In Proceedings of SPDP’ 95: The 7th IEEE Symposium on Parallel and Distributed Processing, San Anotonio, TX, Oct 1995.

Demand-based Document Dissemination to Reduce Traffic and Balance Load

in Distributed Information Systems

*

AZER BESTAVROS
(best@cs.bu.edu)
Computer Science Department

Boston University, MA 02215

Abstract

Research on replication techniques to reduce traffic
and minimize the latency of information retrieval in
a distributed system has concentrated on client-based
caching, whereby recently/frequently accessed informa-
tion is cached at a client (or at a proxy thereof) in
anticipation of future accesses. We believe that such
myopic solutions—focussing exclusively on a particu-
lar client or set of clients—are likely to have a limited
impact. Instead, we offer a solution that allows the
replication of information to be done on a global sup-
ply/demand basis. We propose a hierarchical demand-
based replication strategy that optimally disseminates
mformation from its producer to servers that are closer
to its consumers. The level of dissemination depends
on the relative popularity of documents, and on the
expected reduction in traffic that results from such dis-
semination. We used extensive HTTP logs to validate
an analytical model of server popularity and file access
profiles. Using that model we show that by dissemi-
nating the most popular documents on servers closer
to clients, network traffic could be reduced consider-
ably, while servers are load-balanced. We argue that
this process could be generalized to provide for an auto-
mated server-based information dissemination protocol
that will be more effective in reducing both network
bandwidth and document retrieval times than client-
based caching protocols.

1 Introduction

Current protocols for accessing distributed informa-
tion systems are inefficient, wasteful of bandwidth,
and exhibit a large degree of performance unpre-
dictability. Furthermore, the growing disparity be-
tween the volume of data that becomes available and
the retrieval capacity of existing networks is a critical
issue 1n the design and use of future distributed infor-
mation systems. Perhaps the best “living” proof of the
seriousness of this problem is the fate of many infor-
mation servers on the Internet: they are unreacheable
as soon as they become popular. In a recent solici-
tation [7] from the National Science Foundation’s ES
and MSA programs, the following research topics were

*This work has been partially supported by NSF (grant
CCR—9308344).

deemed critical for projected applications of the Na-
tional Information Infrastructure (NII):

o New techniques for organizing cache memories and
other buffering schemes to alleviate memory and
network latency and increase bandwidth.

o Partilioning and distribution of system [resources]
throughout a distributed system to reduce the
amount of data that must be moved.

To tackle the abovementioned challenge, we propose
a novel protocol for improving the availability and re-
sponsiveness of distributed information systems. We
use the World Wide Web (WWW) as the underlying
distributed computing resource to be managed. First,
the WWW offers an unmatched opportunity to in-
spect a wide range of distributed object types, struc-
tures, and sizes. Second, the WWW is fully deployed
in thousands of institutions worldwide, which gives us
an unparalleled opportunity to apply our findings to
an already-existing real-world application.

The basic idea of our protocol is to off-load popular
servers by duplicating (on other servers) only a small
percentage of the data that such servers provide. The
extent of this duplication (how much, where, and on
how many sites) depends on two factors: the popular-
ity of the server and the expected reduction in traf-
fic if dissemination 1s done in a particular direction.
In other words, our protocol provides a mechanism
whereby popular data is disseminated automatically
and dynamically towards consumers—the more popu-
lar the data, the closer it gets to the clients.

There has been quite a bit of research on caching
and replication to improve the availability and per-
formance of scalable distributed file systems [9]. Ex-
ample systems include the Sun NFS [13], the An-
drew File System[10], and the Coda system [14]. Re-
cently, there have been some attempts at extending
caching and replication to distributed information sys-
tems (e.g. FTP and HTTP). Caching to reduce the
bandwidth requirements for the FTP protocol on the
NSFNET has been studied in [6]. In this study, a
hierarchical caching system that caches files at Core
Nodal Switching Subsystems is shown to reduce the
NSFNET backbone traffic by 21%. The effect of data
placement and replication on network traffic was also
studied in [1], where file access patterns are used to
suggest a distributed dynamic replication scheme. A
more static solution based on fixed network and stor-

age costs for the delivery of multimedia home enter-
tainment was suggested in [12]. Multi-level caching
was studied in [11], where simulations of a two-level
caching system 1s shown to reduce both network and
server loads. In [3], a dynamic hierarchical file sys-
tem, which supports demand-driven replication is pro-
posed, whereby clients are allowed to service requests
issued by other clients from the local disk cache. A
similar cooperative caching idea was suggested in [5].
The proposed research work of Gwertzman and Seltzer
sketched in [8] is the closest to ours. In particular, they
propose the implementation of what they termed as
geographical push-cashing, which allows servers to de-
cide when and where to cache information based on ge-
ographical information (such as the distance in actual
miles between servers and clients). Their work pro-
vides no information about resource allocation strate-
gies and seems to be static.

2 Server Log Analysis

Figure 1 shows the frequency of remote access of indi-
vidual 256 KB document® blocks available through the
cs-www.bu.edu HTTP server. The horizontal axis of
figure 1 depicts these blocks in a decreasing remote
popularity. Only those blocks accessed at least once
are shown. Out of some 2000+ files available through
the WWW server only 656 files were remotely accessed
at least once. The size of these 656 files totalled some
36.5 MBytes, which represents 73% of the 50+MBytes
available through the server.

Frequency/1000

Frequency/1000

A

A
\
\

0.40 k

1e+06 2 1e+07 bytes

L MBytes

0.00 10.00 20.00 30.00 40.00 50.00
Figure 1: Popularity of various data blocks

Figure 2 shows the cumulative probability of ac-
cess, where the horizontal axis depicts the various

1In this paper we use the term “document” to refer to any
multimedia object.

data blocks in a decreasing order of remote popularity.
Alone, the most popular 256 KB block of documents
(that is 0.5% of all available documents) accounted for
69% of all requests. Only 10% of all blocks accounted
for 91% of all requests!

Request %

1.00

050 '/
0.80 /

MBytes

0.00 5.00 10.00 15.00 20.00

Figure 2: Cumulative popularity of data blocks

The above observation leads to the following ques-
tion: How much bandwidth could be saved if requests
for popular documents from outside the LAN are han-
dled at an earlier stage (e.g. using a proxy at the
“edge” of the organization)? Figure 3 shows the per-
centage of the remote bandwidth that would be saved
if various block sizes of decreasing popularity are ser-
viced at an earlier stage.

The above observations have been corroborated
by analyzing the HTTP logs of the Rolling Stones
server http://www.stones.com/ from November 1,
1994 to February 19, 1995. Unlike the cs-www.bu.edu
HTTP, this server is intended to serve exclusively re-
mote clients. It is a very popular server with more
than 1 GigaByte of multimedia information per day
(exactly 1,009,146,921 Bytes/day) serviced to tens of
thousands (distinct) clients (namely 60,461 clients re-
trieved at least 10 files during the duration of the anal-
ysis). Figure 4 shows the frequency of access for all the
documents that have been serviced at least once. Fig-
ure b shows the percentage of the remote bandwidth
that would be saved if various block sizes of decreas-
ing popularity are serviced at some other server. Of
the 400 MBytes of information accessed at least once?
during the analysis period, only 21 MBytes (5.25%)
were responsible for 85% of the traffic.

?Notice that the total number of bytes available from that
server is much larger than 400 MBytes.

Remote Bandidth
Reduction %

1.00
Vel

0.60 /
0.50 /

0.30
0.20
0.10
MBytes
0.00
0.00 10.00 20.00 30.00 40.00 50.00

Figure 3: Bandwidth savings against proxy size

A closer look at the logs of the HTTP server at
cs—www.bu.edu, which is a typical example of servers
that cater primarily to local clients, reveals that there
are three distinct classes of documents: locally popu-
lar documents, remotely popular documents, and glob-
ally popular documents. Figure 6 shows the ratio of
remote-to-local (and local-to-remote) accesses for each
one of the 974 documents accessed at least once dur-
ing the analysis period. From this figure we notice
that 99 documents had a remote-to-local access ratio
larger than 85%. We call these remotely popular docu-
ments. Also, we notice that more than 510 documents
had a remote-to-local access ratio smaller than 15%.
We call these locally popular documents. We call the
remaining 365 documents globally popular documents.

We monitored (on a daily basis) the date of last
update of remotely, locally, and globally popular doc-
uments for a period of one month (from January 17 to
February 17). We observed that both remotely pop-
ular and globally popular documents were updated
very infrequently (less than 0.5% update probability
per document per day), whereas locally popular doc-
uments were updated more frequenlty (about 2% up-
date probability per document per day).? In all cases,
we observed that the updates were confined to a very
small subset of documents. We call these documents
mutable documents. The classification of documents
into globally/remotely/locally popular and into mu-
table/immutable documents could be easily done by
servers. Such a classification could be used by servers
to decide which documents to disseminate. It is in-
teresting to note that our update frequency measure-

3Multiple updates to a document within one day were
counted as one update.

Frequency/1000

220.00

200.00

180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00 -

File
1D

200 400 600 800 1000

Figure 4: Access frequency for www.stones. comserver

ments (like those discussed in [8]) depart significantly
from the synthetic workload used in recent WWW
coherence studies [15]. This has implications regard-
ing the overhead of maintaining the coherence of dis-
seminated documents. In particular, given the rarity
of popular documents updates, we argue that simple
protocols such as the Time-To-Live (TTL) and Alex
[4] protocols are attractive alternatives to the high-
overhead invalidation-based protocols [15].

3 System Model and Analysis
We model the WWW (Internet) as a hierarchical set

of clusters. A cluster consists of a number of servers.
One of these servers acts as a service prozy (or front-
end) for the cluster. The notion of a service proxy is
similar to that of a client proxy, except that the proxy
acts on behalf of a cluster of servers rather than a
cluster of clients.

In our model, a cluster corresponds to an institution
or an organization. For example, we may model all the
WWW servers at Boston University as servers within
a cluster, with a particular machine (say www.bu.edu)
acting as a service proxy for the whole institution. In
the meantime, one of the servers in the Boston Uni-
versity cluster (say cs-www.bu.edu) may itself be a
service proxy for another cluster of servers (say the
various LANs within the CS department). This corre-
spondence between clusters and organizations is only
for the purpose of illustration. In practice, we envision
service proxies to be information “outlets” that are
available throughout the Internet, and whose band-
width could be (say) “rented”. Alternately, service
proxies could be public engines, part of a national
computer information infrastructure, similar to the

NSF backbone.

Server Load
Reduction %

1.00 i

0.90 P

0.80

0.60

0.50

0.40

0.30

0.20

MBytes

0.0 100.0 200.0 300.0 400.0 500.0

Figure 5: Bandwidth reduction for www.stones.com

Our model does not limit the number of service
proxies that could be used to “front-end” a particu-
lar server. Each server in the system may belong to
a number of clusters, and thus may have a number of
service proxies acting on its behalf, thus disseminating
its documents along multiple routes (or towards vari-
ous subnetworks). A server is allowed to use (through
bidding for example) a subset of these service proz-
tes to disseminate its data to clients. Service proxies,
themselves, are allowed to use other service proxies to
further disseminate this data to clients, and so on. In
this paper, and without loss of generality, we assume
that each server belongs to exactly one cluster, and
thus has only one service proxy.

Let C = 8y, 81,8, ...,8, denote all the servers in
a particular cluster, where &y is distinguished as the
service proxy (or simply the proxy) of C. Let R; de-
note the total number of bytes per unit time (say one
day) serviced by server §; in a cluster C to clients out-
side that cluster. Furthermore, let H;(b) denote the
probability that a request for a document on &; will
be possible to service at proxy Sy as a result of dis-
seminating the most popular b bytes from &; to Sp.
An example of this probability function is shown in
figure 3. Finally, let B; denote the number of bytes
that proxy &y duplicates from server &; and let By
denote the total storage space available at proxy &g
(i.e. By = By + Ba+ ...+ B,). By intercepting re-
quests from outside the cluster, we may expect Sy to
be able to service a fraction of these requests. Let ac¢
be that fraction.

> iey Ri x Hi(Bi)
Z?:l RZ

(1)

(874 =

Percentage

100.00.

80.00 o Local/Remote

: [
\] s Remote/Local

60.00 _ ‘-
4000 \

2000 '1_\
L\\\ Document ID
000 ™
000 200 400 600 800 1000

Remotely Globally Locally
Popular Popular Popular
Documents Docurents Docurents

Figure 6: Local vs remote popularity of documents

The objective of &y is to allocate storage spaces

By, Ba, ..., By, so as to maximize the value of a¢. The
maximum for a¢ occurs when for all j = 1,2,...,n:
5
——ac = k, for a constant k
6B;
8 (i R x Hi(Bi) .
0B, >iz1 R -
R; 5
" (B - k
>z R <5Bj it]))
R
——h;j(B;}) = k
2ic i A
>z R
h(B) = k== ()

where h;(B;) denotes the Probability Density Func-
tion corresponding to H;(B;). In equation 2 the
value of k 1s chosen so as to satisfy the constraint
By=B1+Bs+ ...+ By.

Our desire to make our protocol “useful” restricts
the type of assumptions we could make. Thus, in our
protocol, we have avoided using any parameters that
could not be readily estimated from available logs of
network protocols (e.g. HTTP and FTP). This, how-
ever, does not prohibit future work along the same
lines from making use of other information to better
tune the system. For example, if information about
the communication cost between servers, proxies, and
clients is available, then our protocol could be easily
adapted to weigh such knowledge into our resource
allocation methodology.

3.1 Exponential Popularity Analysis

We use an exponential model to approximate the func-
tion H;(b). Namely, we assume that fori =1,2,...,n,
Hi(b) = 1 — e=?i*® where); is the distribution’s con-
stant. The Probability Density Function correspond-
ing to H;(b) is h;(b), where

hi(b):%Hi(b) = e ! (3)

Given a particular server S;, where 1 < j < n, we
substite for h;(b) in equation 2.

Doy Ri
hi(B;) = k'iR;
Aje—)\j.Bj — k’ Zi:l RZ
R;
N, R \%
B;: = lo J 4
;= s (% o 13) (4)

Equation 4 specifies a set of n equations to ration the
total buffering space By available at Sy amongst the
servers &;, for i = 1,2,...,n. In order to do so, we
must find the value of the constant k. This can be
done by observing the requirement that By < By +
By+ ...+ By.

Zn:Bi = By
i=1
2 los (A?E?R) -

n 1

(etm)
kZ?:lRi

which results in the following expression for k.

/\RAL — P
1

n

i

b o= 1 [liey (AR
Z?:l RZ eBD

Substituting for & from equation 5 into equation 4, we
get the optimum storage capacity to allocate on &y for
a particular server §;, where 1 < j < n.

The above calculations require that R; and A; be
estimated, for ¢ = 1,2,...,n. This can be done in
a variety of ways, which we discuss later in our pro-
tocol. For now, it suffices to say that these parame-
ters could be easily and efficiently computed from the
server logs. As a matter of fact, figures 1, 2, 3 were
produced by programs that computed these parame-
ters for cs—www.bu.edu. Moreover, our measurements
suggested that these parameters are quite static, in
that they change only slightly over time. Hence, the
calculation of R; and A; as well as the allocation of
storage space on & for servers §;, for ¢ = 1,2,....n
need not be done frequently. It could be calculated
either off-line or periodically (say every week).

3.2 Special Cases

In order to develop an understanding of our demand-
based document dissemination protocol, we consider
several special cases.

Equally Effective Duplication:

Let \; = Afor¢=1,2,...,n. That is, we assume that
the reduction in bandwidth that results from dupli-
cating some number of bytes from a particular server
§; is equal to the reduction in bandwidth that results
from duplicating the same number of bytes from any
other server §; for ¢ = 1,2,...,n. We call this the
equally effective duplication assumption. Substituting
in equation 5, we get:

J — A H?:l RZ B
A

Substituting for k into equation 4, we get:

A R;
B]' = log T) J
A H:;l R; B Zz—l RZ
27:1 R erbo
By 1 R;
B, = —+4+ -1]

Under the equally effective duplication assumption,
equation 6 suggests that popular servers are allocated
extra storage capacity on the proxy This extra storage
depends on two factors, namely <, which is a measure

of duplication effectiveness, and log (R;/ /11—y Ri),

which reflects a server’s popularity relative to the ge-
ometric mean of all servers in the system. This dual
dependency on duplication effectiveness and relative
popularity gives us a handle on how to extend our
results for arbitrary distributions of H;(b). In partic-
ular, if the skewness of H;(b) could be measured for
a particular server (by analyzing its logs as suggested
earlier in the paper), then this measure could be used

instead of %

Equally Popular Servers:

Let R; = R for ¢ = 1,2,...,n. That is, we assume
that all servers in the system are equally popular. We
call this the equally popular servers assumption. Sub-
stituting in equation b, we get:

o= 1 H?:l Azrl Zl:l %l

n eBo

Substituting for k into equation 4, we get:

>

B;

|
SN
&
o
+
(]
o
|-
o
09
>
N~—
—~
-

1
.
Z?:l)_Z

Under the equally popular servers assumption,
equation 7 suggests that servers, whose data are ac-
cessed more uniformly (i.e. servers with a smaller
value for A) should be alloted more storage capacity
on the proxy as long as the total capacity available on
the proxy is large enough (i.e. By >)\%) However,
if the storage capacity of the server is not big enough,
then equation 7 suggests that servers with a intermedi-
ate values for A should be favored. For example, figure
7 shows the optimal storage capacity to be allocated
to server §; for various values of A; assuming that all

other n — 1 servers have equal A; and that By =

i=

1
)_la
for 1 <i<nandi# j. Figure 8 depicts the optimal
allocation when By = 10%.

Percentage
Alloted

40.0

30.0

20.0

100

|

00 E— A

1e+00 3 le+01 3 le+02 3 1e+03

Figure 7: Storage allocation for R; = R and B =)\i

z

Symmetric Clusters:

In order to appreciate the effectiveness of our demand-
based document dissemination, we consider a symmet-
ric cluster, where all servers have identical values for

Percentage
Alloted

200

100

0.0 —=

1e+00 3 le+01 3 le+02 3 1e+03

Figure 8: Storage allocation for R; = R and B = 10>\L

R; and A;. From equation b, we get:

A
-2B,

A
k= —
n

Substituting in equation 4, we get

M=

A R B
B = log(i.e—%BuZ?_lR) =% ®

As expected, equation 8 provides equal allocation
of storage on Sy for all the servers in the cluster. By
substituting the value of B; into equation 1, we get:

_ Z?:l R x H(%)
Z?:l R

Equation 9 could be used to estimate the storage re-
quirements on the proxy as a function «.

ac

n 1
By 3 log p” (10)

Equation 10 suggests that if (say) the
cs-www.bu. edu server is only one of 10 servers, whose
most popular data are duplicated on a proxy, then in
order to reduce the remote bandwidth by (say) 90%
on allservers, the proxy must secure 36 MBytes to be
divided equally amongst all servers. This assumes a
value of A = 6.247 x 10~7, which was estimated from
the HT'TP demon logs on the cs-www.bu.edu server.
With a storage capacity of 500 MBytes, a proxy could

shield 100 servers from as much as 96% of their remote
bandwidth. These numbers, of course, raise a legiti-
mate question: If 96% of all remote accesses to 100
servers (or even 90% of all accesses to 10 servers) are
now to be served by one proxy, isn’t that proxy go-
ing to become a performance bottleneck? The answer
is, of course, yes unless the process of disseminating
popular information continues for another level, and
so on. If that is not possible, then another solution
would be for the proxy to dynamically adjust the level
of “shielding” it provides for its constituent servers.
In other words, if (or when) it is determined that the
proxy is overloaded, then By could be reduced, thus
forcing more of the requests back to the servers.

4 The DDD-WWW Protocol

We present our protocol at a high level by describing
its components at the clients and servers. Notice that
we make no distinction between servers and proxies,
since for all practical purposes, if a client knows that a
particular document has been disseminated to a par-
ticular proxy, then it could simply use that proxy as
the server, from which to fetch the document.

Client Fetching Protocol: DDD-WWW requires
clients to maintain a URL translation lookaside buffer,
where recent URL chasings are cached. Notice that the
upkeep of very similar information is needed anyway
by the caching protocols employed at the client. The
first step in fetching a URL involves looking up the URL
translation lookaside buffer (see the Cal Mapped() and
WhereMapped() functions in figure 9). If a mapping
is found, then the client uses 1t as the initial (seed)
EffectiveURL. The second step involves chasing the
document until a valid EffectiveURL is found, in
which case the document is fetched.* Figure 9 shows
these steps.

ClientFetch(URL)

State «— Unresolved;

TempURL «+— URL;

If (Mapped(URL))
TempURL «— Where Mapped(URL);

While (State == Unresolved){
EffectiveURL «— TempURL;
ServerReply — ServerQuery(EffectiveURL) ;
State « ServerReply.Ack;
TempURL «— ServerReply.NextURL; }

If (State == Found)
Fetch(EffectiveURL) ;

Else
FailFetch(“Document not found.”) ;

Figure 9: Client protocol for fetching a URL

4Notice that our protocol does mnot preclude
the EffectiveURL from pointing to the local cache of the client
itself (whether at the session, machine, or LAN levels [2]). This
makes for a natural integration of producer-based dissemination
and consumer-based caching of documents.

Server Query Protocol: DDD-WWW requires
servers to maintain a (possibly one-to-many) mapping
between local URLs and the URLs of corresponding
disseminated copies. The first step for a server to re-
spond to a query from a client involves looking up this
mapping (see the Cal Disseminated() and WhereDis-
seminated() functions in figure 10). If the document in
question has been disseminated, then the server sim-
ply returns to the client the URL of the (best) dis-
seminated copy, otherwise it returns an acknowledg-
ment that indicates whether the document is availabe
(Found or Invalid). Figure 10 shows these steps.

ServerQuery(URL)
If (Disseminated(URL)){
Reply.Ack — Unresolved ;
Reply.NextURL «— WhereDisseminated(URL) ;
Else
If (Available(URL))
Reply.Ack «— Found ;
Else
Reply.Ack «— Invalid ;

Figure 10: Server/Proxy protocol for Servicing a URL

Document Dissemination Protocol: The last
component of DDD-WWW is responsible for the dis-
semination of popular documents between servers. In
order to so, each server must collect statistics on the
popularity of each document it maintains. We denote
by F(S;) the set of all files (documents) available at
server &;. This includes duplicated document that the
server keeps on behalf of other servers.

We assume that each server keeps logs of the client
requests that were honored at that server. Using these
logs, the server is capable of computing the popu-
larity of each document it maintains—namely, how
many times (per unit time) a document was serviced.
Let Freq(S;, £) denote the frequency with which a

file £ was serviced by server &; to a non-local client.’
Let Home(S;, £) denote the server that disseminated
file £ to §;. In particular, if file £ i1s local, then
S; = Home(S;,). Also, let Prozy(S;, £) denote the
set of servers that are acting as proxies for file £ of
server ;. Freq(S;, £) does not account for the pop-
ularity of £ at Prozy(S;, £). Let Pop(S;, £) denote
the cumulative frequency with which a file £ was ser-
viced from server 8; as well as from any other server
in Prozy(S;, £). Figure 11 shows the steps that need
to be executed (periodically) by each server (say S;)
so as to propagate the popularity information Pop(S;,
£), for all servers and files in the system. Function
ReportPop() communicates the cumulative popularity
of a file at a proxy to the server that requested that
the file be duplicated at that proxy.

The calculation of Pop(S;, £) for all files £ € F(S;)
allows each server §; to compute the remote popular-

5The term “non-local client” is loosely defined to be a client
outside the cluster of S;, i.e. a client whose requests could be
serviced by a proxy.

ServerStats()
Forall £ € F(S;){

Pop — Freq(S;, £) ;

Forall s € Prozy(S;,£){
Pop «— Pop + Pop(s, f) ;
Pop(S;, £) — Pop ;}

If (S; # Home(S;, 1))
ReportPop(t, Pop, Home(S;, 1)) ;}

Figure 11: Periodic process to keep popularity profile

ity of the various blocks in the system (see figures 1 and
2), and thus estimate the value of A; used in our an-
alytical study to characterize the H;(b) distribution.
Also, the value of Pop(S;, £) for all files £ € F(S;)
could be combined to evaluate the total number of
bytes per unit time serviced by (or on behalf of) S;,
and thus estimate the value of R; used in our ana-
lytical study to characterize the relative popularity of
a server in a given cluster. The process of deciding
what to disseminate from the servers in a cluster to
the proxy of that cluster is straightforward.

5 Conclusion

There are many reasons for advocating the develop-
ment of an automated information dissemination pro-
tocol as a way of controlling traffic as opposed to sim-
ply increasing the available bandwidth in the system.
First, adding servers (i.e. proxies) to the internet is
much cheaper than adding (upgrading) internet links
[6]. Second, increasing the available bandwidth is a
temporary solution; it’s only a matter of time before
the added bandwidth is consumed by the ever increas-
ing number of users. Demand-based dissemination of
information from producers to consumers is not a new
idea: 1t is used in the retail of commodities, newspa-
per distribution, among other things. In this paper, we
proposed to use the same philisophy for distributed in-
formation systems. We presented an analytical model
(supported by data from actual logs of typical institu-
tional and commercial servers) that demonstrates how
such dissemination could be done, both efficiently and
with minimal changes to the prevailing client-server
infrastructure of the Internet.

Acknowledgments: I would like to thank M. Crov-
ella, A. Heddaya, and all members of the Oceans
group http://cs-www.bu.edu/groups/oceans for
the many discussions and feedback on this work. Also,
I would like to thank S. Fitch and S. Sclaroff for pro-
viding me with the Rolling Stones logs.

References

[1] Swarup Acharya and Stanley B. Zdonik. An efficient
scheme for dynamic data replication. Technical Re-
port CS-93-43, Brown University, Providence, Rhode
Island 02912, September 1993.

[2] Azer Bestavros, Robert Carter, Mark Crovella, Carlos
Cunha, Abdelsalam Heddaya, and Sulaiman Mirdad.
Application level document caching in the internet.
In IEEFE SDNE’96: The Second International Work-
shop on Services in Distributed and Networked Enuvi-
ronments, Whistler, British Columbia, June 1995.

[3] Matthew Addison Blaze. Caching in Large Scale Dis-
tributed File Systems. PhD thesis, Princeton Univer-
sity, January 1993.

[4] V. Cate. Alex — a global filesystem. In Proceedings of
the 1992 USENIX File System Workshop, Ann Arbor,
MI, May 1992.

[5] Michael D. Dahlin, Randolph Y. Wang, Thomas E.
Anderson, and Dacid A. Patterson. Cooperative
caching: Using remote client memory to improve file
system performance. In First Symposium on Oper-
ating systems Design and Implementation (OSDI),
pages 267-280, 1994.

[6] Peter Danzig, Richard Hall, and Michael Schwartz.
A case for cashing file objects inside internetworks.
Technical Report CU-CS-642-93, University of Col-
orado at Boulder, Boulder, Colorado 80309-430,
March 1993.

[7] Michael Foster and Robert Jump. NSF Solicitation
94-75. STIS database, May 1994.

[8] James Gwertzman and Margo Seltzer. The case
for geographical push-caching. Technical Report HU
TR-34-94 (excerpt), Harvard University, DAS, Cam-
bridge, MA 02138, 1994.

[9] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. Scale and perfor-
mance in a distributed file system. ACM Transactions
on Computer Systems, 6(1):51-81, February 1988.

[10] J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H.
Howard, D.S.H. Rosenthal, and F.D. Smith. An-
drew: a distributed personal computing environment.
Comm. ACM, 29(3):184-201, Mar. 1986.

[11] D. Muntz and P. Honeyman. Multi-level caching in
distributed file systems or your cache ain’t nuthing
but trash. In Proceedings of the Winter 1992
USENIX, pages 305-313, January 1992.

[12] Christos H. Papadimitriou, Srinivas Ramanathan,
and P. Venkat Rangan. Information caching for de-
livery of personalized video programs on home en-
tertainment channels. In Proceedings of the Interna-
tional Confrence on Multimedia Computing and Sys-
tems, pages 214-223, May 1994.

[13] R. Sandber, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the sun net-
work file system. In Proceedings of USENIX Summer
Conference, 1985.

[14] M. Satyanarayanan, J. Kistler, P. Ku-
mar, M. Okasaki, E. Siegel, and D. Streere. Coda:
A highly available file system for distributed worksta-
tion environments. I[FEE Transactions on Computers,
39(4), April 1990.

[15] K. Worrell. Invalidation in large scale network object
caches, 1994. Master’s Thesis, University of Colorado,
Boulder.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

