workers. By gradually moving
connections one at a time, we avoid drastic load changes at
a worker. Peafowl is designed to be conservative to ensure
low tail latency.
Once all the scale-down worker’s connections are mi-

grated, Peafowl enables the idle-states on the scale-down
worker’s core to put it into deep idle states, thereby saving
power. We only enable the idle-states for inactive cores and
disable the idle-states for active cores to avoid expensive
idle-state wake-ups as reported in [31, 47].

3.2.2 Scale-up Process . When a worker’s load approaches
its load limit (learned by Peafowl’s monitoring system in
Section 3.3), the worker starts migrating some guest con-
nections back to their home worker. As the home worker is
predetermined, workers do not coordinate with the scheduler
for performing the scale-up migration, leading to immedi-
ate scale-up. They independently send guest connections
back home as soon as load is too high, thereby avoiding
performance degradation.
To avoid the scale-up and scale-down process from com-

peting with each other, Peafowl takes a conservative ap-
proach and allows the scale-up process to block the scale-
down process. In the final step of the scale-up process, both
the current and home worker signal the scheduler to avoid
considering them as candidates for the scale-down or des-
tination worker for a period of time. We find that Peafowl
is not sensitive to the specific period of time, and we use 30
seconds as a conservative duration for blocking transfers to
prevent excessive connection transfers during micro-bursts.

3.2.3 New Connections. Peafowl assigns newly created con-
nections to workers in a round robin fashion, mirroring the
behavior of Memcached. This initial worker is deemed the
home worker of the connection, which identifies how to
rearrange connections during the scale-up process. If the
home worker is currently active, then the new connection
would be sent to this worker.

However, if the home worker is currently inactive due to
the scale-down process, Peafowl will send the new connec-
tion to least loaded active worker.

3.3 Monitoring
Peafowl monitors two key pieces of information: each con-
nection’s current load and the worker’s load limit. Both of
these are application-specific metrics, which necessitates
Peafowl’s in-application scheduling.
A connection’s load is measured in terms of its request

rate, which is calculated based on the amount of time in
which a connection sends a fixed number of requests, 𝑛. That
is, the request rate is calculated as 𝑛 divided by the time pe-
riod in which a user sends 𝑛 requests in a connection. Thus,
monitoring the load only introduces a request counter and
timestamp information for each connection, which adds min-
imal request processing and memory overhead. The worker
periodically sends load and load limit updates to the sched-
uler so that it can make the appropriate scheduling decisions
for which workers should be consolidated at what point in
time.

The load limit plays an important role in Peafowl’s sched-
uling decisions for determining when it is possible to pack
connections onto fewer active CPU cores. Rather than hav-
ing users specify a load limit, Peafowl automatically learns
the load limit based on the traffic it receives. The key insight
is that we can use the default behavior without Peafowl as
a baseline for acceptable load conditions. Without Peafowl,
connections would all be served by the home worker, which
was determined in a round robin fashion as per the default
Memcached behavior. Thus, summing the load of the resident
connections (i.e., connections served by the home worker)
calculates the load of the original KV store without Peafowl.
The load limit is then calculated by tracking the maximum
total load of the worker’s resident connections over time.
Using the maximum load across time could lead to an

unrealistically high load limit due to outliers in the load mea-
surement. To guard against this, Peafowl applies the Z-score
technique for filtering out outliers [44]. The Z-score quanti-
fies measurements in terms of number of standard deviations
above/below the mean. That is,𝑍−𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡−𝑚𝑒𝑎𝑛

𝑠𝑡𝑑𝑑𝑒𝑣
.

We quantify outliers as measurements with a Z-score greater
than 2.5, which corresponds to measurements that are more
than 2.5 standard deviations above the mean. To calculate
the mean and standard deviation, we use an online algo-
rithm [61], making our outlier detection algorithm O(1). In
addition to the outlier filtering, Peafowl also provides a mech-
anism for users to manually reset the load limit to handle
unusually high load periods that are not reflective of normal
expected behavior.

3.4 Connection Transfer Implementation
Peafowl extends the current Memcached code base, which
uses an event-driven architecture based on Libevent. In
this architecture, Libevent monitors file descriptors (e.g.,
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Algorithm 1:Worker
1 Function process_request(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑐):
2 if c is a user connection then
3 process_memcached_request(c)
4 if connection_transfer== true then
5 connection_transfer = false
6 unregister_libevent(c)
7 send c to destination_worker
8 active_connections -= 1
9 if active_connections == 0 then
10 turn on idle-state mechanism
11 end
12 end
13 if worker_load > load_limit and c is a guest

connection then
14 unregister_libevent(c)
15 send c to home_worker(c)
16 active_connections -= 1
17 if active_connections == 0 then
18 turn on idle-state mechanism
19 end
20 signal the scheduler
21 end
22 else
23 // c is a communication channel
24 cmd = extract message from c
25 if cmd == "receive connection" then
26 new_conn = receive connection
27 register_libevent(new_conn)
28 if active_connections == 0 then
29 turn off idle-state mechanism
30 end
31 active_connections += 1
32 signal the scheduler
33 else if cmd == "transfer connection" then
34 extract destination_worker from c
35 connection_transfer = true
36 end
37 end

user connections) and waits for requests (e.g., get, set) from
any of its connections. Peafowl builds on top of this by cre-
ating its communication channels using Linux pipes, which
are file descriptors, and registering them with Libevent.
Thus, Peafowl works seamlessly withMemcachedwithout in-
troducing additional synchronization mechanisms that may
cause bottlenecks.

When requests or internal communication messages ar-
rive, Libevent invokes a function, process_request,
to process the requests/messages (Algorithm 1). The func-
tion first checks if a message is from a user connection. If
so, it performs the user request (e.g., set, get). Then if the
worker has been instructed by the scheduler to transfer a
connection (scale-down) or if the worker’s load is too high
(scale-up), it unregisters the current connection and sends
it to the destination worker (scale-down) or home worker
(scale-up).

If a worker transfers all of its connections, it performs a
system call to enable idle-states on its corresponding CPU.

When a worker receives a connection (due to scale-down,
scale-up, or new connections), it registers the connection
with Libevent and disables idle-states on its core if needed.

The overhead of transferring a connection is minimal
since it only involves unregistering a connection from one
worker’s libevent and registering the connection on the des-
tination worker’s libevent. Our experiments show that the
overhead is less than 30𝜇s.

4 EVALUATION
We implement Peafowl in C as an extension of Memcached.
Our evaluation of Peafowl addresses the following questions:

• How well does Peafowl perform when facing real-
world workload patterns? (Section 4.1)

• How do Peafowl’s internal mechanisms contribute to
its observed performance? (Section 4.2)

• How does Peafowl compare to the state-of-the-art ap-
proaches? (Section 4.3)

Experimental setup We use one dual-socket server ma-
chine equipped with 12-core Intel Xeon 4116 CPUs running
at 2.1 GHz and 32 GB of RAM. We generate load using one
dual socket client machine equipped with 32-core Intel Xeon
CPUs running at 2.6 GHz and 64 GB of RAM. These machines
are configured with Intel x520 10GbE NICs. The server ma-
chine hosts Peafowl and Memcached. The client machine
runs a modified version of Mutilate [30] as a load generator.
We use the Ubuntu 18.04 distribution running Linux kernel
version 4.11. To measure power consumption, we query MSR
registers through the RAPL interface [36, 46].

4.1 Real-world Scenarios
In this section, we evaluate the effectiveness of Peafowl for
real-world traces. We modify Mutilate to recreate three dif-
ferent workloads: (1) the ETC workload from Facebook [4],
which exhibits a diurnal pattern, (2) a storage workload trace
fromMicrosoft [18], which has a diurnal pattern over a wider
range, and (3) a Google search trace reported in [36], which
features sudden load shifts. We use 512 persistent Mutilate
connections to generate load. Similar to the USR workload
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Figure 4: Power consumption of Memcached and Peafowl when facing real-world scenarios. Peafowl delivers
higher energy-proportionality. When the load drops, the power consumption decreases, accordingly.
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Figure 5: Average and tail latency of requests under
Peafowl and Memcached. Both deliver similar tail la-
tency; Memcached delivers lower average latency be-
cause unlike Peafowl, it always operates all workers.

reported by Facebook [4], requests follow a Poisson arrival
process, consisting of 99.8% GET requests and 0.2% SET re-
quests, where value sizes follow Generalized Pareto distribu-
tion. We run both Memcached and Peafowl with 10 worker
threads. As noted before, Peafowl pins workers to distinct

CPU cores as it employs in-application scheduling. To en-
sure a fair comparison, we pinMemcached threads to distinct
CPU cores.

Figure 4 shows the power consumption of (1) Peafowl, (2)
Memcachedwhen idle-states are enabled, and (3)Memcached
when the idle-states are disabled. Compared to Memcached
when idle-states are enabled, Peafowl reduces the power
consumption by up to 36%.
This is because Peafowl identifies off-peak periods and

consolidates the load onto fewer active cores. In the Google
trace, for example, the load at first is 1000K requests per
second (RPS). At this point, Peafowl operates all 10 workers.
At around minute 15, the load drops to 230KRPS. At this
point, Peafowl operates with three workers. Meanwhile, the
corresponding CPU cores of the remaining seven workers
save power by mostly being in C6, the deepest idle state. In
Section 4.3, we will elaborate on why c-state governors such
as Menu are not effective in KV stores.
Figure 5 shows the observed average and 99𝑡ℎ percentile

tail latency for all scenarios. While Memcached and Peafowl
deliver the same tail performance, Memcached yields a lower
average latency. This is because at any given time Mem-
cached operates on greater or equal number of CPU cores
compared to Peafowl.
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Figure 6: Scale-up and scale-down process in Peafowl.
The number of active workers/cores corresponds to
the current load. The scale down process achieves en-
ergy proportionality. The scale up process is conserva-
tive as it reactivates all cores for a short timewhen the
load increases to ensure that tail latency is low.

4.2 Microbenchmarks
This section evaluates Peafowl’s internal mechanisms that
are key to its performance. We use the Mutilate benchmark
to generate a synthetic workload, shown in Figure 6. As
shown, the load sent to the KV store starts from 50KRPS,
gradually increases to one million RPS, gradually decreases
back to 50KRPS, and then repeats the process again. This
load pattern shows how Peafowl handles the scale-up and
scale-down process, and also illustrates how Peafowl learns
the load limit.

Scale-down process. Figure 6 also shows how the num-
ber of active cores changes when the load varies. Initially,
Peafowl starts with 10 workers and assumes that the starting
request rate is the load limit. However, as the load increases,
Peafowl learns that supporting up to one million RPS is an
acceptable peak load for all 10 workers, which corresponds to
a peak load of 100KRPS for each worker. Although Peafowl
does not save power during this initial period when learning
the load limit, this is only a one-time effect.
Then when the load drops between 20-45min, Peafowl’s

scheduler packs the load into a reduced number of workers.
For example, when the load is under 100KRPS (1/10 of the
peak load), Peafowl operates one worker (1/10th of initial
active workers).

Scale-up process. Once the experiment gets to the point
where only one worker is operating, the experiment starts in-
creasing the load. At this time, the load of the only operating
worker approaches its load limit. Consequently, it starts send-
ing guest connections to their home workers, which leads
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Figure 7: When an extreme load shift from 50KRPS to
650KRPS happens, Peafowl operates all cores to avoid
severe tail latency degradation.

to the situation when all workers are operating again. At
this point, Peafowl waits for a window of time for things to
settle. It then starts consolidating the load (200KRPS), which
fits on two workers. As the load increases in the workload,
the scale-up and scale-down process repeats. Although our
scale-up process is not as energy proportional as the scale-
down process, this conservative approach is important for
avoiding tail latency degradation during sudden bursts.

Sudden bursts. To show how Peafowl performs when
sudden bursts happen, we use a synthetic workload shown
in Figure 7. We offer a baseline load of one million RPS. The
load gradually decreases to 50KRPS, where Peafowl con-
solidates the load onto one worker. This is followed by an
instantaneous increase to 650KRPS. When the sudden burst
occurs, all workers immediately become activated. In this ex-
periment, the average latency is 110𝜇s and the 99𝑡ℎ percentile
tail latency is 250𝜇s, which is in roughly the same micro-
second scale range as a baseline Memcached setup (with 78𝜇s
average latency and 210𝜇s tail latency). Thus, Peafowl reacts
quickly so that it is able to maintain micro-second scale tail
latency, even when handling an extreme load increase from
50KRPS to 650KRPS.

4.3 Peafowl compared to state-of-the-art
Lack of hardware control prevents approaches like Rubik
and 𝜇DPM to be faithfully implemented and adopted in off-
the-shelf servers. For example, 𝜇DPM requires offloading
the prediction calculations and per-request scheduling to
smartNICs. Therefore, they report simulation results. In this
section, we simulate Rubik, 𝜇DPM, an optimal idle-state gov-
ernor with oracle foreknowledge, and Peafowl. We develop
a discrete event queueing simulator where we implement
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Figure 8: Idle-states available in our testbed and their
respective exit latency, target residency, and per-core
p-state power consumptionwhen the core is in C0 and
when the core is executing a CPU-intensive task.

Peafowl and the state-of-the-art policies. In our simulation,
we use the common queueing arrival process known as a
Poisson process (i.e., exponential distribution interarrival
time) and vary the request rate over time. Service times
are modeled by an exponential distribution with an aver-
age service time of 10𝜇s1. To model the c-state transitions,
we set the transition latency, the target residency, and the
power consumption according to Figure 8, which matches
our testbed. We simulate DVFS with a CPU frequency range
from 0.8 to 2.1GHz and DVFS transition latency of 10𝜇s. We
also measure DVFS power consumption for each frequency
in our server and use these parameters in our simulation. We
simulate power consumption by quantifying the weighted
sum of idle and busy periods with the corresponding energy
consumption, factoring in both the c-states and DVFS as
appropriate for each system.

4.3.1 Evaluated Systems.

• Rubik [27] saves power by exploiting existing latency
slack and slowing down request processing through
DVFS. Rubik adjusts frequency upon arrival and com-
pletion of each request. Their simulation results indi-
cate that Rubik has better power consumption and tail
latency than approaches relying on feedback-based
controllers (e.g., Carb [64] and Pegasus [36]) since Ru-
bik is responsive enough to cope with short term vari-
ations.

• 𝜇DPM [8] extends idle period lengths by consolidat-
ing idle periods through delayed request processing.
That is, it exploits latency slack by delaying the pro-
cessing of requests to let the CPU be idle for longer
time periods while executing requests just in time.

1To quantify the average service time, as suggested in [20], we increase the
request rate until the completion rate levels off at some value. At this point,
the average service time is equal to 1 / completion_rate.

Their simulation results illustrate that their technique
is more energy efficient than existing techniques such
as Rubik [27], SleepScale [35] and DynSleep [9].

• Idle-state Governors (e.g., Menu [60] and recently
TEO [52]) combine several factors (e.g., device and
timer interrupts) as a heuristic to predict the upcom-
ing idle duration and consequently select the idle mode
that fits best. Studies [22, 52, 54] show that Menu fre-
quently makes inaccurate predictions, missing the op-
portunity to save power or hurting latency. As an up-
per bound on the idle-state governor approach, we
simulate a Clairvoyant Idle-State Governor (CISG) that
precisely predicts the future events and always chooses
the correct c-state. Since network events cannot be de-
termined in advance, clairvoyant idle-state governing
is impractical. However, our goal is to show that even
an optimal clairvoyant idle state governor does not
work well for KV stores because of the high request
rates. Rather, techniques such as Peafowl that shifts
around load is needed.

To evaluate these approaches, we initially start with an
800KRPS request rate and gradually decrease the rate to
80KRPS in 80KRPS steps. We measure the power consump-
tion and 99𝑡ℎ percentile tail latency at each step.
Figure 9 shows the power consumption and Figure 10

shows the observed tail latency of different systems when the
target latency ranged from 300𝜇s (stringent target latency)
to 900𝜇s (relaxed target latency). Peafowl saves significantly
more power than Rubik, 𝜇DPM, and CISG.
As pointed out in the 𝜇DPM paper, Rubik suffers from

frequent DVFS transitions especially at higher request rates,
which affect both power and latency. Additionally, Rubik
does not effectively utilize c-states in KV store workloads
since the frequent request arrivals prevent it from spending
significant time in the deepest c-state (C6). 𝜇DPM addresses
these problems by avoiding frequent DVFS transitions and
immediately transitioning to C6 when idle. 𝜇DPMmaximizes
the idle time while ensuring predicted latencies are below
the target latency. However, since C6 has a long exit latency,
𝜇DPM does not significantly save power under tight target
latencies (e.g., 300𝜇s). By contrast, Peafowl is able to pack
connections onto fewer cores to allow some cores to remain
in C6 for extended periods of time, saving significant power2.

Both 𝜇DPMand Rubik rely upon latency predictions, which
are not always perfect. In some cases, this results in tail la-
tencies exceeding the target latency. In other cases where
𝜇DPM overpredicts latency estimates, it results in lower tail
latencies and lower power savings (see higher request rates

2Peafowl’s power consumption in Figure 9 is linear due to the resolution of
sampling, but is expected to have a more staircase-like pattern as cores are
put to sleep.
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Figure 9: Power consumption of state-of-the-art systems under different target latencies. Peafowl saves more
power than prior approaches by identifying off-peak periods and right-sizing the number of active workers.
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Figure 10: 99th percentile tail latency comparison of state-of-the-art systems under different target latencies. Mis-
predictions in 𝜇DPM and Rubik cause high tail latency at high request rates.

under Figure 10’s 600𝜇s and 900𝜇s target latency graphs).
By contrast, Peafowl is not explicitly designed for latency
targets and achieves power savings even without delaying or
slowing down requests. It is possible to adjust the DVFS set-
tings in conjunction with Peafowl to save additional power
(at the expense of additional latency), and we leave this to
future work (Section 6).
As demonstrated in Figure 1, high arrival rates of KV

store workloads fragment the idle periods, resulting in short
idle cycles. This makes idle-state governors ineffective since
they cannot find enough opportunities to go to deep sleep
states. Our simulation results for CISG demonstrate that
even the optimal clairvoyant idle-state governor is not able
to significantly save power for KV stores due to the short
service times and high arrival rates that are common in KV
stores.
Peafowl consolidates the workload to fewer cores when

the load drops and saves power by letting the idle cores go to
deep idle states. As shown in Figure 9, when the load drops to

80KRPS, Peafowl saves 40%, 54%, and 45% over Rubik, 𝜇DPM
and CISG respectively.

5 RELATEDWORK
Feedback based approaches. Pegasus [36] and Carb [64]
leverage feedback-based controllers for saving power. Pega-
sus periodically measures tail latency and adjusts the fre-
quency every few seconds to avoid tail latency violations.
Pegasus adapts to long-term variations, but is unresponsive
to short term variability. Carb is a feedback-based controller
that determines the number of operating cores allocated to
the KV store, turning off inactive cores. Even if approaches
like Carb operate at zero overhead, they rely on the OS sched-
uler to handle KV store threads. As shown in Figure 2 and
described in multiple papers, OS schedulers can significantly
impact tail latency [31, 33, 47]. Peafowl does not rely on slow
feedback-driven controllers. It is responsive to sudden load
changes as it monitors the load inside the KV store. Further,
Peafowl worker threads are pinned to distinct cores to reduce
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the OS impact on tail latency, and Peafowl’s in-application
scheduler takes the job of managing the load among the
worker threads.

DVFS and request delaying. In systems with latency
goals, multiple existing techniques exploit the latency slack
(i.e., latency goal minus current latency) to reduce power by
slowing down request processing through DVFS [8, 21, 27–
29, 35, 36, 59], or delaying request processing through sleep
states [8, 9, 38, 39] while meeting tail latency constraints.
Adrenaline [21] boosts long requests which are more likely
to contribute to the tail latency. It senses the load at minute-
scale intervals, which makes it unable to respond to sudden
load changes. Rubik [27] outperforms the existing DVFS-
based approaches such as Adrenaline [21], Pegasus [36] and
TimeTrader [59] by using fast, per-core DVFS that quickly
adapts to short-term variability. Upon arrival and completion
of each request, it adjusts the frequency when there is a
gap between the target latency and the observed latency.
However, the limited frequency range of DVFS does not allow
Rubik to slow down request processing enough to fill latency
slack in low load scenarios, leading to suboptimal power
savings, especially when the target tail latency is relaxed.
Moreover, Rubik’s aggressive state transition at every request
arrival is costly in terms of energy and transition latency [8].
DVFS based approaches are effective only when the request
execution time is long enough (e.g., > 250𝜇s) [29].

𝜇DPM outperforms approaches that are based on deep
sleep states such as PowerNap [38], DreamWeaver [39], and
DynSleep [9] and also DVFS-based approaches such as Ru-
bik by leveraging a hybrid approach that uses both sleep
states and DVFS mechanisms. 𝜇DPM augments Rubik with a
request delaying approach. If there is enough latency slack,
𝜇DPM delays the request processing to enable idle periods
where deep sleep states can be utilized. 𝜇DPM, however, is
effective only when the target latency is relaxed and the ar-
rival rate is low. Otherwise, it is unable to extend idle periods
enough to save power. Furthermore, this approach requires
heavy computations to estimate the response time and sched-
uling of each request. By contrast, Peafowl only needs to
monitor the load and pack the load onto fewer CPU cores
when the load drops.

In-application Scheduling. Several works demonstrate
that data-centers can benefit from more focus on per-node
efficiency as opposed to the more common focus on scal-
ability to a large number of nodes [2, 3, 7, 42, 48, 49, 63].
Rhoden et al. [49] believe that traditional OSs are ill-suited
for data center applications. They propose Akaros, an OS
built on the philosophy of transparency, where the OS ex-
poses as much information (e.g., CPU core information) as
possible to data center applications and giving them APIs to
enable application-level management to achieve more effi-
ciency [16]. Following this path, several systems have been

0
4
8

12
16
20
24
28
32
36

po
we

r c
on

su
m

pt
io

n 
(W

)

FD Enabled
Default

0

50

100

150

200

250

300

99
th

 L
at

en
cy

 (
s)

FD Enabled
Default

Figure 11: Potential reduction of power consumption
by steering the NIC interrupts to active CPU cores.
This comes at the cost of higher request tail latency.

designed where applications can contribute to resource man-
agement. Arachne [47], for example, uses a central arbiter to
allocate cores between applications, and applications control
the placement of their threads on those cores, which can
raise the throughput of thread-driven applications with ex-
tremely short-lived threads. In a similar spirit, Shenango [42]
raises CPU efficiency while delivering high throughput by
using high-performance network stacks and a privileged
component called IOKernel that reallocates cores across ap-
plications at fine time scales. ZygOS [45] achieves a notable
throughput improvement by using kernel-bypass network-
ing and adding work stealing to improve load balancing
within an application. While these works are special-purpose
mechanisms to deliver high throughput and low latency by
leveraging thread-driven architectures, third party runtimes
and high-performance network stacks, Peafowl introduces
an application-level scheduler to save power in event driven
in-memory KV stores while not relying on modified operat-
ing systems, privileged components, third-party runtimes,
or special hardware.

6 DISCUSSION AND FUTUREWORK
Receive-Side Scaling (RSS). Peafowl saves power by de-
creasing the number of active CPU cores when load drops.
However, inactive cores are not completely idle as Receive-
Side Scaling (RSS) in the network interface still distributes
the incoming traffic between all CPU cores. The general is-
sue with RSS, apart from its inability to evenly distribute
flows with variable load characteristics [5, 51], is its blind-
ness to OS thread scheduling [50]. Even with RSS, Peafowl is
able to significantly save power, but even greater power sav-
ings can be achieved through finer-grained control over RSS.
Specifically, Intel’s Flow Director (FD) can be used to provide
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the NIC with flow classification rules using the application
knowledge for directing network interrupts to the appropri-
ate cores. We built a prototype of Peafowl with FD to pack
the interrupts only into active cores. However on the packet
transmission side, there needs to be a similar interface limit-
ing the number of cores responsible for packet transmission.
Otherwise, the TX interrupts will still wake up the inactive
cores, causing unnecessary idle-state wake-ups. As there is
no current user-space interface for controlling the transmis-
sion interrupts, we defer implementing this enhancement to
a future work.
Figure 11 shows the achievable power reductions when

using FD on the receive side and a similar flow classifica-
tion technology on the transmission side (≈ 18%). In this
preliminary experiment, we test a low load scenario where
Peafowl consolidates all the connections on a single core.
At this point, we measure the tail latency and power con-
sumption when RSS distributes the NIC interrupts among
all cores, compared to when NIC interrupts are routed into
active cores only. Figure 11 shows that the lower power con-
sumption comes at the cost of an increase in the tail latency
due to only having a single core for packet processing on
both the RX and TX sides, a tradeoff that must be decided
according to the performance requirements. In addition, we
note that in the future implementations of Peafowl that use
kernel-bypass network stacks, hardware flow classification
would be unnecessary as poll-mode drivers typically enable
a single NIC receive queue [42].

Memcached Load Imbalance. Load imbalance in Mem-
cached is a well known problem where some workers may
receive a lot more traffic due to connections with high re-
quest rates. Specifically, Memcached’s round-robin allocation
of connections to workers can lead to persistent imbalance
under skewed workloads, with some workers hosting fat con-
nections (connections with high arrival rates) while other
workers are serving thin/idle connections [45]. This imbal-
ance can impact both latency and throughput [47]. With
in-application scheduling, it is possible to leverage Peafowl’s
knowledge of connections rates to relocate connections so
as to reduce persistent imbalance among workers, which we
leave to future work.

Latency Targets. Peafowl is designed for ease of deploy-
ment where users do not need to provide latency targets and
there aren’t complex parameters to tune. Peafowl learns the
peak load and matches the performance of a native Mem-
cached deployment at peak load. That is, we assume opera-
tors have provisioned the system to have acceptable perfor-
mance at peak load and use this as our baseline performance
target rather than having users specify targets. Section 3.3
discusses outlier detection to handle spikes in the peak load
learning.

For comparing with Rubik and 𝜇DPM, we introduce la-
tency targets in the evaluation, but Peafowl doesn’t use this
information as it learns the performance goal based on the
system load. It is possible to adapt Peafowl to handle latency
targets by adjusting the DVFS configuration to meet the la-
tency target at peak load, which we leave to future work. If
anything, this would result in Peafowl achieving even greater
power savings than demonstrated in our results.

Limitations and Assumptions. Peafowl is designed for
interactive services and is most beneficial for workloads that
serve high request rates (e.g., KV stores). Our implementation
can generalize to libevent-based multi-threaded applications,
but we do not think our implementation will apply to other
non-event based application architectures. However, the core
ideas in Peafowl (e.g., in-application scheduling, packing con-
nections together to allow cores to go to deep idle states) are
generally applicable to saving power. We assume workloads
are run on dedicated servers where we have control over
the power configuration settings. Applying our approach in
multi-tenant scenarios (e.g., to use idle cores for other low
priority tasks) is left to future work since Peafowl assumes
that reclaiming resources is fast (10s-100s of microseconds).

7 CONCLUSION
This paper presents Peafowl, an event driven key-value store
that saves power while keeping tail latency at microsecond
scale. In Peafowl, the KV store itself is in charge of scheduling.
The Peafowl scheduler monitors the load, learns the peak
load, and when the load drops, it consolidates the load among
a fewer number of CPU cores. The remaining idle worker
threads turn on idle-states for their corresponding CPU cores
to save power.
We compare Peafowl to state-of-the-art approaches and

show that even with the high arrival rates and short service
times of KV stores, there is a lot of room for power savings
via Peafowl’s approach. Compared to its closest competitors,
Peafowl achieves up to 40-54% lower power consumption.
Peafowl does not rely on any third party applications, run-
times, custom hardware, kernel modules, or any changes to
the underlying OS, and therefore can be readily deployed on
the top of off-the-shelf OSs and commodity hardware.
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