
1

Distributed Server Migration for Scalable Internet Service Deployment
GEORGIOSSMARAGDAKIS † NIKOLAOS LAOUTARIS‡ KONSTANTINOSOIKONOMOU¶

georgios@net.t-labs.tu-berlin.de nikos@tid.es okon@ionio.gr

IOANNIS STAVRAKAKIS § AZER BESTAVROS⋆

ioannis@di.uoa.gr best@cs.bu.edu

Abstract— The effectiveness of service provisioning in large-
scale networks is highly dependent on the number and location
of service facilities deployed at various hosts. The classical,
centralized approach to determining the latter would amount
to formulating and solving the uncapacitated k-median (UKM)
problem (if the requested number of facilities is fixed –k), or
the uncapacitated facility location (UFL) problem (if the number
of facilities is also to be optimized). Clearly, such centralized
approaches require knowledge of global topological and demand
information, and thus do not scale and are not practical for large
networks. The key question posed and answered in this paper
is the following: “How can we determine in a distributed and
scalable manner thenumber and location of service facilities?”.

In this paper, we develop a scalable and distributed ap-
proach that answers our key question through an iterative re-
optimization of the location and the number of facilities within
network neighborhoods. We propose an innovative approach to
migrate, add, or remove servers within limited-scope network
neighborhoods by utilizing only local information about the topol-
ogy and demand. We show that even with limited information
about the network topology and demand, within one or two hops,
our distributed approach achieves performance, under various
synthetic and real Internet topologies and workloads, that is
comparable to that of optimal, centralized approaches requiring
full topology and demand information. We also show that it is
responsive to volatile demand. Our approach leverages recent
advances in virtualization technology towards an automated
placement of services on the Internet.

Index Terms— Service deployment, server migration, content
delivery, facility location.

I. I NTRODUCTION

Imagine a large-scale bandwidth/processing-intensive ser-
vice such as real-time distribution of software updates and
patches [2], and content delivery that relies on distributed

† Deutsche Telekom Laboratories and Technical University ofBerlin, Germany.
‡ Telefónica Research, Barcelona, Spain.
¶ Dept of Informatics, Ionian University, Corfu, Greece.
§ Dept of Informatics and Telecommunications, University of Athens, Greece.
⋆ Computer Science dpt., Boston University, MA, USA.

G. Smaragdakis is supported in part by the EU projects BigFoot(FP7-
ICT-317858) and CHANGE (FP7-ICT-257422), and by an IKY-DAAD award
(54718944). N. Laoutaris is supported in part by the NANODATACENTERS
program (FP7-ICT-223850) of the EU. K. Oikonomou was supported in part
by the FP6 project Autonomic Network Architecture (ANA, IST-27489),
which is funded by IST FIRE Program of the European Commission.
I. Stavrakakis was supported in part by the FP7 project SOCIALNETS
(IST, IST-217141), which is funded by IST FET Program of the Euro-
pean Commission. A. Bestavros is supported in part by a number ofNSF
Awards including CISE/CNS #1012798, CISE/CSR #0720604, ENG/EFRI
#0735974, CISE/CNS #0524477, CISE/CNS #0520166, CNS/ITR #0205294,
and CISE/EIA RI #0202067. Parts of this work appeared in the proceedings
of the 26th IEEE INFOCOM Conference [1].

datacenters [3] or a cloud computing platform [4], [5], [6],
to name some. Such services must cope with the typically
voluminousand bursty demand — both in terms of overall
load and geographical distribution of the sources of demand
— due to flash crowd phenomena [7]. To deploy such services,
decisions must be made on the time scale of minutes to a few
hours based on: (1) the location, and optionally, (2) the number
of nodes (or hosting infrastructures) used to deliver the service.
Two well-known formulations of classicFacility Location
Theory[8] can be used as starting points for addressing deci-
sions (1) and (2), respectively. Theuncapacitatedk-median
(UKM) problem prescribes the locations for instantiating a
fixed number of service facilities,k, so as to minimize the
distance between users and the closest facility capable of
delivering the service. In theuncapacitated facility location
(UFL) problem, the number of facilities is not fixed, butjointly
derived along with the locations as part of a solution that
minimizes the combined service hosting and access costs.
Limitations of existing approaches:Even though it provides
a solid basis for analyzing the fundamental issues involvedin
the deployment of network services, facility location theory
is not without its limitations. First and foremost, proposed
solutions for UKM and UFL are centralized, so they require
the gathering and the transmission of the entire topological
and demand information to a central point, which is not
possible (not to mention practical) for large networks. Second,
such solutions are not adaptive in the sense that they do not
allow for easy reconfiguration in response to local changes
in the topology and the intensity of the demand for service.
Moreover, over-reaction to local changes in demand using a
centralized solution may lead to costly service deployment.
To address these limitations we propose distributed versions
of UKM and UFL, which we use as means of constructing an
autonomic service deployment scheme.
A scalable approach to autonomic service deployment:We
develop a scheme in which an initial set of service facilities are
allowed to migrate adaptively to the best network locations,
and optionally to increase/decrease in number so as to best
service the current demand. Our scheme is based on devel-
oping distributed versions of the UKM problem (for the case
in which the total number of facilities must remain fixed) and
the UFL problem (when additional facilities can be acquired
at a price or some of them be closed down). Both problems
are combined under a common framework with the following
characteristics. An existing facility gathers the topology of its
local network neighborhood. The facility also monitors the

2

demand of the nodes that have it as closest facility. This is
the demand that the facility has to satisfy. It keeps an exact
representation of the demand of nodes in its local network
neighborhood and an approximate representation for all the
nodes that are outside its neighborhood but have the facility
as the closest one. The observed local topology and demand
information is then used to re-optimize the current location
(and optionally the number of) facilities by solving the UKM
(or the UFL) problem in the local network neighborhood.

Reducing the amount of topological information that needs
to be gathered and processed centrally at any point (i.e.,
at facilities that re-optimize their positions) is a plus for
scalability. On the other hand, reducing this harms the overall
performance as compared to centralized solutions that consider
the entire topological information. In this paper we examine
this trade-off by developing a distributed facility location
algorithm and by evaluating it under various topologies and
workloads. Our results show that even with limited infor-
mation about the network topology and demand, within one
or two hops, our distributed approach achieves performance
that is comparable to that of optimal, centralized approaches
requiring full topology and demand information. Our results
also show that our distributed solutions allows an autonomic
service deployment to be responsive to volatile demand.
Addressing the distributed Software as a Service place-
ment problem: Our approach leverages recent advances in
virtualization technology and flexible billing models suchas
pay-as-you-go [4] as well as the availability of cloud resources
on the Internet [9], [10], [11] towards a fully automated
and scalable service deployment. In particular, it provides a
distributed solution for the placement of replicas of software
in the emerging field of Software as a Service (SaaS) that is
currently limited, typically, to centralized hosting.
Outline: The remainder of this paper is structured as follows.
Section II provides a brief background on facility location.
Section III overviews the general architecture of our approach
and provides the connection to the facility location theory.
Section IV presents our distributed facility location approach
to autonomic service deployment. Section V examines analyt-
ically issues of convergence and accuracy due to approximate
representation of the demand of nodes outside the local
network neighborhoods. Section VI evaluates the performance
of our schemes on synthetic topologies. Section VII presents
results on real-world (AS-level) topologies. Section VIIIlooks
at the effects of volatile demand and addresses technical
challenges for the deployment of our approach. Section IX
presents previous related work. Section X concludes the paper
with a summary of findings.

II. BACKGROUND ON FACILITY LOCATION

Let G = (V,E) represent a network defined by a node
set V = {v1, v2, . . . , vn} and an undirected edge setE.
Let d(vi, vj) denote the length of a shortest path between
vi and vj , and s(vj) the (user) service demand originating
from nodevj . Let F ⊆ V denote a set of facility nodes –
i.e., nodes on which the service is instantiated. If the number
of available facilitiesk is given, then the specification of their

exact locations amounts to solving the following uncapacitated
k-median problem:

Definition 1: (UKM) Given a node setV with pair-wise
distance functiond and service demandss(vj), ∀vj ∈ V ,
select up tok nodes to act as medians (facilities) so as to
minimize the service costC(V, s, k):

C(V, s, k) =
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (1)

wherem(vj) ∈ F is the median that is closer tovj .
On the other hand, if instead ofk, one is given the costs

f(vj) for setting up a facility at nodevj , then the specifi-
cation of the facility setF amounts to solving the following
uncapacitated facility location problem:

Definition 2: (UFL) Given a node setV with pair-wise
distance functiond and service demandss(vj) and facility
costsf(vj), ∀vj ∈ V , select a set of nodes to act as facilities
so as to minimize the joint costC(V, s, f) of acquiring the
facilities and servicing the demand:

C(V, s, f) =
∑

∀vj∈F

f(vj) +
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (2)

wherem(vj) ∈ F is the facility that is closer tovj .
For general graphs, both UKM and UFL are NP-hard

problems [12]. A variety of approximation algorithms have
been developed under metric distance using a plethora of
techniques, including rounding of linear programs [13], local
search [14], [15], and primal-dual methods [16].

III. D ESCRIPTION OF THEARCHITECTURE

Large scale software systems, e.g., software update systems
such as Microsoft Windows Update [2] or applications such as
Apple iCloud and Google Apps, rely more and more on an on-
demand software delivery model, that is referred to as Software
as a Service (SaaS). In SaaS, software and associated data
are hosted in cloud infrastructures. Thanks to the elasticity of
the cloud, supported by virtualization, it is possible to expand
or shrink the software installation on-demand and minimize
the overall cost [4]. Such software systems not only deliver
Terabytes of data daily to millions of users, but also have
to incorporate complex decision processes for customizing
the delivered content to the peculiarities of different clients
with respect to localization, previously-installed applications,
compatibilities, and optional components, among others. For
scalability issues and to improve the end-user experience,a
number of replica of the software has to be installed in dif-
ferent locations on the Internet [17]. We refer to the complex
process of configuring, placing, and delivering software asthe
Software as a Service placement problem. The nature of this
problem goes beyond the dissemination of a single large file,
where a peer-to-peer approach is an obvious solution [18].
Moreover, it is unlikely that software providers are willing to
trust intermediaries with such processes. Rather, we believe
that such applications are likely to rely on dedicated or virtual
hosts, e.g., servers offered for lease through third-partyoverlay
networks –a la Akamai or PlanetLab, or the newest breed of
Cloud Computing platforms e.g., Amazon Web Services.

3

5/W

6/SB

7/SB

8/W

11/SB

12

13

15

16

17

18

2/SB

4/SB
10

3

9

14

r−ring of node 5
for r=1

1

r−ball of node 5
for r=1

Border node

Node

Node with Generic

Service Host (GSH),

that acts as a facility

SB: Stand−by mode,

W: Working mode

Fig. 1. A snapshot of the operation of a service that utilizesour proposed
architecture to dynamically deploy servers in a distributedcloud environment.

We propose adistributedsolution to address the Software
as a Service placement problem. We believe that the use of
our distributed facility location approach presents significant
advantages in terms of optimizing the operational cost and
efficiency of deploying such applications, and improve end-
user experience [19]. In the remainder of this section, we
present the general architecture of our approach and provide a
mapping from the aforementioned software distribution service
to our abstract UKM and UFL problems.

Our architecture relies on the observation that cloud re-
sources are available today in many locations on the In-
ternet [4], [9], [10] and that these resources can be re-
served on-demand by utilizing recent advances of virtual-
ization technology and open standards, such as OpenStack
(http://www.openstack.org). In our architecture we consider
the availability of a set of network hosts upon which specific
functionalities may be installed and instantiated on demand
that is also recommended by major network providers [11].
We use the termGeneric Service Host(GSH) to refer to
the software and hardware infrastructure necessary to host
a service. For instance, a GSH could be a well-provisioned
Linux server, a virtual machine (VM) slice similar to that
used in PlanetLab or a set of resources in a Cloud Computing
platform (e.g., an Amazon Machine Image (AMI) in the
context Amazon Web Services).

A GSH may be in Working (W) or Stand-By (SB) mode.
In W mode, the GSH constitutes a service facility that is
able to respond to client requests for service, whereas in
SB mode, the GSH does not offer the actual service, but
is ready to switch toW if it is so directed. Switching toW
might involve the transfer of executable and configuration
files for the service from other GSHs or from the service
provider. Thus, the set of facilities used to deliver a service is
precisely the set of GSHs inW mode. By switching back and
forth between W mode andSB mode, thelocation as well as
the numberof facilities used to deliver the service could be
controlled in a distributed fashion. In particular, a GSH inW
mode monitors the topology and the corresponding demand
in its vicinity and is capable of re-optimizing the location
of the facility. Third-party Autonomous Systems (AS) may
host the GSHs of service providers, possibly for a fee. In
particular, the hosting AS may charge the service provider
for the resources it dedicates to the GSHs, including the
software/hardware infrastructure supporting the GSHs as well
as the bandwidth used to carry the traffic to/from GSHs in

W mode. The implementation of the above-sketched scenaria
requires each GSH to be able to construct its surrounding AS-
level topology withinr hops. This can be achieved through
standard topology discovery protocols, e.g., CAIDA Skitter
(http://www.caida.org/tools/measurement/skitter).
Communication: Each GSH has also to be aware of all the
GSH that participate in the service and its status,W or SB. This
is easily achieved by having a bootstrap server of the service
where periodically all the GSHs report their status. The status
of each GSH is also communicated to all the other GSHs
through a broadcast message. Summaries about the network
location and assignment of clients, and client demands haveto
be exchanged between neighboring GSHs. GSHs are neighbors
if they are at mostr network hops away, wherer is a parameter
of the system. Periodically, GSHs that belong to the same
neighborhood exchange information about the current demand.
Decision rounds: Through a leader election protocol each
working GSH becomes leader and makes a local decision,
by solving a local UKM or UFL, on which neighboring
GSH (including itself) should be inW mode. This decision
is then communicated to the bootstrap server and to all the
other GSHs via broadcasting. The details of the algorithm are
presented in Section IV. As we will show in Section V, a
stable set of GSHs is selected in no more than a logarithmic
number of rounds to the size of the network times the ratio of
the maximum to minimum distance of pair of nodes. We also
show in Section V how we can bound the number of rounds
before convergence. Our experiments, see Sections VI and VII,
show that in practical settings this may require only a small
number of rounds (iterations of our algorithm, presented in
Section IV), typically between 5 and 20 for AS-level Internet
graphs. Our experiments also show that the first rounds yields
most of the cost reduction.
Synchronization: To avoid instabilities that can cause lack of
convergence, we assume that all the GSHs are synchronized.
This can be easily achieved by using the standard Network
Time Protocol (NTP). Each GSH should also be aware of
the demand of its clients and their location in the network.
This can be easily achieved by maintaining and analyzing the
connection logs. Synchronization of GSH is necessary but not
sufficient condition. The sufficient condition is that, at each
point of time, only one node is solving the distributed facility
location problem (see Section IV-C).

Figure 1 illustrates a snapshot of the operation of the afore-
mentioned software distribution when utilizing our proposed
architecture. Nodes 2, 4, 5, 6, 7, 8, and 11 serve GSHs. Nodes
5 and 8 are inW mode and all the others inSB mode. Node 5
serves the demand of nodes 2, 3, 4, 6, and 11 that are within
1 hop away. It also serves the demand of nodes 1, 9, 10, and
14 that are closer to node 2 (a node with GSH), as well as
the demand of nodes 15, 16, 17, and 18 that are closer to
node 11 with GSH, and node 12 closer to node 6 (a node
with GSH). Node 5 has to periodically solve the UKM or
UFL problem to decide either to migrate the server to node
2, 4, 6, or 11 in order to minimize the service deployment
and operational cost as well as to better serve the volatile
demand. It does so by taking into account the total demand
it serves, the source of the demand and the local view of

4

the network topology. Node 5 can also well decide that more
instances of the service are needed in the neighborhood, thus,
it can change the mode of any of the facilities 2, 4, 6 or 11
from SB to W by solving the UFL problem. Clients of the
service should be able to locate the facility closest to it, and
it requires a GSH to be able to inform potential clients of the
service regarding itsW or SB mode. Both of these could be
achieved through standard resource discovery mechanisms like
DNS re-direction [20], [21] (appropriate for application-level
implementations of our distributed facility location approach)
with appropriate TTL values [22] or proximity-based anycast
routing [23] (appropriate for network layer implementations).
We show in Section VIII-C that the performance of our scheme
degrades gracefully as re-direction becomes more imprecise.

IV. D ISTRIBUTED FACILITY LOCATION SCHEME WITH

LOCAL INFORMATION

In this section we develop distributed versions of UKM and
UFL by utilizing a limited horizon approach in which GSHs
have exact knowledge of the topology of their local topology
within r hops, exact knowledge of the demand of each client
or node in the local topology, and approximate knowledge of
the aggregate demand from nodes in ther-ball outside this
local topology. For the rest of the paper we are using the
terms GSH and candidate facility interchangeably. If the GSH
is in W mode we refer to the node that hosts the GSH asopen
facility, or simply facility.

A. Definitions

We start by formally defining the local network neighbor-
hoods of a facility, that we will refer asr-balls.

Definition 3: (r-ball) An r-ball of a facility is a sub-graph
that includes all the nodes that are reachable withinr-hops
and all physical edges that connect any of these nodes.

Naturally, ther-balls of two different facilities can overlap.
For optimization reasons, we can joinr-balls that overlap to
create a larger graph that we refer asr-shape. If more than
two r-balls overlap then there should be at least one common
facility for all r-balls.

Definition 4: (r-shape) Anr-shape is the union of two
or more r-balls that overlap and have at least one common
facility.

As mentioned before, exact information about the topology
and demand is maintained for the nodes in ther-ball. Ap-
proximate information is maintained for the demand of nodes
outside ther-ball that is served by the facility. To achieve the
demand of those nodes outside ther-balls, their demand is
attached to the particular node that is closer to them and is
within the r-ball of the facility. We refer to them as border
nodes and all the nodes that are potentially border nodes
constitute the skin of ther-ball.

Definition 5: (r-border node andr-skin) An r-border node
is any node that isr hops away from a facility. The set of
border nodes constitute ther-skin of ther-ball of a facility.

Definition 6: (r-ring) The r-ring of a facility is the set of
nodes outside ther-ball that it serves. The demand of each
node in the ring is attached to its closestr-border node.

In Figure 1 we provide a setting where we annotate nodes
according to the introduced definitions. The sub-graph in-
cluded within the dashed line is ther-ball of node 5 forr=1.
The sub-graph included within the dotted line annotates the
ring for node 5. Nodes 2, 3, 4, 6, and 11 are all border nodes
for 5 for r=1 and they constitute the skin of the1-ball. Nodes
2, 4, 6 and 11 are candidate facilities (GSHs inSB mode).
When r = 2, the 2-balls of node 5 and 8 can be merged to
shape a new2-shape because facilities 6 and 7 are common.

B. Notations

Our distributed approach will be based on an iterative
method in which the location and the number of facilities (in
the case of UFL only) may change between iterations.

We make use of the following notations to explain our
distributed algorithm. Most of the notations are superscripted
by m, the ordinal number of the current iteration. LetH ⊆ V
denote the set of candidate facility nodes andF (m) ⊆ H the
set of facility nodes at themth iteration. LetV (m)

i denote the
r-ball of facility nodevi. Let U (m)

i denote thering of facility
node vi. The domain W

(m)
i = V

(m)
i

⋃
U

(m)
i of a facility

node consists of itsr-ball and the surrounding ring. From the
previous definitions it is easy to see thatV = V (m)

⋃
U (m),

whereV (m) =
⋃

vi∈F (m) V
(m)
i andU (m) =

⋃
vi∈F (m) U

(m)
i .

C. The Distributed Algorithm

Our distributed algorithm starts with an arbitrary initial
batch of facilities, which are then refined iteratively through
relocation and duplication until a (locally) optimal solution
is reached. In a nutshell, the algorithm starts with the initial
set of facilities, and iteratively runs local UKM or UFL by
re-evaluating ther-balls of the facilities one by one. Once a
facility is evaluated, it is marked as processed. When all the
facilities are processed, the algorithm examines if the setof
facilities remains the same. If it is not, it continues evaluating
all the r-balls in the same manner until the set of facilities is
the same with the one in the last iteration. Formally, it includes
the following steps:
Initialization: Pick randomly an initial setF (0) ⊆ H of
k0 = |F (0)| to act as facilities. LetF = F (0) denote
a temporary variable containing the “unprocessed” facilities
from the current batch. Also, letF− = F (0) denote a variable
containing this current batch of facilities.
Iteration m: Pick an unprocessed facilityvi ∈ F = F (m)

and process it by executing the following steps:
1) Construct the topology of its surroundingr-ball by using

an appropriate neighborhood discovery protocol (see [24] for
such an example).

2) Test whether itsr-ball can be merged with ther-balls
of other nearby facilities (see Section IV-A). LetJ ⊆ F (m)

denote a set composed ofvi and the facilities that can be
merged with it.J induces anr-shapeGJ = (VJ , EJ), i.e., the
sub-graph ofG composed of the facilities ofJ , their neighbors
up to distancer, and the edges between them. We can place
constraints on the maximal size ofr-shapes to guarantee that it
is always much smaller thann, i.e., we do not want to end up

5

solving the centralized problem. In our algorithm, we restrict
that nor-shapes contains more half of the total nodes.

3) Re-optimize ther-shapeGJ . If the original problem is
UKM, solve the|J |-median within ther-shape by considering
all the candidate facilities in ther-shape. This can produce
new locations for the|J | facilities. If the original problem
is UFL, solve the UFL within ther-shape by considering
all the candidate facilities in ther-shape. This can produce
new locations as well as change the number of facilities, i.e.,
make it smaller or larger than|J |. In both cases the local re-
optimization is conducted by using one of the UKM or UFL
solutions (the details regarding the optimization ofr-shapes
are given in Section IV-D). Numerical results can be obtained
by using Integer Linear Programming (ILP) formulations [13]
and local search heuristics [15] for solving UKM and UFL
within r-shapes. Since both perform very closely in all our
experiments [25], [26], we don’t discriminate between the two.

4) Remove processed facilities, both the originalvi and the
ones merged with it, from the set of unprocessed facilities
of the latest batch, i.e., setF = F\ (J ⋂F−). Also update
F (m) with the new locations of the facilities after the re-
optimization.

5) Test for convergence. IfF 6= ∅ then some facilities
from the latest batch have not yet been processed, so perform
another iteration. Otherwise, if the configuration of facilities
changed with respect to the initial one for the latest batch,i.e.,
F (m) 6= F−, then form a new batch by settingF = F (m)

and F− = F (m), and perform another iteration. Else (if
F (m) = F−), then no beneficial relocation or elimination
is possible, so terminate by returning the (locally) optimal
solutionF (m).

Our distributed algorithm guarantees that all the users are
connected to one facility and the demand of each user is
satisfied. In this paper we focus on the UKM and UFL with
unsplittable demands (high DNS TTL values or anycast). With
our approach it is possible to assign a user and its demand
to more that one facility if we considered the related facility
location problems with splittable demands [14]. It is expected
that fractional assignment of demand can provide even better
results as the load in servers can be better balanced (low DNS
TTL values). Our solution is general enough to address also
the case of capacitated facility location (CFL) [13] where each
facility can satisfy a maximum number of users or demand.

D. Optimizingr-shapes

As discussed in Section II, the input of a UKM problem
is defined completely by a tuple〈V, s, k〉, containing the
topology, the demand, and the number of allowed medians.
A UFL problem is defined by a tuple〈V, s, f〉, similar to
the previous one, but with facility creation costs instead of
a fixed constraint on the number of allowed facilities. For the
optimization of anr-shape, we setV = VJ , andk = |J | (for
the case of UKM) orf = {f(vj) : ∀vj ∈ VJ} (for the case
of UFL).

Regarding service demand, a straightforward approach
would be to sets = {s(vj) : ∀vj ∈ VJ}, i.e., retain in
the re-optimization of ther-shape the original demand of the

nodes of ther-shape. Such an approach would, nonetheless,
be inaccurate since the facilities within anr-shape serve the
demand of the nodes of ther-shape, as well as those in the
corresponding ring of the r-shape. Since there are typically a
few facilities, each one has to serve a potentially large number
of nodes, e.g., of orderO(n)), and thus the rings are typically
much larger than the correspondingr-shapes. Note thatr is
intentionally kept small to limit the size of the individual
re-optimizations. Re-optimizing the arrangement of facilities
within an r-shape without considering the demand that flows-
in from the ring would, therefore, amounts to disregarding too
much information (as compared to the information considered
by a centralized solution). Including the nodes of the ring into
the optimization is, of course, not an option, as the ring canbe
arbitrarily large (O(n)) and, therefore, considering its topology
would contradict our prime objective — to perform facility
location in a scalable, distributed manner.

Our solution for this issue is to consider the demand of the
ring implicitly by mapping it into the local demand of the
nodes that constitute ther-skin. This intermediate approach
bridges the gap between absolute disregard for ther-ring,
and full consideration of its exact topology. The details of
the mapping are as follows. Letvi denote a facility inside an
r-shapeGJ . Let vj ∈ U denote a node in the corresponding
ring, having the property thatvi is vj ’s closest facility. Let
vk denote a node on ther-skin of GJ , having the property
that vk is included in a shortest path fromvj to vi. To take
into consideration the demand fromvj while optimizing the
r-shapeGJ , we map that demand onto the demand ofvk, i.e.,
we set:s(vk) = s(vk) + s(vj).

Note, the assignment of nodes demand is done after each
re-optimization. We do require synchronization of individ-
ual facilities to avoid parallel re-optimizations. Facility time
synchronization is easy to achieve using the Network Time
Protocol (NTP). Before optimizing anr-shape, a lock message
with an identifier is sent by the facility of ther-shape to
all other facilities. This indicates that for this round this
node is the candidate leader. When the re-optimization is
finished an unlock message is sent by (one of) the new facility
with the same identifier to all the other facilities. No further
information exchange is required between nearby facilities
because each facility can monitor the demand it serves. Our
algorithm is robust to mapping error, non-stationary demand,
and imperfect redirection of users to facilities as we will
elaborate in Sections V-B and VIII.

V. A M ORE DETAILED EXAMINATION OF DISTRIBUTED

FACILITY LOCATION

The previous section has provided an overview of the basic
characteristics of the proposed distributed facility location
approach. This section sheds light to some important albeit
more complex properties of the proposed solution.

A. Convergence of the Iterative Method

We start with the issue of convergence. First we show
that the iterative algorithm of Section IV-C converges in a
finite number of iterations. Then we show how to control the

6

.
.x

y

vθ

W
(m)
θ

W
(m+1)
θ

C

B

A

γ

hereΦ = Ψ = γ

Fig. 2. Analysis of the migration of a facility from X to Y.

convergence speed so as to adapt it to the requirements of
practical systems.

Proposition 1: The iterative local search approach for dis-
tributed facility location converges in a finite number of
iterations.

Proof: Since the solution space is finite, it suffices to
show that there cannot be loops, i.e., repeated visits to thesame
configuration of facilities. A sufficient condition for thisis that
the cost (either Equation (1) or (2) depending on whether we
are considering distributed UKM or UFL) be monotonically
decreasing between successive iterations, i.e.,c(m) ≥ c(m+1).
Below, we show that this is the case for the UKM applied
to r-shapes with a single facility. The cases of UKM applied
to r-shapes with multiple facilities, and of UFL follow from
straightforward generalizations of the same proof.

Suppose that during iterationm+1 facility vθ is processed
and that between iterationm andm+1, vθ is located at node
x, whereas after iterationm + 1, vθ is located at nodey. If
x ≡ y, thenc(m) = c(m+1). For the case thatx 6= y, we need
to prove thatc(m) > c(m+1).

For the case in whichW (m)
θ ≡ W

(m+1)
θ , it is easy to show

that c(m) > c(m+1). Indeed, since the facility moves from
x to y it must have been that this reduces the cost of the
domain of vθ, i.e., c(W (m)

θ) > c(W
(m+1)
θ), which implies

c(m) > c(m+1), since no other domain is affected.
The case in whichW (m)

θ 6= W
(m+1)
θ is somewhat more

involved. It implies that there exist sets of nodesA, B: A ∪
B 6= ∅, A = {z ∈ V : z /∈ W

(m)
θ , z ∈ W

(m+1)
θ } andB =

{z ∈ V : z ∈ W
(m)
θ , z /∈ W

(m+1)
θ }. A is actually the set of

nodes that were not served by facilityvθ before them + 1
iteration and are served after them+1 iteration. Similarly,B
is the set of nodes that were served by facilityvθ before the
m + 1 iteration and are not served after them + 1 iteration.
Let C = {z ∈ V : z ∈ W

(m)
θ , z ∈ W

(m+1)
θ } be the set

of nodes that remained in the domain ofvθ after its move
from x to y (Figure 2 depicts the aforementioned sets). Since
W

(m)
θ = B ∪ C (B,C disjoint) and the re-optimization of

W
(m)
θ moved the facilityvθ from x to y, it must be that:

c(B, x) + c(C, x) > c(B, y) + c(C, y) (3)

where c(B, x) denotes the cost of servicing the nodes ofB
from x (similar definitions forc(C, x), c(C, y)).

Let Φ denote the set of facilities that used to service the
nodes ofA before they entered the domain ofvθ at m + 1.

Similarly, let Ψ denote the set of facilities that get to service
the nodes ofB after they leave the domain ofvθ atm+1. From
the previous definitions it follows that the necessary conditions
for migration are:

c(A, y) < c(A,Φ) (4)

c(B, y) > c(B,Ψ) (5)

Using Equation (5) in Equation (3) we obtain:

c(B, x) + c(C, x) > c(B,Ψ) + c(C, y) (6)

Applying Equations (6) and (4) to the differencec(m) −
c(m+1), we can now show the following:

c
(m)

− c
(m+1) =

(

c(B, x) + c(C, x) + c(A,Φ)

)

−

(

c(A, y) + c(C, y) + c(B,Ψ)

)

=

(

c(B, x) + c(C, x)− c(B,Ψ)− c(C, y)

)

+

(

c(A,Φ)− c(A, y)

)

> 0

which proves the claim also for theW (m)
θ 6= W

(m+1)
θ case,

thus completing the proof.
We can control the convergence speed by requiring each

turn to reduce the cost by a factor ofα, in order for the turn
to be accepted and continue the optimizing process; i.e., accept
the outcome from the re-optimization of anr-shape at themth
iteration, only ifc(m) ≥ (1+α)c(m+1). In this case, where an
at leastα improvement is achieved at each turn, the following
proposition describes the convergence speed.

Proposition 2: The iterative local search approach for
distributed facility location converges inO(log1+α n ·
max(s(v))/min(s(v))) steps.

Proof: Let c(0), c(M), c∗ denote the initial cost, a locally
minimum cost obtained at the last (M th) iteration, and the
minimum cost of a (globally) optimal solution, respectively.
Here we considerM to be the number of “effective” iterations,
i.e., ones that reduce the cost by the required factor. The total
number of iterations can be a multiple ofM up to a constant
given by the number of facilities. Since we are interested in
asymptotic complexity we can disregard this and focus onM .

For m < M we have required thatc(m) ≥ (1 + α)c(m+1),
or equivalently,c(0) ≥ (1+α)mc(m). Thus when the iteration
converges we have:

c(0) ≥ (1 + α)Mc(M) ⇒

M ≤ log1+α

c(0)

c(M)
≤ log1+α

c(0)

c∗
(7)

c(m) is upper bounded by the number of node times the
maximum distance to median times the maximum demand,
i.e.,O(n2 ·max(s(v))). c(0) is lower bounded by the number
of nodes times the minimum distance to median times the min
demand, i.e.,Ω(n ·min(s(v))).

Substituting in Equation (7) gives the claimed upper bound
for the number of iterations. Thus, the number of iterationsis
bounded bylog1+an ·max(s(v))/min(s(v)).

7

D

C

A

B
E x

r

y .

.
.
.

.
replacements

U
(m)
i

V
(m)
i

φvj

vi

u

Fig. 3. Example of a possible facility migration from nodevi to nodevj
with respect to a particular nodeu ∈ Ui.

B. The Mapping Error and its Effect on Local Re-
Optimizations

In this section we discuss an important difference be-
tween solving a centralized version of UKM or UFL (Def-
initions 1, 2) applied to the entire network and our case
where these problems are solved within anr-shape based
on the demand that results from a fixed mapping of the ring
demand onto the skin. In the centralized case, the amount of
demand generated by a node is not affected by the particular
configuration of the facilities within the graph, since all nodes
in the network are included and considered with their original
service demand. In our case, however, the amount of demand
generated by a skin node can be affected by the particular
configuration of facilities within ther-shape. In Figure 3 we
illustrate why this is the case. Nodeu on the ring has a shortest
path to facility nodevi that intersects the skin ofvi’s r-ball
at point B, thereby increasing the demand of a local node
at B by s(u). As the locations of the facilities may change
during the various steps of the local optimizing process (e.g.,
the facility moves fromC to D, see Figure 3), the skin node
along the shortest path betweenu and the new location of the
facility may change (node/pointE in Figure 3). Consequently,
a demandmapping error is introduced by keeping the map-
ping fixed (as initially determined) throughout the location
optimization process. Let∆i(r, j, u) denote the amount of
mapping error attributed to ring nodeu with respect to a move
of the facility from vi to vj under the aforementioned fixed
mapping and radiusr. Then thetotal mapping errorintroduced
in domainWi under radiusr is given by:

∆i(r) =
∑

vj∈Vi
vj 6=vi

∑

u∈Uivj 6=vi

∆i(r, j, u). (8)

The mapping error in Equation (8) could be eliminated by
re-computing the skin mapping at each stage of the optimizing
process i.e., for each new intermediate facility configuration).
Such an approach not only would add to the computational
cost but – most important – would be practically extremely
difficult to implement as it would require the collection of
demand statistics under each new facility placement, delaying
the optimization process and inducing substantial overhead.
Instead of trying to eliminate the mapping error one could
try to assess its magnitude (and potential impact) on the
effectiveness of the distributed UKM/UFL.

The example depicted in Figure 3 helps derive an expression
for the mapping error∆i(r, j, u), assuming a two-dimensional
plane where nodes are scattered in a uniform and continuous

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

co
ve

ra
ge

radius r

ER

n=200
n=400
n=600
n=800

n=1000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

co
ve

ra
ge

radius r

BA

n=200
n=400
n=600
n=800

n=1000

Fig. 4. Average coverage of a node for different size of ER andBA graphs.

manner over the depicted domain.∆i(r, j, u) corresponds to
the length difference of the two different routes between node
u (point A) and nodevj (point D). Therefore,

∆i(r, j, u) = |AB|+ |BD| − |AD|. (9)

Note that for those cases in which the angleφ̂ betweenAC
and CD, is 0 or π, |AB| + |BD| = |AD|, and therefore,
∆i(r, j, u) = 0. For any other value of̂φ, AB, BD andAD
correspond to the edges of the same triangle and therefore,
|AB|+ |BD| − |AD| > 0 or ∆i(r, j, u) > 0.

Based on Equation (9), it is possible to derive an upper
bound regarding the total mapping error∆i(r) for this partic-
ular environment. In [25, Appendices E, F], we prove that:

∆i(r) ≤ 2π2r3(R2 − r2), (10)

whereR is the radius of the particular domainWi.
According to Equation (10), the upper bound for∆i(r) is

close to0, whenr → 0 or r → R. We are interested in those
cases where ther-ball is small. This corresponds to small
values of r for the particular (two-dimensional continuous)
environment. Therefore, a small radiusr in addition to being
preferable for scalability reasons has the added advantageof
facilitating the use of a simple and practical mapping with
small error and expected performance penalty. Indeed, in the
following sections we show that small values forr yield
both fast and accurate results in different network graphs and
demands.

VI. SYNTHETIC RESULTS ONER AND BA GRAPHS

In this section we evaluate our distributed facility location
approach on synthetic Erdös-Ŕenyi (ER) [27] and Barab́asi-
Albert (BA) [28] graphs generated using the BRITE genera-
tor [29]. For ER graphs, BRITE uses the Waxman model [30]
in which the probability that two nodes have a direct link is
P (u, v) = α · e−d/(βL), where d is the Euclidean distance
betweenu and v, andL is the maximum distance between
any two nodes. We maintain the default values of BRITE
α = 0.15, β = 0.2 combined with an incremental model
in which each node connects tom = 2 other nodes. For
BA graphs, i.e., random scale-free graphs using a preferential
attachment mechanism, we also use incremental growth with
m = 2. This parameterization creates graphs in which the
number of (undirected) links is almost double the number of
vertices (as also observed in real AS traces that we use later
in the paper).

8

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20

co
st

 r
at

io
 w

ith
 r

es
pe

ct
 to

 U
K

M

k

dUKM - ER n=400

c(random)/c(UKM)
c(dUKM(1))/c(UKM)
c(dUKM(2))/c(UKM)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

nu
m

be
r

of
 it

er
at

io
ns

k

dUKM, iterations - ER n=400

dUKM(1)
dUKM(2)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 5 10 15 20

co
st

 r
at

io
 w

ith
 r

es
pe

ct
 to

 U
K

M

k

dUKM - BA n=400

c(random)/c(UKM)
c(dUKM(1))/c(UKM)
c(dUKM(2))/c(UKM)

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

nu
m

be
r

of
 it

er
at

io
ns

k

dUKM, iterations - BA n=400

dUKM(1)
dUKM(2)

Fig. 5. The relative performance between random and UKM, the dUKM(r),
UKM, and the number of iterations for the convergence of the dUKM, for r =
1 and r = 2, and different facility densitiesk/n = 0.1%, 0.5%, 1%, 2%,
and5% under ER and BA graphs.

A. Node Coverage with Radiusr

Figure 4 depicts the fraction of the total node population that
can be reached inr hops starting from a certain node in ER
and BA graphs, respectively. We plot the mean and the95th

percentile confidence interval of each node under different
network sizesn = 400, 600, 800, 1000, representing typical
populations of core ASes on the Internet as argued later on.
The figures show that a node can reach a substantial fraction of
the total node population by using a relatively smallr. In ER
graphs,r = 2 covers2%− 10% of the nodes, whereasr = 3
increases the coverage to10%− 32%, depending on network
size. The coverage is even higher in BA graphs, wherer = 2
covers4%−15%, whereasr = 3 covers20%−50%, depending
again on network size. These observations are explained by
the fact that in larger networks the density of nodes within r
hops varies in BA and ER graphs. In BA graphs, owing to the
preferential attachment, it is expected that the density ofnodes
that are reachable withinr hops increases as the population
of the nodes increases. On the other hand, in ER graphs the
density of the nodes withinr hops does not increase as fast
as in BA graphs as the node population increases.

B. Performance of Distributed UKM

In this section we examine the performance of our dis-
tributed UKM of radiusr, hereafter referred to as dUKM(r),
when compared to the centralized UKM utilizing full knowl-
edge. For the rest of the paper, unless otherwise mentioned,
all the nodes in the network are candidate facilities. The
set of facilities (|F | = k, where F ∈ V , see Section II)
and the service cost in UKM can be obtained by solving
an Integer Linear Program (ILP). In this work we use the
TOMLAB/CPLEX ILP solver. For the ILP formulation of the
k-median problem see [13]. Note that the solution of ILP
yields the optimal cost. We fix the network size ton = 400
(matching measurement data on core Internet ASes that we use
later on) and assume that all nodes generate the same amount

of service demands(v) = 1, ∀v ∈ V . To ensure scalability,
we don’t want our distributed solution to encounterr-shapes
that involve more than10% of the total nodes, and for this we
limit the radius tor = 1 andr = 2, as suggested by the node
coverage results of the previous section. We let the fraction
of nodes that are able to act as facilities (i.e., service hosts)
take valuesk/n = 0.1%, 0.5%, 1%, 2%, and5%. We perform
each experiment 100 times to reduce the uncertainty due to
the initial random placement of thek facilities.

The plots on the left-hand-side of Figure 5 depict the cost of
our dUKM(r) approach normalized over that of the optimal but
centralized UKM, with the plot on top for ER graphs and the
plot on the bottom for BA graphs. We also plot the normalized
cost of open uniformly at randomk facilities, denoted as
random. For both ER and BA graphs, the performance of our
distributed solution tracks closely that of the centralized one,
with the difference diminishing fast asr andk are increased.
The normalized performance for BA graphs converges faster
(i.e., at smallerk for a given r) to ratios that approach 1.
This owes to the existence of highly-connected nodes (the so
called “hubs”) in BA graphs — building facilities in few of the
hubs is sufficient for approximating closely the performance
of the centralized UKM. The two plots on the right-hand-
side of Figure 5 depict the number of iterations needed for
dUKM(r) to converge. A smaller value ofr requires more
iterations as it leads to the creation of a large number of small
sub-problems (re-optimizations of many smallr-shapes). BA
graphs converge in fewer iterations, since for the same value
of r BA graphs induce largerr-shapes. Again, it is the hubs
that create larger-shapes. Even under a smallr, a hub will
be close to the facility that re-optimizes its location, andthis
will bring many of the hub’s immediate neighbors into the
r-shape. We conclude that less re-optimizations are needed
in BA graphs than in ER graphs when the number of nodes
and demand profile are the same. The cost of opening facilities
uniformly at random is much higher than this of our distributed
UKM. This supports our argument that distributed UKM yields
significant cost reduction in both ER and BA graphs.

C. Performance of Distributed UFL

In order to evaluate the performance of distributed UFL of
radiusr, henceforth referred to as dUFL(r), we need to decide
how to set the facility acquisition costsf(vj) which constitute
part of the input of a UFL problem (see Definition 2). This
is a non-trivial task, essentially a pricing problem for network
services. Although pricing is clearly out of scope for this paper,
we need to use some form off(vj)’s to demonstrate our point
that, as with UKM, the performance of the distributed version
of UFL tracks closely that of the optimal but centralized UFL
(obtained by solving the ILP). To that end, we use two types
of facility costs: uniform, where all facilities cost the same
independently of location (i.e.,f(vj) = f , ∀vj ∈ V) and,
non-uniform, where the cost of a facility at a given node
depends on the location of that node. The uniform cost model
is more relevant when the dominant cost is that of setting up
the service on the host, whereas the non-uniform cost model
is more relevant when the dominant cost is that of operating

9

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 400 500 600 700 800 900 1000

co
st

n

dUFL - ER

random, F
dUFL(1), 0.5F

dUFL(1), F
dUFL(1), 2F

dUFL(2), 0.5F
dUFL(2), F

dUFL(2), 2F
UFL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 400 500 600 700 800 900 1000

co
st

n

dUFL - BA

random, F
dUFL(1), 0.5F

dUFL(1), F
dUFL(1), 2F

dUFL(2), 0.5F
dUFL(2), F

dUFL(2), 2F
UFL

Fig. 6. Cost comparison between random, dUFL(r) and UFL, forr = 1 and
r = 2, and different network sizes under ER and BA graphs and degree-based
facility cost f(vj) = d(vj)

1+αG .

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 400 500 600 700 800 900 1000

co
st

n

dUFL, uniform facility cost - ER

random
dUFL(1)
dUFL(2)

UFL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 400 500 600 700 800 900 1000

co
st

n

dUFL, uniform facility cost - BA

random
dUFL(1)
dUFL(2)

UFL

Fig. 7. Cost comparison between random, dUFL(r) and UFL, for r = 1
andr = 2, and different network sizes under ER and BA graphs and uniform
facility cost.

the facility (implying that this operating cost is proportional
to the desirability of the host, which depends on topological
location). The later cost model is general enough to capture
the congestion associated with each facility.

For the non-uniform case we will use the following rule:
we will make the cost of acquiring a facility proportional to
its degree, i.e., proportional to the number of direct linksit
has to other nodes. The intuition behind this is that a highly
connected node will most likely attract more demand from
clients, as more shortest-paths will go through it and, thus,
building a facility there will create a bigger hot-spot, and
therefore the node should charge more for hosting a service.
Note, as sketched in the Introduction, a node may correspond
to an AS that charges for allowing network services to be
installed on its local GSH. In [31],[32] the authors showed
that the “coverage” of a node increases super-linearly with
its degree (or alternatively, the number of shortest paths that
go through it). We, therefore, use as facility costf(vj) =
d(vj)

1+αG , whered(vj) is the degree of nodevj ∈ V andαG

is the skewness of the degree distribution of the graphG. In
order to estimate the value ofαG, we use the Hill estimator:
α̂
(Hill)
k,m = 1/γ̂k,m, where: γ̂k,m = 1

k

∑k
i=1 log

X(i)

X(k+1)
, X(i)

denotes thei-th largest value in the sampleX1, ..., Xn. We
prefer the Hill estimator since it is less biased than linear
regression for fitting power-law exponents.

In Figure 6 we plot the cost of dUFL(1), dUFL(2), and cen-
tralized UFL, in ER and BA graphs under the aforementioned
degree-based facility cost. For dUFL, we present three lines
for each radiusr, corresponding to different initial number of
facilities used in the iterative algorithm of Section IV-C.We
usek0 = 0.5 ·F , F , and2 ·F , whereF denotes the number of
facilities opened when applying the corresponding centralized
UFL. As evident from the results, the cost of dUFL is close
to that of UFL (around 5-15% for both types of graphs). As
with dUKM, the performance improves withr and is slightly
better for BA graphs (see the explanation in Section VI-B).

Also we observe a tendency for lower costs when starting the
distributed algorithm with a higher number of initial facilities.
Under the non-uniform (degree-based) cost model, both dUFL
and UFL open facilities in 2-8% of the total nodes, depending
on the example.

We also evaluate the performance of dUFL under uniform
facility cost f ; the cost is set at a value that leads to building
the same number of facilities as the corresponding degree-
based example. Both the distributed and centralized UFL build
the same number of facilities, and the performance of dUFL is
very close to the centralized one, as is illustrated in Figure 7.
Again, we emphasize that our goal here is not to evaluate
performance under different pricing scheme, but rather to show
that the performance of distributed UFL tracks well that of
the centralized, optimal approach. Moreover, under both cost
models, the random placement of facilities yields high cost.

The number of iterations for dUFL(r) to converge is similar
to this of the dUKM(r), for the same graph (ER or BA, and size
of graph), in both the case of degree-based and the uniform
facility cost. The number of iterations can be significantly
reduced, especially for large graphs, if no migration takes
place unless the service cost is decreased by a factorα, as
discussed in Section V-A.

VII. R ESULTS FORREAL AS-LEVEL TOPOLOGIES

To further investigate the performance of our distributed
approach and to better support our sketched application sce-
nario described in the introduction, we include in this section
performance results on real AS-level maps under non-uniform
service demand from different clients. We choose the AS-level
to evaluate our approach as many infrastructure providers such
as content distributors, data-centers and cloud providersare
located within an AS that peers with other ASes [33], [34],
or maintaining a highly distributed hosting infrastructure in a
large number of ASes [17], [35], [9] to better satisfy end-user
demand and control their operational cost. We assume that a
candidate facility is present in each AS.

A. Description of the AS-level Dataset

We use the relation-based AS map of the Internet obtained
using the measurement methodology described in [36]. The
dataset includes two kinds of relationships between ASes.
Customer-Provider: The customer is typically a smaller AS
that pays a larger AS for providing it with access to the rest
of the Internet. The provider may, in turn, be a customer of an
even larger AS. A customer-provider relationship is modeled
using a directed link from the provider to the customer.
Peer-Peer:Peer ASes are typically of comparable sizes and
have mutual agreements for carrying each other’s traffic. Peer-
peer relationships are modeled using undirected links.

Overall the dataset includes 12,779 unique ASes, 1,076
peers and 11,703 customers, connected through 26,387 di-
rected and 1,336 undirected links. Since this AS graph is not
connected, we chose to present results based on its largest
connected component, which we found to include a substantial
part of the total AS topology at the peer level: 497 peer
ASes connected with 1,012 undirected links. There are smaller

10

 1

 10

 100

 1000

 10000

 1 10 100 1000

co

st
um

er
 A

S
es

rank of peer-AS

#costumer ASes for a peer-AS

Fig. 8. Number of customer ASes
for each peer-AS in decreasing order
according to rank.

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25

so
ci

al
 c

os
t

k

dUKM - AS-level

random
top-degree

dUKM(1)
dUKM(2)

UKM

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

nu
m

be
r

of
 it

er
at

io
ns

k

dUKM, iterations - AS-level

dUKM(1)
dUKM(2)

Fig. 9. The cost of random, top-degree, dUKM(r) and UKM, and the
number of iterations for the convergence of the dUKM, forr = 1 and
r = 2, and different facility densitiesk/n = 0.1%, 0.5%, 1%, 2%, and
5% in the AS graph.

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20

co
st

number of iterations

dUKM, iterations - AS-level

dUFL(1), k=1
dUFL(1), k=3
dUFL(1), k=5
dUFL(1), k=5

MW, k=1
MW, k=3
MW, k=5

MW, k=10

Fig. 10. The cost of dUKM(1) and
MW distributed algorithm in the AS
graph as the number of iterations in-
creases.

connected components (2-8 ASes) that are formed by small
regional ISPs with peering relationships. We verified that this
component contains all the 20 largest peer ASes reported
in [36]. Since it would be very difficult to obtain the real
complex routing policies of all these networks, we did not
consider policy-based routing, but rather assumed shortest-
path routing based on the connected component.

We exploit the relationships between ASes in order to derive
a more realistic (non-uniform) service demand for the peer
ASes that we consider. Our approach is to count for each peer
AS the number of customer ASes that have it as provider,
either directly or through other intermediary ASes. We then
set the service demand of a peer AS to be proportional to
this number. In Figure 8 we plot the demand profile of peer
ASes (in decreasing order using log-log scale). As evident
from this plot, the profile is power-law like (with slight
deviation towards the tail), meaning that few core ASes carry
the majority of the demand that flows from client ASes. In
the sequel we present performance results in which nodes
correspond to peer ASes that generate demand that follows
the aforementioned power-law like profile. We seek to identify
the peer ASes for building service facilities.

B. Distributed UKM on the AS-level Dataset

The plots on the left-hand-side of Figure 9 show the cost of
random, top-degree, dUKM(1), dUKM(2), and the centralized
UKM, under the AS-level graph. Top-degree is a heuristic
where k facilities are placed at ASes with the highest peer
degree and requires full knowledge of the AS-level topology
which is difficult to get as links may be missing [37]. Our
manual investigation shows that the footprints of ASes with
high peer degree are concentrated in different geographical
locations. Clearly, even for small values ofr, the performance
of our distributed approaches track closely that of the optimal
but centralized approach. The random opening of facilities
again yields high cost. On the other hand, the top-degree
heuristic yields low cost that is approximately 15-20% higher
than this of the dUKM and centralized UKM.

Regarding the number of iterations needed for convergence,
the same observations apply as with the synthetic topologies,
i.e., they increase with smaller radii. The substantial bene-
fit from knowledge of only local neighborhood topologies
(“neighbors of neighbor”) has been observed for a number
of applications, including [24] which has also investigated
and quantified implementation overhead in an Internet setting.

In Figure 10 we plot the cost of dUFL(1) as the number of
iterations increase. We notice that only two or three iterations
are sufficient to get the cost reduction that is close to the
optimal but centralized UKM.

We also compare with the only distributed facility location
work we are ware of, the one by Moscibroda and Wattenhofer
[38], henceforth refereed asMW. This work explores a trade-
off between the amount of communication and the resulting
approximation ration. The authors showed that it is possible
to achieve anO(

√
µ(mρ)1/

√
µ log(m+ n)) approximation in

O(µ) communication rounds (in our algorithm this refers to
iterations), where the message size is bounded byO(log n)
bits,m is the number of facilities,n is the number of clients,
and ρ is a coefficient that depends on the cost values. We
present the performance of MW algorithm in Figure 10. The
performance of the MW algorithm is poor, especially when the
number of rounds is small. This is expected as WM algorithm
tries to approximate the solution of the centralized facility
location with a minimal number of rounds of communication
and minimal message size.

C. Distributed UFL on the AS-level Dataset

Table I presents the performance of dUFL and random
opening of facilities on the AS-level dataset. Again, it is
verified that dUFL is very close in performance to UFL, even
for small values ofr (within 4% for r = 2, under both
examined facility cost models). The cost of randomly open
facilities is, in some cases, more than six times the cost of
our distributed UFL. The top-degree heuristic yields low cost
under the degree-based cost model but not under the uniform
cost model. Notice also that the number of facilities in the
case of random and top-degree placement has to be estimated
offline. We also noticed that again a small number of rounds
is sufficient to reduce the dUFL cost close to this of the
optimal but centralized UFL. The performance of MW is far
from optimal (R=10 rounds) but improves the initial cost with
minimal communication cost.

VIII. N ON-STATIONARY DEMAND AND IMPERFECT

REDIRECTION

Up to now, our performance study has been based on
assuming (1) stationary demand, and (2) perfect redirection
of each client to its closest facility node. The stationary
demand assumption is not justified for relatively large time-
scales (hours or days), and perfect redirection can be either too

11

dUFL(1) dUFL(2) top-degree random MW
degree 1.22 1.04 1.35 6.67 6.20
-based (1.20) (1.03) (1.35) (6.68) (6.28)
uniform 1.01 1.01 1.80 6.35 6.01

(1.01) (1.01) (1.80) (6.33) (6.04)

TABLE I

MEAN (MEDIAN) COST RATIO BETWEEN DUFL(r), TOP-DEGREE, RANDOM, MW,

AND UFL IN THE AS-LEVEL TOPOLOGY.

 6000

 6500

 7000

 7500

 8000

08:0024:0016:0008:0024:0016:00

nu
m

be
r

of
 d

ow
nl

oa
ds

time (GMT)

Non-stationary demand, number of downloads

 140

 160

 180

 200

 220

 240

 260

 280

08:0024:0016:0008:0024:0016:00

nu
m

be
r

of
 d

ow
nl

oa
ds

time (GMT)

Non-stationary demand, number of downloads, most popular AS

Fig. 11. The number of concurrent downloads from all ASes and from
the most popular AS in the torrent of an on-line multi-player game at each
measurement point.

costly to implement or too difficult to enforce due to faults or
excessive load. In this section we look at the performance
of distributed facility location scheme when dropping the
aforementioned assumptions. First, we present a measurement
study for obtaining the non-stationary demand corresponding
to a multi-player on-line game and then use this workload to
derive a performance comparison between dUFL and UFL.
Then, we assume that mapping a client to its closest facility
node has to incur some time lag and study the performance
implications of such an imperfect redirection scheme.

A. Measuring the Demand of a Popular Multi-player Game

We used the Mininova web-site to track all requests for
joining a torrent corresponding to a popular on-line multi-
player game. By tracking the downloads of the game client,
which is possible to do due to the use of BitTorrent, we can
obtain a rough idea about the demographics of the load put on
the game servers, to which we do not have direct access. We
then use this workload to quantify the benefits of instantiating
game servers dynamically according to dUFL. Hereafter, we
use the term facility and server interchangeably.

More specifically, we connected periodically at 30-minute
intervals to the tracker serving this torrent, over a total duration
of 42 hours. At each 30-minute interval, we got all the IPs of
participating downloaders by issuing to the tracker multiple
requests for neighbors until we got all distinct downloaders
at this point in time. In Figure 11 (left) we plot the number
of concurrent downloads at each measurement point. Overall,
we were able to capture a sufficient view of the activity of the
torrent and detect expected profiles, e.g., diurnal variation over
the course of a day. In total, we saw 34,669 unique users and
the population varied from 6,000 to 8,000 concurrent users,
i.e., the population variance was close to 25%.

Moving on, we used Routeviews dataset [39] to map each
logged IP address to an AS. The variance in the number
of concurrent users from a particular AS was even higher.
Focusing on the most popular AS, we found out that the
variance in the number of concurrent users was as high as

50%, as it is shown in Figure 11 (right). Last, we looked at
churn at the AS level by counting the number of new ASes
joining and existing ASes leaving the torrent over time [40].
Formally, we definedchurn(t) = Ut−1⊖Ut

max{|Ut−1|,|Ut|} , whereUt

is the set of ASes at timet, and⊖ is the set difference operator.
In Figure 12 we plot the evolution of churn. One can observe
that AS-level churn is quite high, ranging from 6% to 11%,
with no specific pattern. This serves our purpose which is to
study the performance of dUFL under non-stationary demand.

B. Distributed UFL under Non-stationary Demand

We consider a distributed server migration scheme given
by dUFL with radiusr = 1. The pricing model for starting
a server at an AS is the aforementioned degree-based one of
Section VI-C. The evaluation assumes an AS-level topology
obtained from Routeviews. The demand originating from each
AS at each particular point in time is set equal to the value we
obtained from measuring the downloads going to the torrent of
the game client. We compare the cost of UFL, dUFL(1), with
this of two static placement heuristics: static-min and static-
max. Static-min is a simple heuristic that maintains the same
placement across time. The number of maintained facilitiesis
equal to the minimum number of facilities that UFL opened
in the duration of the experiment. This is used as a baseline
for the performance of an under-provisioned static placement
of servers according to minimum load. Static-max captures
the cost of an over-provisioned placement according to peek
load. Obviously, static-max suffers from a high purchase cost
of buying a maximum number of servers (in this case 100),
whereas static-min suffers from high communication cost to
reach the smaller number of used servers (in this case 70).

We report the average cost in the duration of the experiment
(42 hours) for each one of the aforementioned policies. For
each policy we repeated the experiment 100 times to remove
the effect of the initial random opening of facilities. In
Figure 15 we plot the resulting average costs along with95th

percentile confidence intervals. One can see that dUFL(1)
achieves 4 to 7 times lower cost compared to static-min
and static-max. Looking at the close-up, it can also be seen
that dUFL(1) is actually pretty close, within 10-20%, of the
performance of the centralized UFL computed at each point
in time. Taken together, these results indicate that dUFL(1)
yields a high performance also under non-stationary demand.

Next, we quantify the number of server migrations required
by dUFL(1), between consecutive intervals, to track the offered
non-stationary demand. In Figure 13 we plot the percentage
of servers that are migrated, henceforth referred as migration
ratio, along with95th percentile confidence intervals based
on 100 runs. Evidently, migrations are rather rare, typically
0%-3%, after the servers stabilize from their initial random
positions, to where dUFL(1) will have them at each point in
time. In Figure 14 we show the number of utilized servers over
time when applying our distributed algorithm (dUFL(1)) under
non-stationary demand. The number of utilized servers varies a
lot throughout the experiment, but the migration ratio between
two consecutive intervals is small. There are two noticeable
exceptions, at around 16:00 GMT and 08:00 GMT, when churn

12

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

08:0024:0016:0008:0024:0016:00

ch
ur

n

time (GMT)

Non-stationary demand, churn

Fig. 12. Churn evolution in the AS-level in the
torrent of a popular on-line multi-player game at
each measurement point.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

16:00 24:00 08:00 16:00 24:00 08:00

m
ig

ra
tio

n
ra

tio

time (GMT)

Non-stationary demand, dUFL(1), migration of servers

Fig. 13. Migration ratio of dUFL(1) in the
torrent of a popular on-line multi-player game at
each measurement point.

 70

 72

 74

 76

 78

 80

 82

 84

16:00 24:00 08:00 16:00 24:00 08:00

nu
m

be
r

of
 u

til
iz

ed
 s

er
ve

rs

time (GMT)

Non-stationary demand, dUFL(1), number of utilized servers

Fig. 14. Number of utilized servers over time
when applying dUFL(1) under non-stationary de-
mand.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

08:0024:0016:0008:0024:0016:00

co
st

time (GMT)

Non-stationary demand, performance comparison

static-min
static-max

dUFL(1)
UFL

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

08:0024:0016:0008:0024:0016:00

co
st

time (GMT)

dUFL(1)
UFL

Fig. 15. Average cost of static-min, static-max, dUFL(1), andUFL in the
torrent of a popular on-line multi-player game at each measurement point.

is high (up to 7%). This is to be expected as the evening peak
hour (in different parts of the globe) starts at the around that
time. These results suggest that dUFL(1) is relatively robust
to demand changes and can typically address them without
massive numbers of migrations that are of course costly in
terms of bandwidth and management. Of course, the number
of migrations can be reduced further by trading performance
with laziness in triggering a migration.

C. The Effect of Imperfect Redirection

We now move on to dropping the assumption that clients are
always redirected to their closest facility, which pretty much
implies that there are no performance penalties for them dueto
server migrations. In many cases it has been shown that perfect
redirection is indeed feasible using route triangulation and
DNS [21]. In this section, however, we relax this assumption,
and study the effects of imperfect redirection. We do so to
cover cases in which perfect redirection is either too costly to
implement, or exists, but performs sub-optimally due to faults
or excessive load.

To this end, we assume that there exists a certain amount of
lag between the time a server migrates to a new node and the
time that the migration is communicated to the affected clients.
During this time interval, a client might be receiving service
from its previously closest facility which, however, may have

 2

 4

 6

 8

 10

 0 5 10 15 20

no
rm

al
iz

ed
 c

os
t

lag

Non-stationary demand, effect of lag

static-min
static-max

dUFL(1)

Fig. 16. Normalized cost of static-min, static-max and dUFL(1)with respect
to the cost of UFL in the torrent of a popular on-line multi-player game under
various levels of lag.

ceased to be optimal due to one or several migrations. Since
we assume that migrations occur at fixed time intervals, we
measure the lag in terms of number of such intervals (1 facility
migration at each interval). Notice that under the existence of
lag, even with stationary demand, the optimization is no longer
guaranteed to be loop-free as the server that is about to migrate
is still active (see Section V-A). We solve this by stopping the
iterative re-optimization if it reaches a certain high number of
iterations.

In Figure 16 we plot the cost ratio between dUFL(1)
and dUFL and the95th percentile confidence interval under
various levels of lag that range from 0 up to 20 As expected,
lag puts a performance penalty on dUFL. The degradation,
however, is quite smooth, while the performance always re-
mains superior to static-min and static-max.

IX. RELATED WORK

There is a rich literature on facility location theory. Ini-
tial results are surveyed in the book by Mirchandani and
Francis [8]. A large number of subsequent works focused on
developing centralized approximation algorithms [13], [14],
[15], [16]. The authors of [41] have proposed an alternative
approach for approximating facility location problems based
on a continuous “high-density” model. Recently, generaliza-
tions of the classical centralized facility location problem have
appeared in [42], [43]. The first mention of a distributed
facility location algorithm is by Jain and Vazirani [16] while
commenting on their primal-dual approximation method, but
they do not pursue the matter further. To the best of our
knowledge, the only work in which distributed facility location
has been the focal point seems to be the recent work of

13

Moscibroda and Wattenhofer [38]. This work explores a trade-
off between the amount of communication and the resulting
approximation ration. The authors showed that it is possible
to achieve a non-trivial approximation with constant number
communication rounds where the message size is bounded.
The online version of facility location, in which request arrive
one at a time according to an arbitrary pattern, has been
studied by Meyerson [44] that gave a randomized online
O(1)-competitive algorithm for the case that requests arrive
randomly and aO(log n)-competitive algorithm for the case
that arrival order is selected by an adversary. Andreev et al.
[45] very recently proposed approximation algorithms to select
locations for sources in a capacitated graph such that a given
set of demands can be satisfied simultaneously, with the goal
of minimizing the number of locations chosen. Their solution
is centralized. Oikonomou and Stavrakakis [46] have proposed
a fully distributed approach for service migration — their
results, however, are limited to a single facility (representing
a unique service point) and assume tree topologies.

Several application-oriented approaches to distributed ser-
vice deployment have appeared in the literature, e.g., Ya-
mamoto and Leduc [47] (deployment of multicast reflectors),
Rabinovich and Aggarwal [48] (deployment of mirrored web-
content), Chambers et al. [49] (on-line multi-player network
games), Cronin et al. [50] (constrained mirror placement),
Krishnan et al. [51] (cache placement), Qureshi et al. [52]
(energy cost-aware server selection), and Frank et al. [53](on-
demand server deployment in microdatacenters). The afore-
mentioned works are strongly tied to their specific applications
and do not have the underlying generality offered by the
distributed facility location approach adopted in our work.
Relevant to our work are also the works of Oppenheimer et
al. [54] on systems aspects of a distributed shared platform
for service deployment, Aggarwal et al. [55] on automated
data placement for geo-distributed cloud services, Wendell et
al. [56] on decentralized server selection for cloud services,
and Loukopoulos et al. [57] on the overheads of updating
replica placements under non-stationary demand.

X. CONCLUSION

We have described a distributed approach for the problem of
placing service facilities in large-scale networks. We overcome
the scalability limitations of classic centralized approaches
by re-optimizing the locations and the number of facilities
through local optimizations which are refined in several iter-
ations. Re-optimizations are based on exact topological and
demand information from nodes in the immediate vicinity of
a facility, assisted by concise approximate representation of
demand information from neighboring nodes in the wider do-
main of the facility. Using extensive synthetic and trace-driven
simulations we demonstrate that our distributed approach
is able to scale well by utilizing limited local information
without making serious performance sacrifices as compared
to centralized optimal solutions. We also demonstrate thatour
distributed approach yields a high performance under non-
stationary demand and imperfect redirection. Our approach
leverages recent advances in virtualization technology and the

flexibility of billing models, such as pay-as-you-go, towards a
fully automated Internet-scale service deployment.

REFERENCES

[1] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and
A. Bestavros, “Distributed Placement of Service Facilitiesin Large-Scale
Networks,” in IEEE INFOCOM ’07.

[2] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnovic, “Planet
Scale Software Updates,” inACM SIGCOMM ’06.

[3] N. Laoutaris, P. Rodriguez, and L. Massoulie, “ECHOS: Edge Capacity
Hosting Overlays of Nano Data Centers,”ACM SIGCOMM CCR,
vol. 38, no. 1, pp. 51–54, 2008.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Aview of
cloud computing,”CACM, vol. 53, no. 4, pp. 50–58, 2010.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” inACM SOSP ’07.

[7] P. Wendell and M. J. Freedman, “Going Viral: Flash Crowds in an Open
CDN,” in ACM IMC ’11.

[8] P. Mirchandani and R. Francis,Discrete Location Theory. John Wiley
and Sons, 1990.

[9] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Web Content
Cartography,” inACM IMC ’11.

[10] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann,and
B. Maggs, “Enabling Content-aware Traffic Engineering,”ACM SIG-
COMM CCR, vol. 42, no. 5, pp. 21–28, 2012.

[11] “Network Functions Virtualisation,” Network Operators White Paper,
appeared in SDN and OpenFlow World Congress, Oct. 2012.

[12] O. Kariv and S. Hakimi, “An Algorithmic Approach to Network
Location Problems, Part II: p-medians,”SIAM Journal on Applied
Mathematics, vol. 37, pp. 539–560, 1979.

[13] M. Charikar, S. Guha, D. B. Shmoys, and E. Tárdos, “A Constant Factor
Approximation Algorithm for the k-median Problem,” inACM STOC
’99.

[14] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a Local
Search Heuristic for Facility Location Problems,” inACM SODA ’98.

[15] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit, “Local Search Heuristics for k-Median and Facility Location
Problems,”SIAM J. on Computing, vol. 33, no. 3, pp. 544–562, 2004.

[16] K. Jain and V. V. Vazirani, “Primal-Dual Approximation Algorithms for
Metric Facility Location and k-Median Problems,” inIEEE FOCS ’99.

[17] T. Leighton, “Improving Performance on the Internet,”CACM, vol. 52,
no. 2, pp. 44–51, 2009.

[18] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” inACM SOSP
’03.

[19] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical Guide to
Controlled Experiments on the Web: Listen to Your Customers not to
the HiPPO,” inACM KDD ’07.

[20] J. Pan, Y. T. Hou, and B. Li, “An Overview DNS-based Server Selection
in Content Distribution Networks,”Comp. Netw., vol. 43, no. 6, 2003.

[21] N. Faber and R. Sundaram, “MOVARTO: Server Migration across
Networks using Route Triangulation and DNS,” inVMworld ’07.

[22] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Comparing
DNS Resolvers in the Wild,” inACM IMC ’10.

[23] V. Lenders, M. May, and B. Plattner, “Density-based vs.Proximity-based
Anycast Routing for Mobile Networks,” inIEEE INFOCOM ’06.

[24] M. Naor and U. Wieder, “Know Thy Neighbor’s Neighbor: Better
Routing for Skip-Graphs and Small Worlds.” inIEEE IPTPS ’04.

[25] G. Smaragdakis, “Overlay Network Creation and Maintenance with
Selfish Users,”PhD Dissertation, CS dpt., Boston U., September 2008.

[26] G. Smaragdakis, N. Laoutaris, V. Lekakis, A. Bestavros,J. W. Byers, and
M. Roussopoulos, “Selfish Overlay Network Creation and Maintenance,”
IEEE/ACM Tran. on Netw., vol. 19, no. 6, pp. 1624–1637, Dec. 2011.

[27] P. Erd̈os and A. Ŕenyi, “On random graphs I,”Publ. Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[28] A.-L. Barábasi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[29] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: AnApproach
to Universal Topology Generation,” inMASCOTS ’01.

[30] B. M. Waxman, “Routing of multipoint connections,”IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.

14

[31] S. Jin and A. Bestavros, “Small-World Internet Topologies: Possible
Causes and Implications on Scalability of End-System Multicast,” CS
dpt, Boston U., Tech. Rep. BUCS-TR-2002-004.

[32] ——, “Small-world characteristics of internet topologies and implica-
tions on multicast scaling,”Comp. Netw., vol. 50, no. 5, 2006.

[33] D. Antoniades, E. Markatos, and C. Dovrolis, “One-click Hosting
Services: A File-Sharing Hideout,” inACM IMC ’09.

[34] K. Rup, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson, and J. Gao, “Moving Beyond End-to-end Path Information
to Optimize CDN Performance,” inACM IMC ’09.

[35] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A Plat-
form for High-performance Internet Applications,”SIGOPS Operatings
Systems Review, vol. 44, pp. 2–19, August 2010.

[36] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Character-
izing the Internet Hierarchy from Multiple Vantage Points,” in IEEE
INFOCOM ’02.

[37] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, andW. Willinger,
“Anatomy of a Large European IXP,” inACM SIGCOMM ’12.

[38] T. Moscibroda and R. Wattenhofer, “Facility Location:Distributed
Approximation,” in ACM PODC ’05.

[39] University of Oregon Route Views Project, http://www.routeviews.org/.
[40] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing Churn in Dis-

tributed Systems,” inACM SIGCOMM ’06.
[41] C. W. Cameron, S. H. Low, and D. X. Wei, “High-density Model for

Server Allocation and Placement,” inACM SIGMETRICS ’02.
[42] M. Mahdian and M. Pal, “Universal Facility Location,” in ESA ’03.
[43] N. Garg, R. Khandekar, and V. Pandit, “Improved Approximation for

Universal Facility Location,” inACM SODA ’05.
[44] A. Meyerson, “Online Facility Location,” inIEEE FOCS ’01.
[45] K. Andreev, C. Garrod, B. Maggs, and A. Meyerson, “Simultaneous

Source Location,”ACM Trans. on Algor., vol. 6, no. 1, pp. 1–17, 2009.
[46] K. Oikonomou and I. Stavrakakis, “Service Migration: The Tree Topol-

ogy Case,” inMed-Hoc-Net ’06.
[47] L. Yamamoto and G. Leduc, “Autonomous Reflectors Over Active

Networks: Towards Seamless Group Communication,”AISB, vol. 1,
no. 1, pp. 125–146, 2001.

[48] M. Rabinovich and A. Aggarwal, “RaDaR: A Scalable Architecture for
a Global Web Hosting Service,” inWWW ’99.

[49] C. Chambers, W. chi Feng, W. chang Feng, and D. Saha, “A Geographic
Redirection Service for On-line Games,” inACM MULTIMEDIA ’03.

[50] E. Cronin, S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt,
“Constraint Mirror Placement on the Internet,”IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, 2002.

[51] P. Krishnan, D. Raz, and Y. Shavit, “The Cache Location Problem,”
IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 568–581, 2000.

[52] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B.Maggs, “Cut-
ting the Electric Bill for Internet-Scale Systems,” inACM SIGCOMM
’09.

[53] B. Frank, I. Poese, Y. Lin, R. Weber, J. Rake, G. Smaragdakis,
A. Feldmann, S. Uhlig, and B. Maggs, “Pushing CDN-ISP Collaboration
to the Limit,” ACM SIGCOMM CCR, vol. 43, no. 3, 2013.

[54] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, andA. Vahdat,
“Service Placement in a Shared Wide-area Platform,” inUSENIX ATC
’06.

[55] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, andH. Bhogan,
“Volley: Automated Data Placement for Geo-Distributed CloudSer-
vices,” in USENIX/ACM NSDI ’10.

[56] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “DONAR:
Decentralized Server Selection for Cloud Services,” inACM SIGCOMM
’10.

[57] T. Loukopoulos, P. Lampsas, and I. Ahmad, “Continuous Replica
Placement Schemes in Distributed Systems,” inACM ICS ’05.

Georgios Smaragdakisis a Senior Researcher at
Deutsche Telekom Laboratories and the Technical
University of Berlin. He received the Ph.D. degree
in computer science from Boston University, the
Diploma in electronic and computer engineering
from the Technical University of Crete, and he
interned at Telefonica Research. His research inter-
ests include the measurement, performance analysis,
and optimization of content distribution systems and
overlay networks with main applications in service
deployment, server selection, distributed replications

and caching, ISP-Application collaboration, and overlay network creation and
maintenance. Dr. Smaragdakis received the ACM IMC 2011 best paper award
for his work on web content cartography.

Nikolaos Laoutaris is a senior researcher at the
Internet research group of Telefonica Research in
Barcelona. Prior to joining the Barcelona lab he was
a postdoc fellow at Harvard University and a Marie
Curie postdoc fellow at Boston University. He got
his PhD in computer science from the University
of Athens in 2004. His general research interests
are on system, algorithmic, and performance eval-
uation aspects of computer networks and distributed
systems. Current projects include: Efficient inter-
datacenter bulk transfers, energy-efficient distributed

system design, content distribution for long tail content,scaling of social
networks, pricing of broadband services and ISP interconnection economics.

Konstantinos Oikonomou received his M.Eng. in
Computer Engineering and Informatics from Uni-
versity of Patras, Greece, in 1998. In September
1999 he received his M.Sc. in Communication and
Signal Processing from Imperial College (London)
and his Ph.D. degree in 2004 from the Department
of Informatics and Telecommunications, National
and Kapodistrian University of Athens, Greece. His
Ph.D. thesis focuses on Topology-Unaware TDMA
MAC Policies for Ad Hoc Networks. Between De-
cember 1999 and January 2005 he was employed at

INTRACOM S.A, as a research and development engineer. He is anAssistant
Professor in Computer Networks with the Department of Informatics of the
Ionian University, Corfu, Greece. His current research interests involve among
others, performance issues for ad hoc and sensor networks, autonomous net-
work architectures, efficient service discovery (placement, advertisement and
searching) in unstructured environments, scalability issues in large networks.

Prof. Ioannis Stavrakakis , IEEE Fellow: Diploma
in Electrical Engineering, Aristotelian University of
Thessaloniki, (Greece), 1983; Ph.D. in EE, Univer-
sity of Virginia (USA), 1988; Assistant Professor in
CSEE, University of Vermont (USA), 1988-1994;
Associate Professor of ECE, Northeastern Univer-
sity, Boston (USA), 1994-1999; Associate Professor
of Informatics and Telecommunications, University
of Athens (Greece), 1999-2002 and Professor since
2002. Teaching and research interests are focused on
resource allocation protocols and traffic management

for communication networks, with recent emphasis on: peer-to-peer, mobile,
ad hoc, autonomic, delay tolerant and future Internet networking. His research
has been published in over 170 scientific journals and conference proceedings
and was funded by NSF, DARPA, GTE, BBN and Motorola (USA) as well as
Greek and European Union (IST, FET, FIRE) Funding agencies.He has served
repeatedly in NSF and EU-IST research proposal review panels and involved
in the TPC and organization of numerous conferences sponsored by IEEE,
ACM, ITC, and IFIP societies. He is the chairman of IFIP WG6.3 and has
served as an elected officer for the IEEE Technical Committee onComputer
Communications (TCCC). He is an associate editor for the ACM/Kluwer
Wireless Networks and Computer Communications journals and has served
in the editorial board of the IEEE/ACM transactions on Networking and the
Computer Networks Journals.

Azer Bestavros received the Ph.D. degree in com-
puter science from Harvard University in 1992.
He is Founding Director of the Hariri Institute for
Computing and a Professor in the Computer Science
Department at Boston University, which he joined
in 1991 and chaired from 2000 to 2007. Prof.
Bestavros’ research interests are in the broad areas
of networking and real-time embedded systems. His
contributions include his pioneering the distribution
model adopted years later by CDNs, his seminal
work on Internet and web characterization, and his

work on compositional certification of networked systems and software. He
is the chair of the IEEE Computer Society TC on the Internet, served on the
program committees and editorial boards of major conferences and journals in
networking and real-time systems, and received distinguished service awards
from both the ACM and the IEEE. He received the United Methodist Scholar
Teacher Award at B.U. and the 2010 ACM SIGMETRICS Inaugural Test of
Time Award (with M. Crovella).

