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Abstract—We present a thorough characterization of what we
believe to be the first significant live Internet streaming media
workload in the scientific literature. Our characterization of over
3.5 million requests spanning a 28-day period is done at three in-
creasingly granular levels, corresponding to clients, sessions, and
transfers. Our findings support two important conclusions. First,
we show that the nature of interactions between users and objects
is fundamentally different for live versus stored objects. Access
to stored objects is user driven, whereas access to live objects is
object driven. This reversal of active/passive roles of users and
objects leads to interesting dualities. For instance, our analysis
underscores a Zipf-like profile for user interest in a given object,
which is in contrast to the classic Zipf-like popularity of objects
for a given user. Also, our analysis reveals that transfer lengths are
highly variable and that this variability is due to client stickiness to
a particular live object, as opposed to structural (size) properties
of objects. Second, by contrasting two live streaming workloads
from two radically different applications, we conjecture that some
characteristics of live media access workloads are likely to be
highly dependent on the nature of the live content being accessed.
This dependence is clear from the strong temporal correlation
observed in the traces, which we attribute to the impact of syn-
chronous access to live content. Based on our analysis, we present
a model for live media workload generation that incorporates
many of our findings, and which we implement in GISMO.

Index Terms—Internet, live streaming, measurement, multi-
media, workload characterization.

I. INTRODUCTION

THE use of the Internet as a channel for the delivery of
streaming media content such as video and audio is para-

mount. This makes the characterization and synthetic genera-
tion of streaming access workloads of fundamental importance
in the evaluation of Internet and streaming delivery systems.

Over the last few years, there have been a small number
of studies that attempted to characterize streaming media
workloads [1]–[3], [11], [24], [29]. However, to the best of
our knowledge, all these studies targeted pre-recorded, stored
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streams (e.g., news clips, film trailers, educational clips) and
none has considered the characterization of live streams (e.g.,
camera feeds). This paper provides such a characterization
for a unique data set capturing hundreds of thousands of live
streaming sessions served over the Internet to thousands of
users as a complement to a very popular “reality TV show” in
Brazil.

While an interesting subject on its own, the characterization
of live streams on the Internet is likely to be of paramount im-
portance given the increasing role of the Internet as a delivery
channel for live content that complements other broadcast chan-
nels (e.g., TV). By complementing other broadcast channels,
we mean that the Internet enables users to bypass the editing (or
“montage”) necessary for broadcast purposes (e.g., enabling a
user to fix the source of a feed to a specific camera—say, goal-
keeper view in a soccer game). Enabling this level of access in
a scalable manner is a capability that is unique to the Internet
architecture (as opposed to broadcast media). Indeed, this lack
of editorial controls is the raison d’être of the Internet which
has catalyzed its growth as a complement to traditional brokers
of information exchange (e.g., TV, publishers, news agencies,
etc.).

While workload characterization is an important ingredient
of performance evaluation and prediction in general, it is par-
ticularly critical for proper capacity planning of live content de-
livery infrastructures, e.g., servers, network, CDN, etc. To elab-
orate on this point, note that when dealing with stored content,
if the aggregate load on an under-provisioned resource—say, a
server—reaches a given limit, the server may opt to simply “re-
ject” new requests. This “admission control” solution may be
acceptable since a user can be expected to come back at a later
time to request the stored content. For live content, turning down
a user’s request amounts to denying access, since the value of
the content is in its liveness. Thus, admission control is not a
viable alternative for content providers (or their proxies, such
as CDNs) when dealing with enabling their paying customers.
Note that many content providers are now charging for access
to streaming content, e.g., CNN’s NewsPass [12] and Real Net-
works’ RealOne SuperPass [28] subscription services. Capacity
planning based on accurate understanding of workload charac-
teristics [25] becomes a necessity. A case in point is the experi-
ence of thousands of users in January 1999 when attempting to
view VictoriasSecret.com’s highly advertised webcast.

The characteristics of live streaming workloads are likely to
be fundamentally different from those of pre-recorded, stored
clips [33], [34]. Live streaming workloads are likely to exhibit
stronger temporal (e.g., diurnal) patterns that may not be present
(or may be significantly weaker) otherwise. Also, the range of
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operations possible with stored media (e.g., VCR functions) are
simply not available for live media. More importantly, the corre-
lation between various variables may be significantly different
for live and stored media. For example, consider the possible
correlation between the length of time a user may be viewing
a stream and the QoS of the playout resulting from available
network bandwidth. For stored media, one would expect a pos-
itive correlation; namely, users tend to stop viewing a stream
when QoS degrades below a certain threshold. For live streams,
this correlation may be much weaker and/or the mitigating QoS
threshold may be significantly different since users do not have
the option of revisiting the content again in the future.

These differences between live media and stored media
access patterns stem from the fundamentally different passive
versus active roles that users and objects play in each case.
Accesses to pre-recorded, stored media objects are user driven;
they are directly influenced by user preferences, namely, what
to access and when to do so. Accesses to live media are content
driven; they are directly influenced by aspects related to the
nature of the object, e.g., show/event time, activities captured
by various feeds, etc. In such an environment, users are mostly
“passive”; they are fairly limited in how they are allowed to
interact with the streams they access: they can only join or leave
the audience of the live “active” content. Notice that we do not
consider synchronous rebroadcast of pre-recorded content to
constitute “live” content. While the synchronous nature of such
rebroadcasts is likely to make their characteristics different
from those of asynchronously accessed stored content, we argue
that “liveness” is an attribute that encompasses “synchrony”
(the difference between a movie premier and a pay-per-view
rebroadcast of the movie).

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the source of the logs used in this research.
We present basic information and statistics related to the traces
we collected and we introduce the terminology we adopt for
the remainder of the paper. In the following three sections, we
present results of our characterization along three increasingly
granular levels of abstractions, corresponding to client behavior
and arrival processes (in Section III), session characteristics (in
Section IV), and object request characteristics (in Section V).
We have extended GISMO [21], a streaming workload gener-
ator, to allow the synthetic generation of live streaming con-
tent workloads that resemble those we characterize in this paper.
This is described in Section VII. In Section VIII, we present an
overview of related work. We conclude in Section IX with a
summary of our findings.

II. LIVE STREAMING WORKLOAD

A. Source of the Workload

We obtained logs of over one month of accesses to a very
popular live streaming media server operated by one of the top
ten content service providers in Brazil. This server (a Microsoft
Media Server [13]) enabled users to tap into one or both of two
live distinct streaming media objects associated with a popular
Brazilian “reality TV show” that aired in early 2002 and lasted
for 90 days. At any point in time, each one of these live streams
provided (audio + video) feeds captured from one of 48 different

cameras embedded in the environment surrounding the contes-
tants in the reality show.

B. Characterization Hierarchy and Terminology

Requests for live streaming media are presented to the
streaming servers in an interleaved fashion. In order to under-
stand the characteristics of this type of workload as well as
the hidden structures existing in the interaction between users
and live streaming media services, we adopt a hierarchical
approach to the characterization of the workload [26]. To
that end, we look at the live streaming media workload as a
hierarchy of layers. At the lowest layer, the streaming servers
receive requests from multiple clients. At the next level up,
requests from individual clients are grouped into sessions. At
the top level, sessions from individual clients are grouped into
a client behavior level.

Throughout this paper, we use the term live streams (or
simply streams when liveness is clear from the context) to
refer to “continuous” feeds whose existence is defined by the
duration of an event (e.g., live show or game). We characterize
access to such streams at three increasingly granular levels of
abstractions or layers, corresponding to clients, sessions, and
individual transfers. Within each layer, an analysis of statistical
and distributional properties of variables within that layer is
conducted. Our approach is to analyze each layer individually
in order to obtain a characterization of the arrival processes
meaningful for that layer (e.g., interarrival times, level of con-
currency), access patterns in that layer (e.g., ON/OFF times),
and other statistics (e.g., popularity and temporal correlation).

Client Layer: The top layer of our hierarchy focuses on the
characteristics of the client population. We identify a client by
the unique player ID field that is recorded as part of every entry
in the logs. Notice that a client corresponds loosely to an indi-
vidual user. Exceptions to this include cases in which the same
software is used by multiple users sharing the same client ma-
chine. Client characteristics we consider include the number of
clients accessing the live content (i.e., level of concurrency) over
time, client interarrival times, and the relationship between a
client’s “interest” in the live content (relative to all other clients)
and the frequency of access by that client, measured in total
number of sessions of (or transfers to) that client.

Session Layer: Focusing on an individual client, we move
to the second layer of our hierarchy, in which we characterize
the variables governing client sessions of activity. We define a
client session as the interval of time during which the client
is actively engaged in requesting (and receiving) live streams
that are part of the same service (e.g., part of the same show)
such that the duration of any period of no transfers between the
server and the client does not exceed a preset threshold .
According to this definition, a given client’s access pattern is
governed by periods of activity (session ON time) and of in-
activity (session OFF time). Fig. 1 shows how client activities
(namely request start/stop) translate to various session ON and
OFF times. In particular, a session is the period of time during
which the transfer of content to the client is not stopped for more
than a given threshold .
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Fig. 1. Relationship between client activities and ON/OFF times at the session
and transfer layers.

Transfer Layer: Zooming in on session ON times, we char-
acterize the bottom layer of our hierarchy, which focuses on in-
dividual unicast data transfers, each of which is the result of spe-
cific actions performed by a client. Specifically, for live streams,
a transfer is the result of a pair of requests to “start” and eventu-
ally “stop” viewing a live feed. For stored video, other requests
may include VCR functionalities (e.g., “pause”, “fast-forward”,
“rewind”, etc.) Thus, a given session is characterized by pe-
riods of data transfer (transfer ON time) and of silence (transfer
OFF time). During transfer ON times, a client is served one
or more live streams (e.g., different live feeds). During transfer
OFF times (which by definition must be smaller than ) no
live streams are served to the client. Transfer OFF times cor-
respond loosely to “think” times or to what has been termed
“active OFF” times in [15]. Fig. 1 shows how client activities
(start and stop requests) result in various transfer ON and OFF
times. In this layer, and in addition to characterizing transfer ON
and OFF times, we also characterize individual transfer lengths,
number of concurrent transfers across all clients, transfer inter-
arrival times, and the temporal correlation of transfer arrivals.

Characterizing the workload at these distinct levels of ab-
straction allows one to concentrate on the analysis of the be-
havior of the different players that interact in this type of envi-
ronment, namely clients and streams. This hierarchical charac-
terization can also be used to capture changes in client behavior
and map the effects of these changes to the lower layers of the
hierarchical model, i.e., session and transfer layers. Finally, this
layered approach enables us to develop an explicable process
via which we can generate synthetic live streaming workloads
(as we discuss in Section VII).

C. Log Statistics and Server Configuration

Table I summarizes basic information and statistics about the
logs we analyze in this paper.

While the Windows Media Server supports both unicast and
multicast services, only unicast transfers were enabled. For each
one of the two streams it served, the Windows Media Server
provided four distinct encodings to match various client band-
width profiles (e.g., modem versus DSL). Unfortunately we do
not have direct knowledge of the settings for these different res-
olutions. However, our empirical measurement of the bit-rate
of individual transfers suggests that these four encodings cor-
responded to bit rates that are roughly around 7 kb/s, 18 kb/s,
32 kb/s, and 57 kb/s.

The Windows Media Server was configured to enable full log-
ging of all user activities throughout the log collection period.

TABLE I
BASIC STATISTICS OF THE TRACE USED IN THIS PAPER

Each entry in the log identifies a single client/server request/re-
sponse. For each entry in the log, the following information is
provided:

1) Client identification, e.g., IP address, player ID;
2) Client environment specification, e.g., OS version, CPU;
3) Requested object identification, e.g., URI of stream;
4) Transfer statistics, e.g., average bandwidth;
5) Server load statistics, e.g., server CPU utilization;
6) Other information, e.g., URL, HTTP status;
7) Timestamp in seconds of when log entry was generated.
Given the coarse one-second resolution of timing informa-

tion in the server log, it is often the case that zero time intervals
would be measured, e.g., for ON/OFF times, interarrivals, etc.
Throughout the paper, to enable the display of such measure-
ments on a logarithmic scale, we have opted to use the function

to represent a time measurement of seconds.
Log Sanitization: We have identified a number of problems

with a small percentage of the entries in the logs we used.1 These
requests were excluded from our characterization.

D. Fitting Procedures

Throughout this paper, we model various aspects of the work-
load using distributions which we fit to the empirical data we
obtained from the logs. Unless we mention otherwise, all our
fitted distributions yielded a correlation coefficient that well ex-
ceeds 0.95.

As will be evident later in the paper, there are periods of time
during which the number of users accessing content from the
server is very large (e.g., several thousands). To ensure that the
characteristics we present throughout the paper are not affected
by server overload, we have analyzed the logs and indeed estab-
lished that periods of server overload are extremely rare. Specif-
ically, we took all CPU load measurements, as reported in the
server logs, and averaged them in one-second bins. The results
indicated that the server utilization was below 10% for over
99.99% of the time. Similarily, the server load was below 10%
for over 99% of all transfers in the log.

III. CLIENT LAYER CHARACTERISTICS

In this section we present various client characteristics, in-
cluding number of clients over time (or level of concurrency),
the relationship between frequency of access and a client’s rel-
ative “interest” in the live streaming service, as well as other
statistics related to the client population in general.

1Specifically, these entries had erroneous timestamps (e.g., resulting in user
sessions spanning durations longer than the 90-day period of the show!) They
were all traced to a (perhaps misconfigured or buggy) MacOS client.
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Fig. 2. Client diversity: IP addresses over ASs (left), transfers over ASs (center), and transfers over countries (right).

Fig. 3. Cumulative distribution of number of active clients.

A. Topological and Geographical Distribution of Client
Population

An important question that is often asked regarding workload
characterization studies has to do with the “significance” of the
logs underlying the characterization. As evident from Table I,
the workload we characterize in this paper is fairly large in
terms of the number of clients (as identified by the ID of the
software player on the user machine), the number of accesses
made by these clients, as well as the diversity of the popula-
tion. Using IPAS [17], a software package from NLANR for IP
address to Autonomous System (AS) conversion, we translated
client IP addresses to AS numbers, which in turn were mapped
to countries using conversion tables published by CAIDA [18].
We were able to do so for 95% of the IP addresses in our work-
load. Our mappings identified over 1000 different ASs scattered
over 65 countries. Fig. 2 shows the “popularity” of each AS in
our workload as measured by the number of IP addresses (left)
and by the number of transfers (center) that have been traced
back to that AS, respectively. Fig. 2 (right) shows the distribu-
tion of transfers over the various countries. All three plots sug-
gest a Zipf-like profile, with parameter and ,
respectively.

B. Client Concurrency Profile

At any point of time , a number of clients are considered
active, in the sense that their sessions are still in progress. This
level of concurrency could be used to gauge the popularity of
the particular content being transmitted at time . Fig. 3 shows
the marginal distribution of over the entire trace (measured
over 15-minute intervals or bins).

Notice that many factors may contribute to the wide vari-
ability observed in the number of concurrently active clients.
These include activities occurring within the reality show, as
well as diurnal effects on the live content (e.g., no interesting
contestant activities between 4am and 11am) and on the client
population (e.g., users flock to the site in early evening hours
or on weekends). Fig. 4 (left) shows the average value of
calculated for consecutive 15-minute bins, over the entire trace.
Also, in Fig. 4, we show the periodic behavior of by plot-
ting , where is one week (center) and one day (right).
While the number of clients in the system varies with respect to
the day of the week (e.g., weekends have slightly higher average
number of clients than weekdays), Fig. 4 (right) indicates that
diurnal patterns seem to be the main source of variability, with
the period from 4am to 11am showing a considerably smaller
number of clients.

To further quantify the temporal correlation between the
number of clients at various times of the day, we calculate
the autocorrelation function for for various lag values .
Fig. 5 shows the results. It clearly shows the daily periodicity,
with peaks around etc. which
are multiples of 1440 (the number of minutes in a day). The
peak correlation also decreases as the lag increases, which is
expected.

C. Client Interarrival Times

To characterize client interarrival times (IAT), we utilize a
time series to denote the arrival time of the th session in the
trace. The time series is defined as and it de-
notes the interarrival time of the th and th sessions, where
sessions and belong to different clients. Clearly, is
a time series which describes the interarrival time of clients.

Fig. 6 shows the frequency (left) and CCDF (center) distribu-
tions of , which we fitted to a Pareto distribution ,
with parameters and for seconds,
and with parameters and for .

The periodic nature of the number of clients observed in the
trace over time (Fig. 4) suggests that the client arrival process is
not stationary. Moreover, Fig. 4 (right) and Fig. 5 suggest that
such nonstationarity is of a periodic nature.

Prior work on characterizing streaming media content [3]
suggested that client arrivals were independent, consistent with
Poisson arrivals, i.e., exponential interarrivals. This is consis-
tent with findings in other settings (e.g., arrival processes for the
same Web document [5], and for telnet and FTP sessions [32]).
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Fig. 4. Temporal behavior of number of active clients: over entire trace (left), daily (center), and hourly (right).

Fig. 5. Autocorrelation of number of clients over time.

In our workload, the client arrival process is not stationary in
that it is highly dependent on time. That said, it is natural to as-
sume that over a very short time interval, such a process would
be stationary, and may indeed be Poisson.

To empirically test this hypothesis, we conducted a simple
experiment, in which arrivals were generated using a nonsta-
tionary process. This nonstationary process consisted of a se-
quence of piece-wise-stationary Poisson arrival processes, each
of which lasting for 15 minutes. The average arrival rate for each
of these stationary Poisson processes was set to reflect the av-
erage rates observed in Fig. 4 (right). Fig. 6 (right) shows the
frequency distribution of the resulting interarrival times. The
distributions showed in Fig. 6 (left) and (right) are surprisingly
similar,2 leading us to conclude that a good characterization of
the client arrival process is that it is a piece-wise-stationary
Poisson process, with arrival rates drawn from the periodic pat-
terns shown in Fig. 4. To gauge the “stationarity” of this process,
we repeated this experiment with various periods of stationarity
Poisson arrival rates (1 minute, 5 minutes, 15 minutes, 1 hour,
etc.). Our findings show that stationarity periods larger than one
hour produced a marginal distribution that diverged significantly
from that in Fig. 6 (left), leading us to conclude that the arrival
process could be assumed stationary at time scales of dozens of
minutes.

2The difference between the two distributions seems to be mainly for very
large interarrivals. This can be explained by noting that the diurnal mean arrival
rate we use to modulate the piece-wise-stationary Poisson process smooths out
the variability in the arrival process. This is evident by comparing the maximum
values of the three plots in Fig. 4.

D. Client Interest Profile

Over the entire trace, each client visits the live content any
number of times, indicating some level of interest in the live
content of the stream. To characterize the interest profile of the
client population, let denote the rank of a client in terms of
the number of requests (or sessions) for that client. Fig. 7 (left)
shows the log-log relationship between the number of transfers
to (in response to requests from) a client on the Y axis and the
rank of that client (based on number of requests from that
client relative to all other clients) on the X axis. Fig. 7 (right)
shows the log-log relationship between the number of sessions
of a client on the Y axis and the rank of that client (based on
number of sessions from that client relative to all other clients)
on the X axis. These two relationships fit a Zipf-like function
(also shown in Fig. 7) with and , respec-
tively.

One way of interpreting this relationship is to view the
number of requests (or sessions) by a client as a measure of
that client’s interest in the live content. Notice that this notion
of interest “inverts” the traditional roles of clients and content
they access. For stored content delivery (whether pre-recorded
streaming media or traditional HTTP file transfers), it is
common to think of the popularity of a given content (mea-
sured in terms of how frequently that content is accessed over
time). In our context, characterizing live content popularity
is not meaningful since clients cannot quite revisit the live
content. Rather, it is more appropriate to gauge the “interest” of
a client in the live content (measured in terms of how frequently
that client accesses the various constituent streams of the live
content over time). To some extent, client “interest” could be
viewed as the popularity of the client as a recipient of live
content. This role reversal highlights the “duality” of stored
versus live media access when it comes to the active versus
passive roles of clients and streams.

IV. SESSION LAYER CHARACTERISTICS

In this section we present various session characteristics, in-
cluding session ON/OFF times, as well as correlation between
session characteristics and other variables.

A. Number of Sessions

Since the trace does not explicitly identify the delimiters of
a given session, the number of sessions in the trace depend on
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Fig. 6. Client interarrival times: frequency (left) and CCDF (center) marginal distributions of client interarrival times. Frequency marginal distribution of client
interarrival times from a piece-wise-stationary Poisson process (right).

Fig. 7. Client interest profile: relationship between client rank and transfer frequency (left) and session frequency (right).

Fig. 8. Relationship between number of sessions and T .

our choice of the session timeout parameter . Fig. 8 shows
the relationship between the number of sessions in the trace and
the choice of . This relationship implies that the number of
sessions does not change much beyond seconds (1
hour). For the remainder of this paper, and unless stated other-
wise, we use seconds.

B. Session ON Time

To characterize the period of time during which a session is
active, we use a time series , which denotes the length of the
th session in the trace. Clearly, is the ON time for session
. Fig. 9 shows the frequency marginal distribution of for all

sessions identified in the trace. The distribution was fitted to a
Lognormal distribution with parameters and
(also shown in the figure).

Fig. 9. Distribution of session ON times.

Fig. 10. Distribution of session OFF times.

Fig. 9 indicates that session ON times are highly variable. To
determine whether this variability is fundamental to the nature
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Fig. 11. Frequency (left) and CCDF (center) marginal distributions of number of transfers per session and frequency marginal distribution of session transfer
interarrivals (right).

of client interactions with live content or whether it is symp-
tomatic of nonstationarity due to temporal correlation (as we
discovered for client interarrival times, for example), we char-
acterized the relationship between the length of a session and
the time-of-day when the session was started. We identified a
fairly weak correlation between average session length and ses-
sion starting time. This suggests that the high variability in ses-
sion length is not due to diurnal behaviors (as was the case with
number of active clients), but rather it is a fundamental property
of the interaction between users and live content. There was fur-
ther evidence of this when we compared the session lengths at
“special times” with those at other times. For example, sessions
starting on Sunday evenings seem to be generally shorter indi-
cating that users are checking in for a shorter time on average
to check out developments related to which contestant will be
eliminated. Sessions started at the start of a workday seem to
last longer on average, perhaps an indication of a class of user
who tune in at the beginning of a day and tune out at the end
of the day (thus bumping up the average session length for ses-
sions starting early in the day). Sessions started at other times
seem to have a fairly uniform average length.

C. Session OFF Time

In order to characterize the period of time during which a user
is inactive, we use a time series , which denotes the session
OFF times. We define as , where and

denote two consecutive sessions in the trace that belong to
the same client. Clearly, is the session OFF time (or “log-
off” time or “inactive OFF” time). Fig. 10 shows the frequency
distribution of for all sessions identified in the trace.

Fig. 10 shows that large session OFF times seem to form rip-
ples around specific values, which are around 1 day, 2 days, 3
days, etc. (multiples of 86 400 seconds). This underscores the
underlying variability in client interests, namely, those “revis-
iting” the show daily, or every two days, etc. We found that ses-
sion OFF times fit well an exponential distribution with

.

D. Transfers per Session

Session ON times underscore the continued activity of a given
user as reflected by a number of transfers within that session.
Fig. 11 (left) and (center) shows the frequency and CCDF distri-
butions of the total number of requests (and associated transfers)
within each of the sessions identified in the trace. The resulting

distribution features a heavy-tailed behavior, which we fitted
to a Pareto distribution with parameters
and . We have also studied the correlation between
time-of-day and the number of transfers per session, but as was
the case for session ON times, we concluded that the variability
in the number of transfers per session is not strongly tied to di-
urnal characteristics. Thus, we attribute this variability to the
nature of client interactions with live content.

E. Interarrivals of Session Transfers

The last variable we characterize at the session layer pertains
to the interarrival time between transfers within the same ses-
sion. Large interarrivals would correspond to a fairly passive
user behavior, whereas small interarrivals would correspond to
users constantly switching from one stream to another (akin to
“channel surfing”). Fig. 11 (right) shows the frequency distri-
bution of transfer interarrivals within a single session, which we
fitted to a Lognormal distribution with parameters and

mean seconds . Our char-
acterization suggests that the interarrival times between trans-
fers within the same session are rather large (average is more
than 5 minutes). This can be explained by noting the fact that
there are only two streams to choose from; and thus, a flip-flop
behavior between the two streams is not likely (and if a client is
really interested, he/she could simply have both streams concur-
rently delivered). Clearly this may well be different if users had
more choices—channel surfing is more likely as the number of
channels increases and the possibility of viewing all interesting
channels concurrently becomes infeasible.

V. TRANSFER LAYER CHARACTERISTICS

In this layer, we are interested in characterizing the workload
at the granularity of individual transfers. As we noted earlier,
an individual transfer is in response to a specific request by the
user. Thus, throughout this section, we use the terms “transfers”
and “requests” interchangeably.

A. Number of Concurrent Transfers

At any point in time , there are a number of active transfers
between the server and some number of clients. This level of
concurrency could be used to gauge the load on the server at time
. Fig. 12 (left) shows the cumulative distribution of the number

of concurrent transfers over the entire duration of the trace. We
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Fig. 12. Transfer layer characteristics: cumulative marginal distribution of concurrent transfers over all sessions (left), frequency marginal distribution of transfer
interarrival times (center), frequency marginal distribution of transfer lengths (right).

Fig. 13. Temporal behavior of transfer interarrival times: over entire trace (left), daily (center), and hourly (right).

also identified the mean number of active transfers over the en-
tire trace (the figure was not showed in the paper). Not surpris-
ingly, these distributions are fairly similar to those we observed
for the number of concurrent clients over time (Figs. 3 and 4).

B. Transfer Length and Client Stickiness

We now turn our attention to the length of time of individual
transfers. It is important to note that transfer lengths do not nec-
essarily correspond to transfer ON times since the latter could be
the result of overlapped transfers of multiple streams. Let
denote the length (in seconds3) of the th transfer in the trace.
Fig. 12 (right) shows the frequency marginal distribution for

, which fits a Lognormal distribution with parameters
and mean seconds .

The size distribution of individual Internet (unicast) transfers
has been studied extensively due to the possible impact that such
distribution may have on traffic characteristics. In [14], Crov-
ella and Bestavros argued that the origins of traffic self-simi-
larity can be attributed to the heavy-tailed nature of individual
file transfers, which was traced back to the heavy-tailed size dis-
tribution of available files. More recent debates [16], [27] as to
the true nature of file size distributions (whether Pareto, double
Pareto, or Lognormal) further underscore the importance of ac-
curate characterization (and understanding of the root causes)
of transfer time distributions.

For live media content workloads, the long tail of the transfer
length distribution is intriguing because it comes about not as a
result of available object size distributions, but rather as a result

3Given the real-time nature of live transmission, we use seconds to charac-
terize transfer lengths. Converting the characteristics to “bytes” would be a func-
tion of the transfer rate, which we characterize later.

of the client’s willingness to “stick” to the live stream being
transmitted. Recall that for live media, the transfer length is
bracketed by the start/stop actions performed by clients. There-
fore, for live media workloads, the source of high variability in
transfer sizes can be traced back to client behavior (as opposed
to object size characteristics).

To summarize, for live media workloads, the source of vari-
ability in the length of transfers is not due to the classical file
size distribution for stored, nonstreaming media workloads, but
rather to the willingness of a client to “stick” to a transfer. It is
important to note that for stored streaming content, both stream
size and client interactivity play a role in the length of transfers.

C. Transfer Interarrivals

We characterize the transfer interarrival times using a time
series that denotes the interarrival time of the th and

th transfers. We define as , where
denote the starting time of the th transfer in the trace.

Fig. 12 (center) shows the frequency marginal distribution of
, which suggests a heavy-tailed nature for this character-

istic, which we fitted to a Pareto distribution with parameters
and .

Like client arrivals, the request arrival process is clearly
not stationary. In Fig. 13, we show the periodic nature of
that process by plotting the average request interarrival time
over the entire trace (left), over a revolving weekly period
(center), and over a revolving 24-hour period (right). These
plots were obtained by computing the average of request inter-
arrival (rounded-up to the closest 1 second) during consecutive
15-minutes periods. While request interarrivals show some
variations with respect to the day of the week (e.g., weekends
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Fig. 14. Aggregate bandwidth (one-minute averages).

Fig. 15. Frequency distributions of transfer bandwidth.

have lower average interarrivals than weekdays), Fig. 13 indi-
cates that diurnal behaviors are the main source of variability
(with 2am to 9am showing considerably longer interarrivals).

D. Transfer Bandwidth

Fig. 14 shows the aggregate server bandwidth. Each point in
that plot corresponds to the average bandwidth consumed over a
one-minute interval. The figure shows significant periodic vari-
ability over four orders of magnitude, with peak (one-minute
average) values approaching 80 Mb/s.

Fig. 15 shows the marginal distribution of the aggregate band-
width of Fig. 14, i.e., the distribution of bandwidth experienced
by individual transfers in the trace. The figure shows two clear
“modes”. The first is exemplified by the spikes on the right-
hand-side of the distribution, which correspond to client-bound
bandwidth values determined primarily by the resolution of the
encoding chosen by the client (presumably to match various
modem speeds of DSL, cable modems, etc.) The value of the
bandwidth at these spikes was measured to be 58.6 kb/s, 32.5
kb/s, 17.6 kb/s, and 6.87 kb/s. The second is exemplified by
the more uniform values of bandwidth on the left-hand-side of
the distribution as well as between the aforementioned spikes,
which correspond to congestion-bound bandwidth values, re-
sulting from limited network resources and hence a degradation
in quality from the prescribed encoding rates. As discussed in
Section II, overloaded server (CPU/network) resources are not
culprits, making us believe that network congestion was pri-
marily to blame for this degradation. We estimate that around
15% of all transfers were congestion-bound.

VI. REPRESENTATIVENESS OF FINDINGS

The previous sections summarized our findings with regard to
the characterization of a single (albeit substantial) live streaming
workload. We contrasted the discovered characteristics to those
established in prior work for stored streaming delivery work-
loads. In this section we elaborate on the representativeness of
the trace we considered by providing cursory comparisons with
other stored and live streaming media workloads we analyzed.

A. Live Versus Stored Content

Earlier in this paper, we have made several references to the
impact of “live” content on the characteristics we observed
in the workload. In particular, we hypothesized that in live
streaming workloads, temporal (diurnal) characteristics are
mostly due to the content as opposed to client behaviors, and
thus are not likely to be “smoothed out” by the existence of
multiple client population time-zones. To verify this hypothesis,
we have analyzed the access patterns to pre-recorded stored
streams available to the same client population at the same
service provider. Our findings based on over 700 000 requests
to 27 821 distinct pre-recorded streams over an 18-day period
are shown in Fig. 16. Comparing the results in these figures
with those we presented earlier for the live reality show trace in
Fig. 4, we observe stronger diurnal patterns for the live content
when compared to the stored content. Specifically, comparing
Fig. 4 (right) and Fig. 16 (right), the ratio of the maximum to
minimum number of active clients is around 16 for live content
and only 9 for stored content.

B. Across Multiple Live Media Workloads

A natural question to ask is whether our findings are unique to
the workload at hand, or they are representative of live streaming
content delivery. To answer this question requires a systematic
characterization of a wide range of live streaming workloads to
allow for the identification of invariants.

As a step in this direction, we obtained and analyzed the
server logs of a second live streaming media content delivered
over the Internet. This second live streaming server is for a
“news and sports” radio station, which broadcasts live soccer
games as well as live (entertainment/sports/travel/weather)
news and interviews with soccer players. This second workload
consisted of 28,558 requests from 12 867 distinct clients, over a
two-week period from mid January 2002 to mid February 2002.
Clearly, the nature of the content served by this live “news and
sports” streaming server is radically different from that of the
live “reality show” streaming server we considered earlier.

We conducted a hierarchical characterization of that second
workload and our findings were surprisingly similar (modulo
parametrization) to those discussed earlier at all three layers of
our hierarchy. Table II compares the various characteristics for
the two workloads at the client, session, and transfer layers.

One clear difference between the characteristics of the two
workloads concerns the interarrival times (of clients, sessions,
and transfers). For instance, the interarrival time of clients was
found to follow a Pareto distribution in the reality show work-
load (see Fig. 6), but was found to follow a Lognormal distribu-
tion in the news and sports workload [see Fig. 17 (left)]. We
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TABLE II
SUMMARY OF THE DISTRIBUTIONAL CHARACTERISTICS OF THE “REALITY SHOW” AND “NEWS AND SPORTS” LIVE STREAMS

Fig. 16. Stored: temporal behavior of number of active clients: over entire trace (left), daily (center), and hourly (right).

Fig. 17. Frequency marginal distribution of client interarrival times: live radio (left), stored (right).

attribute this difference to the nature of interactions between
clients and live streams in the workloads. Specifically, one may
argue that a “news and sports” workload features less live con-
tent given the periodic/repetitive nature of news programs, as
opposed to the spontaneity of a reality show or a soccer game.
Indeed, the client interarrival time for the news and sports radio
workload resembles that for the pre-recorded stored streams
workload, both of which were fitted best to a Lognormal dis-
tribution as shown in Fig. 17.

VII. SYNTHESIS OF LIVE MEDIA WORKLOADS

As we discussed earlier, live media workload characterization
is crucial to the generation of synthetic (and parameterizable)
workloads. In this section, we describe how the results of our

hierarchical characterization are used to extend GISMO [21] to
generate live media workloads.

A. A Model for Synthetic Live Media Workloads

In our characterization of live streaming media we considered
many variables at various layers. Many of these variables are
not independent. For example, the client interarrival time dis-
tribution follows from the distribution of the number of clients
and the distribution of session ON and OFF times. Having some
redundancy in the characterization is fine as it helps us under-
stand various nuances of the access patterns. But when it comes
to using the results of a characterization to generate synthetic
workloads, we have to make choices as to which variables are
to be used to generate the synthetic trace. Such choices are made
based on an explicable generative model.
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TABLE III
SUMMARY OF THE VARIABLES RETAINED FOR THE SYNTHESIS OF LIVE STREAMING MEDIA WORKLOADS IN GISMO

In this section, we present such a model, along with the subset
of variables (from our characterization in the previous sections)
that are necessary for model instantiation.4

Our model for synthetic workload generation consists of the
following ingredients, which are loosely associated with the
three layers of our characterization hierarchy.

Client Arrivals: To be able to generate sessions (and eventu-
ally transfers within these sessions), we must determine when
these sessions are started and which clients initiate them. To
determine when client arrivals occur, we use a nonstationary
Poisson process whose mean is keyed to the periodic behavior
of Fig. 4. To determine which client should be associated with a
given arrival, we use the client interest profile of Fig. 7 (right).

Session Length: The arrival of a client underscores the start
of a session. To be able to generate transfers within that session,
we need to determine how many such transfers to generate. This
is determined using the distribution in Fig. 11 (left).

Transfers: To generate transfers within a specific session, we
need to determine when each transfer starts, and how long each
transfer ought to be. By definition, the first transfer starts with
the session arrival time. The start time of the following transfers
in the session (if any) could be determined using the distribu-
tion of the interarrival time of intra-session transfers in Fig. 11
(right). The length of each transfer is determined using the dis-
tribution of transfer lengths shown in Fig. 12 (right).

Table III summarizes the subset of variables we retained in
our generative model, as well as the specific distribution pa-
rameters suggested by our characterization of the workload at
hand. It is important to note that—as we surmised at the outset
and as we established by contrasting the reality show and the
news and sports workloads—some of the characteristics of live
media workloads are likely to depend on the nature of the appli-
cations at hand. For example, the periodicity observed in a re-
ality show workload is likely to be different from that observed
in live feeds for a soccer game. That said, we believe that the
generative processes we described here can be easily adjusted
to specific distributions associated with other applications. In-
deed, this is one of the features of the GISMO framework we use
to synthetically generate streaming media workloads [21]. For
example, in Table III the interarrival of session transfers would
have to be changed from Lognormal to exponential for the live
news and sports application characterized in Table II.

4It is important to note that our model is not unique. Indeed, we have toyed
with other models, but decided on the model presented in this section for its
explicative appeal.

B. GISMO Extensions

GISMO (a Generator of Internet Streaming Media Objects and
workloads) is a toolset that enables the synthesis of streaming
access workloads. GISMO was initially aimed at generating pre-
recorded media objects (such as video and new clips) and work-
loads. As such, it enables the generation of synthetic workloads,
which are parameterized so as to match properties observed in
real workloads, including object popularity, temporal correla-
tion of requests, client session length, seasonal access patterns,
client VCR inter-activities, and self-similar variable bit-rate.

A workload generated by GISMO consists of a set of “dummy”
streams (with popularity distribution, size distribution, and vari-
able bit-rate content encoding), and a sequence of user ses-
sions (with possibly inter-activities within each session). Al-
though many of these characteristics are still applicable to the
synthesis of live media workloads (e.g., VBR characteristics of
content), we found it necessary to extend GISMO to enable us to
capture the fundamental difference between pre-recorded and
live media workloads—namely the role reversal of clients and
streams. We give two specific examples below.

From our characterization of the client arrival process, it is
clear that client arrivals are highly correlated. This requires us
to introduce the notion of nonstationary of arrivals in GISMO. We
do so by allowing the parameters of the arrival processes to be
programmable, e.g., by using a user-supplied diurnal patterns.

From our analysis of clients interest in live content, we con-
cluded that there is a significant Zipf-like skew in the frequency
of access across the client population. To reflect this in GISMO

synthetic traces required us to introduce clients as unique enti-
ties, and to allow the association of sessions to clients to follow
a particular distribution (e.g., Zipf). Notice that this added fea-
ture (of associating a client to a GISMO session) is analogous
to the existing feature (of associating a stream to a GISMO ses-
sion). In a sense, our modification of GISMO allows both ends
of a session to be selected preferentially from amongst an enu-
merable set of clients and streams to reflect stream popularity
and/or client interest profiles.

VIII. RELATED WORK

Workload characterization is fundamental to the synthesis of
realistic workloads. Many studies focused on the characteriza-
tion and generation of nonstreaming (such as HTTP) workloads
(e.g., [4]–[9], [14], [15], [19], [30], [31]). These studies have
improved our understanding of the nature of access patterns in-
volving stored, nonstreamed content (e.g., documents). Some
of the important findings of these studies include the charac-
terization of Zipf-like document popularity distribution, heavy-
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tailed object and request size distributions, and reference lo-
cality properties. A discussion of the various characteristics of
workloads involving nonstreamed content is outside the scope
of this paper. Thus, in the remainder of this section, we re-
strict our coverage of related work to studies of streaming media
workload characterization and synthesis.

Streaming Media Access Characterization: Several previous
studies [2], [3], [11], [20], [29], have characterized workloads of
pre-recorded media object access primarily from media servers
for educational purposes. We summarize these efforts below.

Padhye and Kurose [29] studied the patterns of user inter-
actions with a media server. They characterized session length
and user activity within a session. A session was considered a
sequence of alternating ON periods (when the user is retrieving
the media) and OFF periods (when no media is being streamed).
The distributions of both ON period and OFF period appeared
to be heavy-tailed—Lognormal or Gamma distributions. They
also observed user jumps and “locality” in the jumps.

Acharya and Smith characterized user access to video objects
on the Web [2]. They found there was strong temporal locality of
reference. Accesses exhibited geographical locality, i.e., a small
number of local machines accounted for most requests. They ob-
served skewed popularity of video objects, which did not follow
a Zipf distribution. In addition, nearly a half of the requests were
for a partial access of the object.

Chesire et al. [11] analyzed a streaming media workload col-
lected from the border routers serving the University of Wash-
ington. The work focused on the characterization of object size,
server and object popularity, session statistics, sharing patterns,
and bandwidth utilization. They found that most streaming ob-
jects are small. However, they also found that a small percentage
of requests were responsible for almost half of the total bytes.
The popularity of objects was found to follow a Zipf-like distri-
bution. They also observed that requests during the periods of
peak loads exhibited a high degree of temporal locality.

Almeida et al. [3] analyzed workloads from two media
servers for educational purposes. During periods of approxi-
mately stationary request arrival rates, the client session arrival
process was found to be approximately Poisson, and the time
between interactive requests followed a Pareto distribution.
The popularity of the media objects they considered can be
modeled by the concatenation of two Zipf-like distributions.
The distribution of delivered media per session (or per request
within a session) was found to depend on the object’s length.
For long objects, this distribution was often heavy-tailed. Also,
they revealed a high degree of user interactivity in the workload,
which implied that the effectiveness of multicast delivery is
limited [22].

Streaming Traffic Characterization: Several studies [10],
[23], [24], [35] have focused on low-level dynamics of
streaming access, such as packet loss and delay, network trans-
port protocols.

Mena and Heidemann [24] examined the traffic emanating
from a popular Internet audio service using the RealAudio pro-
gram. They found a pervasive use of non-TCP friendly transport
protocols, and strong consistencies in packet sizes and rate pat-
terns. Recently, based on this study, Lan and Heidemann [10]

identified the structural properties of RealAudio traffic, and de-
veloped and validated an application-level simulation model.

Loguinov and Radha [23] analyzed performance metrics such
as packet loss, round-trip delay, one-way delay jitter, packet re-
ordering, and path asymmetry. In particular, their findings sug-
gest that Internet packet loss is bursty. Both the distributions of
loss burst length and round-trip time appear to be heavy-tailed.

Wang, Claypool, and Zuo [35] analyzed RealVideo traffic
from several Internet servers to geographically diverse users.
They found that typical RealVideos achieve a reasonably high
quality. Video performance is most influenced by the bandwidth
of the end-user connection to the Internet, but high-bandwidth
Internet connections push the performance bottleneck closer to
the servers.

Merwe, Sen and Kalmanek [33] presented results from a cur-
sory characterization of two types of streaming workloads on
the Internet: on-demand streaming of pre-recorded content and
live broadcasting. Their study revealed that requests for high-
bandwidth encodings are more prevalent than low bandwidth
ones (with a two-to-one margin), that the traffic resulting from
high-bandwidth encodings dominates in terms of byte traffic,
that Microsoft Windows Media is the dominant media type, and
that TCP is the transport of choice (with more than a two-to-one
margin over UDP). Also, their study revealed that a small per-
centage of routing prefixes accounted for most of the traffic de-
mand, which suggests that substantial bandwidth efficiency can
be realized using replication and CDN. While their work high-
lighted some differences between live and stored media work-
loads, it did not construct a model or suggest distributional char-
acteristics for live streaming workloads as we have done.

IX. SUMMARY AND CONCLUSIONS

In this paper we have presented a thorough characterization of
what we believe to be the first significant live Internet streaming
media workload in the scientific literature. We adopted a hierar-
chical approach at three layers, corresponding clients, sessions,
and transfers. Our characterization has uncovered a number of
interesting observations, in each of these layers.

Client Layer:

• The arrival process of clients can be modeled by a
piece-wise stationary Poisson process, which is charac-
terized by (1) a strong diurnal pattern that determines the
average arrival rate over consecutive intervals of time, and
(2) Poisson arrivals with the preset average rate for each
interval.

• The identity of the client making a request can be modeled
by a skewed Zipf-like distribution.

Session Layer:

• The session ON time follows approximately a Lognormal
distribution, and does not appear to be as heavy as Pareto.

• The session OFF time follows approximately an exponen-
tial distribution.

• The number of transfers within a session appears to be
skewed and can be modeled by a Pareto distribution.
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Transfer Layer:

• The transfer arrival process exhibits properties similar to
the client arrival process (and hence the same generative
process we devised could be used).

• Transfer lengths, which are attributed to client stickiness,
follows approximately a Lognormal distribution, which is
consistent with the session ON time distribution.

• Transfer bandwidth is primarily determined by client con-
nection speeds, with approximately 10% of the transfers
being severely limited by limited network resources.

Characteristics of live media access patterns are signifi-
cantly different from those of stored object workloads, whether
streamed (e.g., pre-recorded media objects) or not (e.g., files).
The difference stems from the role reversal of objects and
clients in live versus stored content delivery. Accesses to stored
streaming objects are user driven, whereas accesses to live
streaming objects are content driven. This observation, together
with the results of our characterization, helped us enhance the
GISMO toolset to generate realistic live media workloads.

In this paper, we did not characterize the properties of the net-
work as reflected in the logs we analyzed. Also, we did not study
the impact that network congestion, as reflected by increased
packet drops or lost connections would have on user access pat-
terns. We are currently investigating these issues.
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