In Proc. of the 1990 ACM Intl. Workshop on Timing issues in the Specification and Synthesis of Digital Systems, Vancouver, Canada, Aug 1990.

The Input Output Timed Automaton
A model for real-time parallel computation

AZER BESTAVROS*
Harvard University

Abstract

In this paper, we present the Input Output Timed Automaton (IOTA) model for the specifica-
tion and verification of parallel real-time digital systems. Our model extends Nancy Lynch’s
IOA model [Lynch:88a] to allow for the inclusion of timing properties. We have used the
IOTA model to study a range of real-time digital systems. In particular, we used it to specify
and verify asynchronous circuit designs [Bestavros:89a] and to specify, analyze and simulate
behaviors of autonomous creatures [Bestavros:90b]. In [Bestavros:90al, we developed a lan-
guage and environment for the executable specification of parallel real-time interactive tasks
based on the IOTA model.

A TOTA is an abstraction that encapsulates a real-time task. A system is modeled as a
network of such IOTAs communicating with each other over channels. A TOTA might be the
specification or the actual implementation of a software/hardware module. This allows the
representation of both the external environment and the programmed system along with the
available computational resources in a unique framework. IOTAs can be composed together
to form higher level IOTAs. A TOTA implements another, if all external behaviors of the first
(the implementation) are also external behaviors of the second (the specification.) We use
timed possibility mappings to test for the implementation relationship. This is the primary
tool that is used to verify that an implementation meets the required specification.

*This work was supported by DARPA N00039-88-C-0163

1 1It’s Time to make Real-Time Computing Real !

Real-time computing systems are and will continue to play an increasingly vital role in our world.
Current real-time systems are expensive to build and their properties are usually verified with ad
hoc techniques, or with expensive and extensive simulations [Stankovic:88a]. Different components
of such systems are extremely difficult to integrate with each other which adds to the cost and
complexity of these systems. Minor changes in any of these components result in another round
of testing and fixing [Zave:82]. This brute force approach is not likely to scale-up with future
systems. It has become clear that more work is needed in the area of real-time systems if we are
to meet the needs and challenges of the future.

Viewed simply, any real-time system has two parts: an external environment and a pro-
grammed system. The external environment consists of a number of devices such as sensors and
actuators that interact with the real-world. The programmed system collects information from the
sensors and responds by producing actions to drive the actuators. The continual demands of the
“unintelligent” external environment poses relatively rigid and urgent requirements on the per-
formance of the programmed system. These requirements are usually stated in terms of real-time
constraints. Examples of such systems include ballistic-missile-defense systems, nuclear reactors,
robotics, process control plants, flight and space shuttle control, real-time databases, real-time
communication networks ...etc. [Zave:81], [Zave:82]. The complexity of these systems coupled
with an obvious lack of powerful specification and verification techniques made it impossible to
assess their performance or even to judge their correct operation.

In the past few years, different aspects of real-time systems have been studied, namely:
specification, languages, models and semantics. However, the absence of a unified formal frame-
work that addresses the afforementioned issues severely limited the usefulness of these studies
[Stankovic:88a], [Joseph:88]. In this paper, we present a single framework for real-time systems
which makes it possible to see the relation between specification, implementation, correctness, and
performance issues. The framework we suggest is based on the Input-Output Timed Automaton
(IOTA — read “yota”) model.

We have used the IOTA framework to model robotics applications [Bestavros:90b]. The
tasks involved in a robotic application are diverse (vision [BBN:86], motion control [Brockett:88],
high-level planning and behavioral specification [Brooks:86], ...etc.) and usually make use of very
different resources (special purpose image processors, tailor made controllers and drivers, general
purpose processors, ...etc.) Furthermore, these tasks interact in a non-trivial way. Being able to
specify and verify such complex systems in a single framework is both challenging and attractive.

2 The IOTA model: An introduction

In this section, we introduce the Input-Output Timed Automaton (I0TA) which is an extension of
Nancy Lynch’s Input-Output Automaton (I10A) introduced in [Lynch:88a] to study discrete event
systems (e.g. distributed databases [Lynch:89b].) The IOTA model provides a formal semantics
definition for ESPRIT [Bestavros:90a], a specification language for real-time systems. We used the
IOTA model and the EsPRIT language to specify and analyze a number of real-time applications
[Bestavros:90b].

2.1 Channels, Signals, Events and Actions

In our model, time is a measurable, continuous, infinitely divisible quantity. We represent any
point in time by a nonnegative real ¢ € . Time intervals are defined by specifying their end-
points which are drawn from the set of nonnegative rationals or nonnegative integers D C . Time
intervals might be closed, open or semi-open. If ¢; and t5 are two points in time, t1,15 € D, then
[t1,12], (t1, 2], [t1,t2), (f1,t2) are the possible closed, right-closed, left-closed, and open intervals,
respectively. We use {t{,1,} to denote any one of these cases.

A real-time system is viewed as a set of interacting IOTAs. IOTAs communicate with
each other and with the external environment through channels. A channel is an abstraction for
an ideal communication media. Among others, a channel might represent a simple physical wire
that carries an electrical signal be it binary or analogue. It might represent a Unix-like socket or
pipe. Or, it might represent a function invocation and a possible transfer of information through
function calls and returns. The information that a channel carries is called a signal. A signal
consists of a sequence of events. An event underscores the instantiation of an action at a specific
point in time. Figure-1 illustrates the notions of channels, actions, events and signals.

Our concept of actions is similar to that used in the IOA model [Lynch:88a]. In particular,
we view actions as tokens that are generated as outputs and consumed as inputs. More formally,
let a; be an action of a IOTA A that was signaled at time #; and remained activel till time t;,
where ¢; > t;, when another action a; was signaled. The tuples (a;,¢;) and (a;,t;) are called
events.? Furthermore, the sequence of events (ay,t1), (az,12), (a3, t3), ..., (ag, tg),... is called a
signal.

As in [Lynch:88a], channels® are classified as internal or external and as input or output.
Signals from external channels are observable from outside the IOTA. Signals from internal chan-
nels are only observable locally. Signals from input channels are uncontrollable since they are
supplied by the environment or by other IOTAs. Unlike other models [Hoare:78], they cannot be
blocked. Signals from output channels, on the other hand, are the way an IOTA reacts to the
outside stimuli. Thus, a [OTA can be considered as performing a mapping from its external input
signals to its external output signals. In a sense, it acts as an actor in a dataflow graph [Veen:86].

As was done in [Lynch:88a], we formally define the signature sig(A) of a IOTA A to be a
partition on the channels of A into three disjoint sets of input, output and internal channels. For
a IOTA A, we denote these sets by in(sig(A)), out(sig(A)) and int(sig(A)), respectively. The
set consisting of both input and output channels is the set of external channels observable from
outside the IOTA. We denote this set by ext(sig(A)), where:

ext(sig(A)) = in(sig(A)) Uout(sig(A))

The set consisting of both output and internal channels is the set of local channels. These are the
locally controlled channels of A. We denote this set by loc(sig(.A)), where:

loc(sig(A)) = out(sig(A)) U int(sig(A))
We denote the set of all the channels of a IOTA A by channels(.A), where:
channels(A)) = in(sig(A)) U oul(sig(A)) U int(sig(A))
!By “remained active” we mean that no other actions were activated on the same channel during that period

?The interval for which the action a; was active is [ti, t5).
Jand consequently signals and actions that they carry

Channels h

(a)
Value of Signal S Actlons
A
d [R—
c V.o
| X N R
a -
: : : Time
VA >
t1 t2 t3
Le ala |
™ gl bl gl |
Event:(c,tl) Event:(b,t2) Event:(d,t3)
(b)

Figure 1: (a) IOTAs communicate via channels. (b) Actions, Events and signals.

Finally, as with channels, we classify actions, events and signals as being input/output, inter-
nal/external or local.

The value of a signal at any point in time ¢, is defined to be the action that was active at
that time. A special value, L (null), denotes the absence of any actions. This is useful to model
systems where actions are signaled on and off. In these situations, signaling off can be represented
by signaling on a null action. Note that this allows the representation of both continuous and
discontinuous signals. In particular, we call a signal continuous if it has a non-null value at every
point in time. Otherwise, the signal is called discontinuous.

We formally define the signaling range, range 4(), of a IOTA A to be a function that maps
each channel of A, to a (possibly infinite) range of non-null values that the channel might signal.
These are the actions associated with that channel. For instance, if MOVE is a channel of A and
range 4(MOVE) = {North, South, East,West} then the channel MOVE can only carry four actions:
MOVE(North), MOVE(South), MOVE(East), MOVE(West), or the null action MOVE(L). We denote the
set of all possible actions of a IOTA A by actions(.A), where:

actions(A) = {c(a) : a € range 4(c),c € channels(A)}

A signal cannot convey more than one event simultaneously (i.e. at any point in time).
This is guaranteed by requiring that for a signal (a1,t1), (az,t2), ..., (ak, tg), .. tiy1 > i1 > 1.
As a matter of fact, we associate with every channel in the system a non-zero minimum switching
time that determines the minimum time between successive events that can be signaled on that
channel. This switching time is needed for physical as well as for formal reasons. Physically
speaking, signaling an event requires energy and thus time. Imposing a positive switching time
means that channels have finite capacities and thus cannot carry infinitely many events at the
same time. Formally speaking, the switching time is necessary for conducting a finite state analysis
on the system’s possible behaviors [Lewis:89], [Lewis:90].

We define the switching time switch4() of a IOTA A to be a function that maps the set
of channels of the IOTA, to the set of positive rationals or positive integers D¥. For instance, if
¢; is a channel of A, then switch(c;) € DT denotes the minimum switching time for the channel
.

The above definitions are somewhat different from those given in [Lynch:88a]. In partic-
ular, we have introduced the notion of signals and channels as useful abstractions to represent
communicated information and communication media respectively. In our model, a number of
actions? can be communicated through one channel. For example, consider the modeling of a
motor controller [Bestavros:88] as a IOTA. A possible command that the controller might accept
would be ROTATE(#) in which case the motor is expected to rotate # degrees. Using the IOA model
a different input action would have been necessary for each possible value of 8. It is more natural,
however, to represent the input to the controller with a single channel ROTATE which at different
points in time carries different values for # and thus different commands or actions.® Thus, it
makes sense to use channels rather than individual actions in the definition of the signature of a
TIOTA and to explicitly specify the possible ranges of these channels.

Another deviation of the IOTA model from the original IOA model is with respect to the
notion of fairness. In the IOA model [Lynch:88a] and its timed extension [Tuttle:88], the local

*possibly infinite
®Tt is possible for the channel to carry no information, in which case we say that the signal is absent (i.e. it has
a null value).

actions of an automaton are partitioned into equivalence classes to capture the intuition of an
automata being composed of a number of components. Each class of the partition is thought of
as the set of actions under the local control of one of the system’s components. The main reason
for defining this partition is to insure fair executions, where each of the system’s components gets
infinitely many chances to perform output or internal actions. In the IOTA model we have chosen
not to include this kind of partitioning explicitly. Instead, we decided that all the actions that
can be signaled on a specific channel are in the same class. That is, every local channel defines
an equivalence class by itself and, in an infinite execution, it is given the chance to change its
value infinitely often.® In real-time systems, the major concern is safe” and not necessarily fair
executions [Schneider:88]. Thus, in studying the behavior of IOTAs, we do not consider fairness
to be a major concern.

Finally, in Lynch’s model [Lynch:88a], [Lynch:88b] and its real-time extension [Tuttle:88],
there is no notion of the channel switching time. As we have explained above, such a notion is
necessary for a realistic modeling of real-time systems.

2.2 States, Computations and State transitions

At any point in time, a IOTA is in one of a possible set of states. We denote by states(.A) the
set of possible states of a IOTA A. A distinguished subset of this set is known as the set of
start states of A and is denoted by start(A). Neither states(.A) nor start(A) need to be finite.
The state of a IOTA is observable only locally and can be changed only by local computations.
Computations (and thus state transitions) are triggered by actions and can be scheduled to meet
specific timing constraints.

A channel changes its value by signaling (firing) a new action. Once this happens, the
computation associated with that action is performed. This might result in a state transition.
The firing of an action, along with the necessary computation and state transition, are assumed
to be done atomically: that is indivisibly and irreversibly.

Input signals cannot be blocked. Thus, input channels are always enabled. Local channels,
on the other hand, are enabled only when the IOTA is in one of some specific set of states. We,
therefore, associate with each local channel of the IOTA a pre-condition that determines when
that channel should be enabled to change its value. Note that the specific action that would fire,
is state dependent. Thus, the state of a IOTA determines which channel(s) are enabled and which
action(s) are fired.

To reflect the possible delays associated with computations, we associate lower and upper
time bounds with each local channel to determine when its signal will change value (by firing an
action) if the channel ever becomes enabled. For instance assume that 77 and 7_ are the lower
and upper time bounds associated with a local channel ¢. Furthermore, assume that ¢ became
enabled at time ¢;, then ¢ can fire at any time ¢; € [t; + 77,t; + 75| provided that it remained
enabled during the time interval [¢;,¢;). In a sense, these time bounds define a timing constraint
on the response of the IOTA to some conditions.

The pre-condition associated with a local channel ¢ partitions the set of states of the IOTA
into two disjoint subsets S and S%. 57 is the set of states in which the pre-condition is true and
thus the signal is enabled. 5% is the set of states in which the pre-condition is false and thus the

6if it becomes enabled infinitely often.
"That is executions where all timing constraints are satisfied.

signal is not enabled. Let {7/, 7} represent the timing constraints associated with the channel c.
These constraints implies that if the IOTA is in one of the states in ¢ then in the time interval
defined by {7, 77},® the IOTA will signal on ¢ an action from the set range 4(c), or else, it will
go to one of the states in 5%. In other words, an action is going to be taken on ¢ “in time” unless
disabled. Formally, this timing constraint is expressed as follows:

{Tlc T

S A (Sjcc, range(c))

For a IOTA A, the set of all such timing constraints (one per local channel) is denoted by
delays(A).

2.3 Executions, Schedules, Behaviors and Projections

The computations and state transitions of a IOTA A, can be formally described by a transition
relation steps(A) C states(A) X actions(A) X states(A). Each element of this transition relation
represents a possible step in the computation of the system that the IOTA models. Thus a
computation step is a triplet (s,7,s’) € steps(A) describing the transition from state s to the
state s’ through the occurrence of the action 7. Note that in state s, the channel firing the action
7 is enabled. Furthermore, state s’ captures the effect of firing = starting from s (i.e. atomically
and irreversibly executing the computations associated with 7 starting from state s.)

We adopt the same definitions given in [Lynch:88a]. In particular, an execution fragment of
the system that a IOTA models can be described with a possibly infinite string of alternating states
and actions of the form sg, 71,81, 72,..., Ty, Sn. An ezecution is simply an execution fragments
that begins with a start state (i.e. s € start(A)). The set of all possible executions of a IOTA
A is denoted by execs(A).

Since the states of a IOTA are unobservable (except locally), we will be often interested
in sequences of actions rather than sequences of steps. The schedule o of an execution e is the
sequence consisting of all actions appearing in e. Since internal actions are also unobservable, we
further define a behavior 3 to be the sequence consisting of all the external actions appearing in
a. The set of all possible schedules of a IOTA is denoted by scheds(.A) whereas the set of all
possible behaviors of a IOTA is denoted by behs(.A). Obviously, behs(A) describes all the possible
interactions that a IOTA A might be engaged in and thus should conform with the specifications
of the system that the IOTA models.

In looking at executions of IOTAs, we will be often interested in only a subset of the
actions. For this purpose, we define the projection operation “|”. If e is an execution of a IOTA
A and II is a subset of the actions of A, then the projection e|Il consists of the steps in e that
have actions from II. The projection operation is similarily defined for schedules and behaviors.
In particular, a IOTA behavior is obtained from its corresponding schedule by projecting it on
the set of external actions.

2.4 Status and Status Succession

The state of a IOTA at any arbitrary point in time is not sufficient to predict its future behavior.
To explain why this is true consider the example shown in Figure-2 where a IOTA, A, enters

8The interval can be open, closed, or semi-closed (left-open or right open)

e T

A\

le—— Ti —_—

i » time
11 15 t3 ty
State: S s’
Enabled: a a
Intention: a@[t3,%4] a@lts,t4]

Figure 2: The notion of status = state + intentions

state s at time ¢;. Assume that ¢ € actions(A) is an action that is enabled in s. Furthermore,
assume that the time delay associated with that action is {77, 7,}. Now, assume that A changes
its state to s’ at time ¢y ({3 < t1 + 7;) such that a remains enabled. Obviously, knowing that .4
entered s at time ¢ is not sufficient to predict that action ¢ might fire anytime in the interval
{t1+ 7,11+ 7, }. What we really need in order to completely capture the possible future behavior
of a IOTA is, in addition to its state, its scheduled actions. This is encapsulated in our notion of
status.

Definition 1 The status of a IOTA is formally defined to be a tuple (s, 1), where:
o s € states(A) is a state of the IOTA A, and

o [is a vector of v time intervals, r = |channels(A)|, each associated with one of A’s chan-
nels. The vector I is called the intentions wvector.

In the status (s,[), the vector I of time intervals describes our ezpectations concerning
channels that might fire in the future. If channel ¢ is not enabled in state s then we do not
expect it to change its value in the near-future, and thus we associate an empty interval ¢ with
it (I(¢) = €). On the other hand, if the channel ¢ was enabled since time t', where ¢ <'t, and is
constrained to fire within an interval of {r, 7,}, then we do expect it to happen in the interval
{max(t' + 71,t),t' + 7}, where t is the time in which the state s was entered. Therefore, we
associate that interval with the channel ¢. That is ({(c¢) = {max(t' +7,1),t + 7, }). Finally, if the
channel ¢ is enabled and unconstrained” then we do expect it to fire at any point in the future,

°For example if it is an input channel.

and thus we associate with it the interval {¢,00} (I(a) = {t,00}), where ¢ is the time at which
state s was entered.

Associated with every start state sg of a IOTA A we define an initial intention, Iy, as
follows:

Ve, € sig(A) -
if ¢; € in(sig(.A)) then
Io(¢i) = [switch a(e;),]
else
if sp € 5" then
o) = {1515}

else
IO(Ci) =&
o ALY e . o . . .
where 5" "~ " (5%, rangea(c;)) is the timing constraint associated with a local channel ¢;.

Notice that in the above definition, we have assumed that a IOTA starts at time 0. The tuple
(s0,1o), where sg € start(A) and Iy is defined as shown above, is called an initial status.

Now, we are prepared to define the notion of status succession. Assume that the status
(s, 1) of a IOTA, A, was entered at time ¢ (with ¢ = 0 for initial status). Furthermore, assume
that it remained in the same status until time ¢’ (¢’ > t), where it entered another status (s, I')
as a result of firing an action 7™ € range4(c;), where ¢; € sig(A). We say that the status (s, 1)
is a legal successor of the status (s,) if and only if the following conditions hold:

1. Safety: For any channel ¢; € sig(.A), either

(a) I(¢;)=¢,o0r
(b) t' € I(c;).

2. Legality: For the fired action 7 € range4(c;), where ¢; € sig(.A), we have:

(a) (s,m,s") € steps(A), and
(b) t' € I(c;).

3. Continuity: For any schannel ¢; € sig(.A), we have:

(a) If ¢; is not enabled in ', then I'(¢;) = €.

(b) If I(¢;) = € and ¢; is enabled in &', then I'(¢;) = {' + 7, ¢’ + 7.}, where {7, 7,} is the
timing constraint associated with ¢;.

(c¢) If I(¢;) = {t1,t2} and ¢; is enabled in s’ and ¢; # ¢; then I'(¢;) = {maa(t',t1), 12}

(d) If ¢; remains enabled in s’ then I'(c;) = {t' + maz(m, switcha(c;)),t + 7,}, where
{71, 7} is the timing constraint associated with c;.

The first condition guarantees that scheduled actions eventually happen in time. An action
does not occur if another action should be scheduled first. In other words, the execution is safe

and no deadlines are missed. The second condition guarantees that the state transition from s
to ¢ is defined as a legal move of A. In other words, a ready-to-fire action exists which would
cause this transition. The third condition guarantees the continuity of intentions. This means
that the right intervals are used for the new status. In particular, empty intervals are associated
with disabled signals, fresh intervals are associated with newly enabled signals, updated intervals
are associated with signals that continue to be enabled.

We use the notation (s, I) (rt) (s',1I') to denote direct status succession due to the event
(7,t'). Moreover, we use the notation (s,I) — (s’,I') to denote zero or more successions and

the notation (s,) —— (s',I') to denote one or more successions.

2.5 Timed Executions, Histories, Schedules and Behaviors

Consider the sequence of status successions starting at time ¢ = 0 with an initial status (sg, fo):

(r1:t1) (m2,t2) (misti)
(80,[0) |1—} (81,11) |—2—§ (82712) .. .(82'_1,]2'_1) — (Si,ti) e
The sequence consisting of alternating statuses and events from a status succession is called
an execution history. The execution history for the status succession given above is:

(80710)7 (ﬂ-lvtl)v (817]1)7 (7T27t2)7 (82712)7 .. '(Si—lvli—l)v (ﬂ-ivti)v (Sivli)v oo

Following the notation of [Tuttle:88], we will call the sequence ty,t1,%9,...,%;, ... a timing
of the execution history given above. A timing is thus a nondecreasing mapping 7 from a non-
empty prefix of nonnegative integers — namely the indices of the actions/states — to the set of
nonnegative reals. For example, t; = 7(7) is the time at which the action m; was taken and state
s; entered. Notice that the mapping 7 is generally a many-to-one mapping, thus, allowing several
actions to be taken at the same point in time.'® This is necessary to be able to describe parallel
behaviors.

For an execution e, the tuple (e,7) defines a timed execution. The timed execution corre-
sponding to the execution history given above is:

S0, (ﬂ-lvtl)v 51, (7T27t2)7 825081, (ﬂ-ivti)v Siye -

Similarily, for a schedule h, the tuple (h,7) defines a timed schedule. The timed schedule
corresponding to the execution history given above is:

(ﬂ-lvtl)v (7T27t2)7 .. '7(7Ti7ti)7 s

Finally, for a behavior [, the tuple (3,7) defines a timed behavior. A timed behavior can
be obtained from a timed schedule using the projection:

((m1,t1), (T2, t2), ooy (Wisti), . .) |ext(sig(A))

We denote the set of all possible execution histories, timed executions, timed schedules and

timed behaviors of a IOTA A by hists(A), t.execs(A), t.scheds(A) and t.behs(A), respectively.

1%Tn which case their indices will map to the same value using 7.

10

3 The IOTA model: Definitions and Properties
We are now prepared to formally define a IOTA. A IOTA A is a septuple:
(sig(A), range(), switch (), states(A), start(A), steps(A), delays(A))

where:

o sig(A) is the signature of A.

o range() maps every channel in sig(.A) to the possible set of actions it might signal.
o switch4() maps every channel in sig(A) to its minimum switching time.

o states(A) is the set of states of A.

o start(A) C states(A) is the set of starting states of A.

o steps(A) is the set of possible steps of A.

o delays(A) is the set of time constraints of A.

3.1 Composing IOTAs

A basic aspect of the IOTA model is its capability to model a complex system by composing sim-
pler system components together. We follow an approach similar to that proposed in [Lynch:88a]
in that we require the signatures of the composed IO TAs to satisfy a strong compatability condition.

Definition 2 A countable collection of IOTAs, {A;}icr, is said to be strongly compatible if for
alli,j € 1,1 # 7, we have:

1. out(sig(A;)) Nout(sig(A;)) = ¢,

2. int(sig(A;)) N signals(A;) = ¢,

3. No channels appear in infinitely many signatures.
4. If ¢ € out(sig(A;)) Nin(sig(A;)), then:

(a) rangea,(c) C rangey,(c), and
(b) switchy,(c) > switcha,(c).

In the above definition, the first condition guarantess that no two output channels feed the
same input channel. The second condition guarantees that internal channels are unobservable by
the environment. The third condition restricts the fan-out of IOTAs to a finite number. These
three conditions are identical to those used with the IOA model [Lynch:88a]. The last condition,

11

however, requires some explanation. Obviously, an output channel ¢ from A; can be used to feed
an input channel of A; only if the actions that might be signaled on ¢ are within A;’s range of
expectations. Moreover, it should be within A;’s capacity to handle the stream of events gener-

ated by A;.

Definition 3 The composition A = [];c; Ai of a strongly compatible collection of IOTAs, {A;}ier,
15 the IOTA defined as follows:

o The signature, sig(.A), is given by:
— an(sig(A)) = Uier in(sig(Ai)) — Uses out(sig(Ai)).
— out(sig(A)) = Uieg out(sig(Ai)).
— mi(sig(A)) = Uiep int(sig(Ai)).
o The signaling range function, rangeA(), is defined as follows:
- Ifce Zn(‘%g('A)) then Tange.A(C) = mcEin(sig(.Ai)) Tange.Ai(C)
— Ifc€loc(sig(Ay)), i € I then rangey(c) = range4,(c).
o The switching time function, switcha(), is defined as follows:
— If c € in(sig(A)) then switch 4(c) = MaX.gin(sig(A;)) SWitch4,(c)
— If e €loc(sig(Ay)), i € I then switcha(c) = switchy,(c).
o states(A) = [[;c; states(A;).
o start(A) = [l;er start(A;).

o steps(A) ={(s1,m,83) Vi eI, if m € actions(A;) then (s1[i], 7, $3[i]) € steps(A;),
and if 7 ¢ actions(A;) then s1[i] = s3[4]}.
_ o {7—167713} o . Cc {7—167713}
o delays(A) = Uier 155 T (85 rangea (o)) 55 U
§f = ([1j<; states(A;)) x S¢ x (I;s; states(A;));
5% = (I1j<; states(A;)) x S5 x (I];5; states(A;))}

(SJ%, range,(c)) € delays(A;);

3.2 JTOTAs as IOAs

In this section, we show how to build an equivalent TOA for a given IOTA. This construction
allows us to use most of the proof techniques developed for the IOA model [Lynch:89c] with our
IOTA model. The basic idea is to encode all the timing information of a IOTA into the states
and steps of an equivalent IOA. We do so, by having the set of actions of the IOA be the set of all
possible events of the IOTA; the set of states of the IOA be the set of all possible statuses of the
TOTA; the set of start states of the IOA be the set of all possible start statuses of the IOTA; the
set of steps of the IOA be the set of all possible status successions of the IOTA; and finally, the
partition of the IOA be the trivial partition that puts all the actions of each channel in a different

12

class. We do so, formally, in the following definition.

Definition 4 Given a IOTA A, where:
A = (sig(A), range A(), switch (), states(A), start(A), steps(A), delays(A))

we define A, the I10A-equivalent of A, to be:

A = (sig(A), states(A), start(A), steps(A), part(A))

where:

o in(sig(A)) = range(in(sig(A))) x R

o out(sig(A)) = rangea(out(sig(A))) X

R

o int(sig(A)) = rangea(int(sig(A))) x ®

o states(A) = {(s,1(c;)) : s € states(A), T
A)

o start(A) = {(so, o) : so € start(A); Iy is the initial intension associated with sg}

(¢;) ERX R, ¢; € sig(A)}

o steps(A) = {((s, 1), (7, 1), (s, 1)) : (s,1) (m?) (s',I') is a status succession of A}

part(A) = {{¢;} : ¢; € sig(A)}

Theorem 1 Iffi is the 10A-equivalent of a IOTA A, then:

hists(A) = execs(A), t.scheds(A) = scheds(A), and t.behs(A) = behs(A)

Proof: We need only to prove that hists(A) = exees(A).'' That is, we have to show that
e € t.hists(A) & e € exees(A). We do so by proving two lemmas. The first states that any prefix
of an execution history of A exists as a prefix of an execution of A. The second, shows that if an
execution history e of A is finite then it is an execution of .A. These two results are sufficient to

show that any finite or infinite execution history e € ¢.hists(.A) is also an execution e € execs(A).
u

Lemma 1 If A is the IOA-equivalent of a IOTA A, then any prefiz of an execution history
e € hists(A) exists as a prefiz of an execution in execs(A).

Proof: The proof is by induction on [the length (number of events) of e.
e Base (I =0)

— Any prefix of length 0 in hists(.A) consists of just an initial status (sg, lp). By defini-

tion, (so,lo) € start(A). Hence, it is the prefix of at least an execution in execs(A).

1 The proof for schedules and behaviors follows directly from the proof for executions.

13

o Induction (I > 0)

— Assume that all prefixes of length [— 1 in hists(\A) also exist in execs(A).

— Consider any prefix e; of length [in hists(A). Obviously, ¢, = ;4 (ret) (s1, 1),

where ¢;_1 is some prefix of length I — 1 in hists(.A).

— From the induction assumption, we have e;_; € execs(A). (1)

— Assume that (s;_1,/;—1) is the last status of e;_;. It follows that the I*h status

. . .)t .. -
transition in e; is (sj-1,/j-1) (E—i) (si, I;). From the definition of A above, we have

((s1-1, Di-1), (T,), (81, 1)) € steps(A). (2)

— From (1) and (2), ¢; € execs(A). This proves the induction and the lemma.

Lemma 2 Iffi is the IOA-equivalent of a IOTA A, then any finite execution history e of A is
also a finite execution of A.

Proof:

e Let e be a finite execution history of A. From Lemma 1, we know that e exists as the prefix
of some execution €’ of A. All we need to show is that ¢ = e.

o Let (s,1) be the last status in e. In s, no channels of A are enabled'?. From the definition
of A, there can’t be any actions out of (s,). Thus, (s,) is also the last status of €¢’. Thus

/

e=¢.

3.3 IOTA implementation
A TOTA A is said to implement another IOTA B, if and only if t.behs(A) C t.behs(B), that is,

if any timed behavior of A can also be produced by B. The reverse, however, is not true: there
might exist timed behaviors of B that are not timed behaviors of A. The notion of an IOTA
implementing another will be used mainly in verification. The idea is to prove that a given IOTA
implements a second, that the second implements the third, and so on until the final IOTA is
shown to implement the required specifications. The transitivity of the implementation relation
guarantees that the first IOTA indeed implements the specifications.

Lemma 3 The implementation relation is transitive.

Proof: For IOTAs A, B, and C, assume that A implements B and B implements C. Let U, V and
W denote the set of all timed behaviors of A, B and C respectively. Since A implements 5 and B
implements C, we have U C V C W. Thus U C W and A implements C. []

1261 otherwise s wouldn’t have been the last state of e

14

Lemma 4 A necessary condition for a I0TA A to weakly implement another IOTA B is that
any external actions of A be also external actions of B. That is ext(sig(A)) C ext(sig(B))

Proof: Immediate from the definition. [|

Note that the above definition allows a weak implementation not to have the same set of
inputs as the IOTA it is implementing. That is, a weak implementation might ignore some of the
inputs of the original IOTA. This, of course, leads to a trivial weak implementation of any IOTA
which is the nil IOTA that doesn’t have any input or output actions. Obviously the nil IOTA
is a weak implementation of any possible IOTA. To disallow trivial implementations, we define
strong implementations. A strong implementation (or just an implementation) of a IOTA does
not ignore any of the external inputs of that IOTA.

Lemma 5 A necessary condition for a IOTA A to strongly implement another IOTA B is that
ext(sig(A)) C ext(sig(B)), and in(sig(B)) = in(sig(A)).

Proof: Immediate from the definition. [|

Notice that the above conditions do not require the implementing IOTA to have all of the
external output channels of the implemented IOTA. This is so because, in general, it might be the
case that signaling on one (or more) of those channels can be avoided. That is, the implementing
IOTA might elect to always produce behaviors that do not include actions signaled on those
channels.’® In most of the interesting cases, however, the implementing IOTA will not be able to
discard any of the output actions and thus will have an external signature identical to that of the
implemented IOTA.!*

In the remaining of this section, we derive a set of suflicient conditions for strong implemen-
tation of a IOTA by another. The idea is to come up with a mapping between the statuses of the
two IOTAs and show that any possible status succession in the implementing IOTA correspond
to some possible succession in the implemented IOTA. This approach is similar to the possibility
mapping proposed in [Lynch:88a], [Lynch:88b], except that it is complicated here by the need to
preserve the timing constraints of the implemented IOTA. The following theorem establishes the
required sufficient conditions.

Theorem 2 A set of sufficient conditions for a IOTA A to strongly implement another IOTA B
15 that:

1. ext(sig(A)) = ext(sig(B)), and

2. There exists a mapping I' from statuses(A) to the set gstatuses(B) (the power set of statuses(B)),
such that both of the following conditions hold:

(a) For every initial status (sg, lo) of A there is a an initial status (ro, Jo) of B such that
(7‘0, Jo) S F((So,lo)).

131f such behaviors are allowed by the specification.
1411 the remainder of this paper, we will assume that this is indeed the case.

15

(b) If (s,1) is a reachable status of A, (r,J) € I'((s,1)) is a reachable status of B, and

(s, 1) (mt) (s',I') is a possible status succession of A, then there exists a timed schedule

(h,T) that takes B from status (r,.J) to status (v',J'), where:
i. (¢, J)eT((s, 1), and
ii. (h,T)lext(B)= (m,t)ext(A).

Proof: The first condition guarantees that the necessary conditions of Lemmab are met. To prove
the theorem, we need to show that the satisfaction of the second condition is sufficient to provide
a strong implementation. Basically, we have to show that it gnarantees that any possible external
timed behavior of A can be generated by B. We do this as follows:

e Let A and B be the IOA-equivalents of IOTAs A and B respectively.

o Since ext(sig(A)) = ext(sig(B)), it follows from the construction of A and B that ext(sig(A)) =

ext(sig(B)). 1)
e The mapping I' is a possibilities mapping from the set states(f{) to the set 25tates(5) (the
power set of states of B). (2)
e Irom (1) and (2) above, and using Proposition-12 from [Lynch:88a], we get that A imple-
ments B implements. Thus, execs(A) C execs(A). (3)
e From Theorem 1, we get exzecs(A) = hists(A) and execs(B) = hists(B). (4)

o Irom (3) and (4) above, we have: hists(A) C hists(B). Thus, A implements B.

3.4 IOTA equivalence

Two IOTAs are equivalent if there is no way of identifying one from the other just by comparing
their behaviors.

Theorem 3 A [IOTA A is equivalent to another IOTA B if and only if: A implements B, and
B implements A.

Proof: Both the if and the only if parts can be proved by contradiction:

o Let A be equivalent to B and assume that .4 does not implement B.'*> It follows that
there exists at least one timed behavior of A that is not a timed behavior of B. Using
this behavior, the IOTAs A and B can be identified. Hence, they are not equivalent — a
contradiction.

The case in which B does not immplement A is symmetric.

16

o Let A be an implementation of B and B be an implementation of A and assume that A
and B are not equivalent. It follows that there exists a timed behavior of A (B) that is not
a timed behavior of B (A). Hence A (B) does not implement B (LA) — a contradiction.

4 Conclusion

The current practice in building real-time embedded systems is not based on any sound scien-
tific approach [Stankovic:88a]. In view of the increasing complexity, cost and criticality of these
systems, it has become evident that a new methodology should be adopted in their design and
implementation. In this paper, we proposed a unified framework for specifying and verifying
real-time digital systems. The framework we suggest is based on the IOTA model which is an
extension to the Input-Output Automata model proposed in [Lynch:88a] to study discrete event
systems.

A TOTA is an abstraction that encapsulates a system task. An real-time digital system is
viewed as a set of interacting [OTAs. IOTAs communicate with each other and with the external
environment using signals. A signal carries a sequence of events, where an event represents an
instantiation of an action at a specific point in time. Actions can be generated by either the
environment or the IOTAs. Each IOTA has a state. The state of a IOTA is observable and can
only be changed by local computations. Computations are triggered by actions and have to be
scheduled to meet specific timing constraints. IOTAs can be composed together to form higher
level IOTAs. A specification of a IOTA is a description of its behavior (i.e. how it reacts to
stimuli from the environment). A IOTA is said to implement another IOTA, if it is impossible to
differentiate between their external behaviors. This is the primary tool that is used to verify that
an implementation meets the required specification.

In [Bestavros:90a], and based on the IOTA model, we proposed ESPRIT, a language and
environment for the (E)xecutable (S)pecification of (P)arallel (R)eal-time (I)nteractive (T)asks.
In EsPRIT, a system is specified as an interconnection of IOTA objects. FEach IOTA object has
a set of state variables and a set of channels. State transitions are triggered by firing actions on
the IOTA’s channels. Local time-constrained actions are scheduled autonomously, whereas input
actions are enforced by the environment. When an action fires, the method associated with it is
applied, resulting in a state transition. IOTA objects can be specified in a number of different
ways, including inheritance, augmentation and composition. The instantiation (creation) of a
TIOTA artifact involves, determining its parameters, binding its channels, and initializing its state
variables.

We have implemented a compiler for specifications written in the ESPRIT language. Once
compiled, such specifications can be executed in simulated time. In [Bestavros:90b], the specifi-
cation and simulated behavior of Buggy, an elaborate cockroach-like robot, were presented. The
strength of the IOTA model (preserved in ESPRIT) was demonstrated by carrying out proofs on
Buggy’s specification (stability and timing properties) and by comparing it to other behavioral
specification methodologies.

As we deepen our understanding of the issues involved in the specification and implemen-
tation of parallel real-time systems, we have come to realize the need for some extensions to our

17

work. As it stands, the IOTA model, as well as all similar models, allow time constraints to be
specified for individual actions. It is often the case, however, that structured sequences of actions
need to be timed. We are working now on a number of possible modifications of the IOTA model
and EsSPRIT language to support structured time constraints. Using the IOTA model, the only
valid executions of a given system specification are those where time constraints are always satis-
fied. To obtain real implementations, enough “cycles” have to exist to guarantee that condition.
Given a specific hardware configuration, an interesting question is whether the specifications are
realizable or not. We have already started to use the IOTA model and the ESPRIT environment
in the specification and implementation of robotics applications. It would be both interesting and
challenging to apply our methodology to other applications. In this respect, we are interested in
two quite different applications: real-time transaction management systems and massively parallel
computations.

References

[BBN:86] BBN Laboratories Incorporated and Harvard Robotics Laboratory, “Robotic task control”, Pro-
posal No. P88-CISD-109, March 1988.

[Bestavros:90a] “ESPRIT: Executable Specification of Parallel Real-time Interactive Tasks.” Technical
Report TR-06-90, Department of Computer Science, Harvard University, March 1990.

[Bestavros:90b] Azer Bestavros, James Clark and Nicola Ferrier, “Management of sensori-motor activity
in mobile robots.” Proceedings of the 1990 IEEE Robotics and Automation conference, Cincinati,
Ohio, Feb. 1990.

[Bestavros:89a] Azer Bestavros, “A new environment for developing real-time applications based on the
IOTA model”, Internal Report — Department of Computer Science, Harvard University, May 1989.

[Bestavros:89b] Azer Bestavros, “The Input Output Timed Automaton: A model for real-time parallel
computation” Technical Report, TR-12-89, Department of Computer Science, Harvard University,
May 1989.

[Bestavros:88] Azer Bestavros, “The Michael - Merlin Connection: Programming tools for the remote
control of the American Cimflex robot”, Technical Report — Robotics Laboratory, Harvard University,

September 1988.

[Brockett:88] Roger Brockett, “On the Computer Control of Movement”, Proceedings of the 1988 IEEE
Robotics and Automation Conference, Philadelphia.

[Brooks:86] Rodney Brooks and Jonathan Connell, “Asynchronous Distributed Control System for a Mo-
bile Robot”, SPIE Proceedings, Vol. 727, October 1986.

[Clarke:83] E. Clarke, E. Emerson, and A. Sistla, “Automatic verification of finite-state concurrent systems
using temporal logic specifications: A practical approach”, Tenth ACM Symposium on Principles of
Programmang Languages, Austin, Texas, January 1983.

[Hoare:78] C. A. R. Hoare, “Communicating sequential processes”, Communication of the ACM, Vol. 21,
August 1978.

[Joseph:88] Mathai Joseph and Asis Goswami, “Formal Description of Real-Time Systems: A review”,
Research Report 129 — Department of Computer Science, Unwversity of Warwick, April 1988.

[Lewis:89] Harry Lewis, “Finite-state analysis of asynchronous circuits with bounded temporal uncer-
tainty”, Technical report, TR-15-89, Department of computer science, Harvard Unwversity, June

1989 (revised July 1989).

18

[Lewis:90] Harry Lewis, “A logic of concrete time intervals”, Proceedings of LICS’90, the fifth annual
symposium on Logic In Computer Science, Philadelphia, PA, June 1990.

[Lynch:88a] Nancy Lynch and Mark Tuttle, “An Introduction to Input/Output Automata”, Technical
Report MIT/LCS/TM-373, November 1988.

[Lynch:88b] Nancy Lynch, “The I/O Automata” 6.852 Distributed Algorithms Lecture Notes — Laboratory
of Computer Science, MIT, Fall 1988.

[Lynch:89a] Nancy Lynch and Haggit Attiya, “Time bounds for real-time process control in the presence
of timing uncertainty”, Unpublished notes — LCS/MIT, January 1989.

[Lynch:89¢] Nancy Lynch and Haggit Attiya, “Assertional proofs for timing properties”, Preliminary report
- LCS/MIT, August 1989.

[Lynch:89b] N. Lynch, M. Merritt, W. Weihl, and A. Fekete, “Atomic Transaction”, In publication, Jan-
uary 1989.

[Mishra:83] B. Mishra and E. Clarke, “Automatic and hierarchical verification of asynchronous circuits
using temporal logic”, Technical Report CMU-CS5-83-155, September 1983.

[Schneider:88] Fred B. Schneider, “Critical (of) issues in real-time systems”, Technical Report 88-914
(Position Paper) — Department of Computer Science, Cornell University, May 1988.

[Stankovic:88a] John A. Stankovie, “Real-Time computing systems: The next generation”, COINS Tech-
nical Report 8§8-06 — University of Massachusetts Amherst, January 88.

[Stankovic:88a] John A. Stankovic, “Misconceptions about real-time computing”, IEEE Computer, Octo-
ber 1988.

[Tewilliger:87b] Robert B. Tewilliger “PLEASE: Executable specification for incremental software devel-
opment”, Report No. UIUCDCS-R-86-1295— Dept. of Computer Science, University of lllinois at
Urbana-Champaign, June 1987.

[Tewilliger:89b] Robert B. Tewilliger, Mark J. Maybee and Leon J. Osterweil, “An example of formal
specification as an aid to design and development”, Proceedings of the fifth International Workshop
on Software Specification and Design, May 1989.

[Tuttle:88] Mark Tuttle, Michael Meritt and Francesmary Modugno, “Time Constrained Automata”, Un-
published Notes, November 1988.

[Veen:86] A. Veen, “Dataflow Machine Architecture”, ACM Computing Surveys, Vol. 18, No. 4, December
1986.

[Zave:81] Pamela Zave and Raymond Yeh, “Executable requirements for embedded systems”, Proceedings
of the fifth conference on Software Engineering, San Diego, California, March 1981.

[Zave:82] Pamela Zave, “An operational approach to requirements specification for embedded systems”,
IEFEE Transactions on Software Engineering, Vol. 8, No. 3, May 1982.

[Zave:84a] Pamela Zave, “The operational versus the conventional approach to software development”
Commaunications of the ACM, Vol. 27, No. 2, February 1984.

[Zave:86] Pamela Zave, “Salient features of an executable specification language and its environment”
IEFEE Transactions on Software Engineering, Vol. 12, No. 2, February 1986.

19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

