IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11,

NOVEMBER 2005 1053

Inference and Labeling of
Metric-Induced Network Topologies

Azer Bestavros, Member, IEEE, John W. Byers, and Khaled A. Harfoush, Member, IEEE

Abstract—The development and deployment of distributed network-aware applications and services require the ability to compile and
maintain a model of the underlying network resources with respect to one or more characteristic properties of interest. To be
manageable, such models must be compact; and to be general-purpose, should enable a representation of properties along temporal,
spatial, and measurement resolution dimensions. In this paper, we propose MINT—a general framework for the construction of such
metric-induced models using end-to-end measurements. We present the basic theoretical underpinnings of MINT for a broad class of
performance metrics, and describe PERISCOPE, a Linux embodiment of MINT constructions. We instantiate MINT and PERISCOPE for
a specific metric of interest—namely, packet loss rates—and present results of simulations and Internet measurements that confirm
the effectiveness and robustness of our constructions over a wide range of network conditions.

Index Terms—End-to-end measurement, packet-pair probing, Bayesian probing, Internet tomography, performance evaluation.

1 INTRODUCTION

MANY of today’s Internet services are administered
through colocation facilities that are distributed over
the wide area. Examples include Content Distribution
Networks (CDNs) and Application Service Providers
(ASPs). Internet servers at such facilities typically command
a large number of concurrent unicast connections. We use
the term Mass Servers to refer to such Massively Accessed
Servers. A collection of Mass servers distributed over a
wide-area network is in a unique position to infer valuable
network state information that could be effectively used to
maximize resource utilization and optimize content deliv-
ery and distribution. In the context of a CDN, such a “map”
of network conditions could be used for server selection or
to inform replica placement decisions. In the context of grid
computing, such information could be used to inform code
versus data movement, for example. In order for such
network-aware strategies to be practical, an endpoint—
whether a CDN caching proxy or a grid host—must be
able to accurately infer the conditions of network resources
connecting it to other endpoints. Typically, these conditions
are measured in terms of one or more performance metrics
of interest, such as available bandwidth, hop-count, loss
rate, delay, and jitter.

Previous studies aimed at the identification of network-
internal conditions have focused on the characterization of
physical network entities (e.g., routers, links, AS bound-
aries). For the resource management problems that face
Mass servers, an accurate characterization of all physical
resources between the server and its clients is neither

o A. Bestavros and].W. Byers are with the Department of Computer Science,
Boston University, 111 Cummington Street, MCS-140E, Boston, MA
02215. E-mail: best@bu.edu, byers@cs.bu.edu.

o KA. Harfoush is with the Department of Computer Science, North
Carolina State University, 1010 Main Campus Dr., Box 7534, EGRC
building, Room 457, Raleigh, NC 27695-7534.

E-mail: harfoush@cs.ncsu.edu.

Manuscript received 5 Dec. 2003; revised 27 Nov. 2004; accepted 6 Dec. 2004;
published online 21 Sept. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0227-1203.

1045-9219/05/$20.00 © 2005 IEEE

necessary nor feasible. Instead, an abstraction that captures
the conditions of only those shared resources that need to
be accounted for and judiciously managed is preferable. For
a streaming media delivery application, a model of the
network that captures path bottleneck bandwidth and jitter
might be sufficient for server selection purposes. Alterna-
tively, for a distributed caching or content distribution
application, a model of the network that captures loss rates
on congested paths may be used for optimizing replica
placement.

End-to-end measurements made in the course of normal
operations by a Mass server provide a wealth of informa-
tion about the end-to-end characteristics of a particular path
in the network. For example, end-to-end bottleneck band-
width rates, round-trip times, and packet loss statistics can
all be inferred from the dynamics of a TCP connection [2].
In addition to these connection-specific statistics, end-to-
end measurements correlated across different connections
(at one or more Mass servers) can be used to infer
conditions at a finer granularity than encompassing an
entire path, and yet coarser than that at a specific network
resource (e.g., for a portion of a path as opposed to for every
hop along the path). This paper proposes a framework for
efficient inference of network conditions for a wide range of
metrics. In particular, it proposes a framework that enables
a parametrized abstraction that summarizes the topology
connecting a set of endpoints with respect to a given metric
of interest.

1.1 Metric-Induced Network Topologies

Given a set of network endpoints, we define a Metric-
Induced Network Topology (MINT) to be a weighted, directed
graph in which the vertices represent network endpoints as
well as routers, while each edge represents a sequence of one
or more physical network links. The weight on each edge
corresponds to a real-valued quantity that a specific metric
attributes to the sequence of physical links represented by
the edge. Only those sequences of links which collectively
have a metric value above a threshold ¢ > 0 are represented

Published by the IEEE Computer Society

1054

by edges in this topology. The threshold ¢ acts as a
“compression parameter’—the larger the value of ¢, the
coarser (i.e., less detailed) the resulting MINT graph will be.
By hiding uninteresting details of a physical topology (e.g.,
sequences of links with abundant bandwidth, negligible
jitter, or insignificant losses), MINT graphs enable a
compact representation of those resources that need to be
accounted for by network-aware applications at Mass
servers. We refer to this compact representation as a
caricature of the underlying network.

1.2 Paper Contributions and Overview

Existing techniques for making inferences from end-to-end
observations are special-purpose, each targeting specific
performance metrics of interest, such as estimation of
bottleneck bandwidth, packet loss rate, propagation delay,
or jitter. In this paper, we study the extent to which such
end-to-end methods can be effective, not by considering
individual specialized techniques, but by reasoning about
properties of the performance metrics themselves. Our
work introduces the concept of Metric-Induced Network
Topologies (MINT) and proposes general procedures for
the inference and labeling of MINT topologies, as well as
the integration of MINT topologies obtained at different
points in time and from different network vantage points.
We present an embodiment of MINT procedures in Linux,
in the form of a Linux API called PERISCOPE (a Probing
Engine for the Recovery of Internet Subgraphs). We specify
a broad class of performance metrics for which our
proposed techniques are applicable, then instantiate MINT
and PERISCOPE for one such metric, packet loss rates. In this
case study, we demonstrate that recently proposed end-to-
end techniques for the estimation of shared losses can be
leveraged to enable the characterization of loss topologies. To
do so, we present results both of extensive simulations and
of Internet deployment results that demonstrate the
accuracy and convergence of our loss topology inference
and labeling techniques.

2 RELATED WORK

2.1 A Taxonomy

One widely adopted strategy for the characterization of
network properties/conditions is to analyze data collected
from network-internal resources (e.g., router ICMP replies,
BGP routing tables), to generate performance reports [22],
[23] or to perform Internet topology characterization [16],
[17], [31]. This approach is best applied over long time
scales to produce aggregated analyses, but does not lend
itself well to providing answers to the fine-grained needs of
network-aware applications. Another approach, applicable
at shorter time scales, is statistical inference of network
internal characteristics based on end-to-end measurements
of point-to-point traffic. Although this strategy has been
employed in networking contexts for at least a decade,
starting with the use of packet-pair probes [24], [4], recent
efforts have greatly expanded the set of available techni-
ques [1], [5], [8], [9], [14], [21], [27], [33], [35], [36]. The
diversity of inference techniques cut across approaches
which are sender-driven, receiver-driven, those which
employ multicast and those which employ unicast probes,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11,

NOVEMBER 2005

and span performance metrics ranging from static metrics
(e.g., bottleneck bandwidth) to dynamic metrics (e.g.,
packet loss rates). However, none of these studies attempt
to provide a general framework to describe when inferences
may be drawn. Our approach does so by focusing not on
the specific probing technique, but by concentrating on the
metrics of interest, and by developing an understanding of
which metrics are amenable to inference techniques.

2.2 Estimation of Shared Loss Using End-to-End
Measurements

The specific problem of inferring and labeling loss
topologies is motivated in part by recent work on
topological inference over multicast sessions [6], [33], [11],
[12]. By making purely end-to-end observations of packet
loss at endpoints of multicast sessions, Ratnasamy and
McCanne [33] and Caceres et al. [6] have demonstrated how
to make unbiased, maximum likelihood estimation infer-
ences of 1) the multicast tree topology and 2) the packet loss
rates on the edges of the tree, respectively.

At the core of our methodology for constructing loss
topologies is the need for a procedure for the measurement
of shared losses between one server and multiple destina-
tions. A number of recent efforts have addressed this
problem; all would be suitable as underlying procedures in
our framework. In [34], Rubenstein et al. propose the use of
end-to-end probing to detect shared points of congestion
(POCs). By their definition, a point of congestion is shared
when a set of routers are dropping and/or delaying packets
from both flows. Their probing technique for identifying
POCs uses a Poisson process to generate probe traffic to a
pair of remote endpoints and computes cross-correlation
measures between pairs of packets from these flows. In [19],
we presented an alternative technique for the identification
of shared losses using a Bayesian Probing (BP) approach.
Using BP, packet-pair probes are sent to a pair of different
receivers to introduce loss and delay correlation, much the
same way a multicast packet to these two receivers
introduces correlation. Other similar techniques have been
recently proposed [13], [10], [25], [26]. For example, the
striped unicast probing of Duffield et al. uses a sequence of
back-to-back packets sent to different receivers as an
approximation of a multicast probe, thus enabling them to
use link loss and delay inference techniques devised for
multicast probes [13].

3 MEeTRIC-INDUCED NETWORK TOPOLOGIES

3.1 Basic Definitions

The labeled topology from the server to the clients with
respect to a given performance metric is a Metric-Induced
Network Topology (MINT). In many instances, edges with
small labels, representing negligible or statistically insignif-
icant amounts of delay, jitter, or loss, can safely be
disregarded. Thus, effective methods for producing a
metric-induced topology must be sensitive to different
possible thresholds for an observable value of the metric.
The framework we present in this section and the
PERISCOPE tool we present in Section 4 therefore provide
a multiscale representation of a metric-induced topology.

BESTAVROS ET AL.: INFERENCE AND LABELING OF METRIC-INDUCED NETWORK TOPOLOGIES

5% 5%
4%,
3%
® 3%
19%,”70% 0%2%
4 5 11 (12 (4 a4 5) A1 (12 (14

1%/ 0% 1%,/ 0%

1055

3%
8

Fig. 1. Relation between physical and loss topologies under various sensitivity parameter c. Gray links are edges to leaf nodes. (a) Physical tree,
(b) loss tree (c = 0), (c) loss tree (0.03 < ¢ < 0.04), and (d) loss tree (0.04 < ¢ < 0.05).

Beginning with basic definitions, we formalize these notions
below:

Consider the set of links used to route unicast traffic
between a server and a set of clients. In an idealized routing
environment, these links form a tree 7 = (V, E) rooted at
the server, with the clients at the leaves and routers at the
internal nodes. Across this idealized tree, the flows of
packets sent from a server to an arbitrary subset of its clients
share some (possibly none) of 7’s links and eventually
diverge on separate links en route to the different clients. In
practice, realities of routing do not guarantee that a set of
routes from a server form a tree since routes to two remote
hosts can separate and rejoin before diverging again, load
balancers can employ multipath routing, and faulty
behavior such as route flapping can cause packets to a
single host to traverse different paths. Our methods are not
immediately applicable to paths using load balancers or
where route flapping is occurring, but our methods do
apply to paths which diverge and rejoin. However, for such
paths, we will treat them as paths which diverge and do not
rejoin. This enables us to model such paths in an idealized
tree framework, but implies that we will not be able to
accurately capture the incidence of sharing beyond the first
point of divergence in the paths. Addressing this question
appears difficult, and is considered in our future work. For
the remainder of the paper, we assume that a tree model of
the network to be characterized is appropriate.

Definition 1. The physical topology connecting a server to a
set of clients is the tree T induced by shortest-path routing
with the server at the root, clients at the leaves, and routers at
the internal nodes of the tree.

We say that we collapse a node i of a tree into its parent j
if we delete the edge (i,j) from the tree and attach all
children of i to j, by replacing all edges (i, k) with edges
(4, k). Note that when this operation is applied on a tree, the
resulting topology is also a tree.

Definition 2. The logical topology induced by a physical
topology T is the tree formed from T after all internal nodes
with only one child have been collapsed into their parent
recursively.

We now extend our definitions to apply to topologies
with edges labeled according to a metric, noting that, in
general, we do not assume knowledge of the underlying
physical or logical topology. For the purpose of our

discussion, we define a metric to be a function f whose
domain is the set of paths in a tree (or set of simple paths in
a graph) and whose range is the reals. We refer to a labeled
topology as any topology in which values of the metric have
been applied to each link in the topology, noting that links
may correspond to multihop physical paths as well as
physical links. For some metrics, end-to-end observations
will have difficulty distinguishing a small nonzero metrical
value from a zero value. As a result, methods may then
misclassify incidence of sharing. For this reason, we
parameterize any labeling algorithm with a sensitivity
parameter ¢ which is the minimum value of a label which
can be applied to any internal link in the resulting topology
T .. Our definition of metric-induced topology incorporates
such a parameter:

Definition 3. A metric-induced topology with sensitivity
parameter ¢, T .(f), is the labeled topology formed when all
internal nodes i in a logical topology whose parent link L; has
a value f(L;) < ¢ have been collapsed into their parent.*

Based on these definitions, an edge in a MINT graph
represents a sequence of one or more physical network hops
that collectively exhibit observable values of that metric.
Clearly, the larger the value of the sensitivity parameter c,
the smaller the number of links present in the topology 7.
We refer to the tree 7 as the base topology, as this is the
condensed representation that reflects only the edges of the
logical topology that have a nonzero metrical value.
Increasing the value of the sensitivity parameter c to create
trees 7. generate more extensive condensation, in which
arbitrary connected subgraphs of internal nodes may
collapse into a single node. The following example
illustrates this behavior for the specific case of loss
topologies.

Consider the physical tree topology shown in Fig. 1la.
Node 0 is the server, nodes 4, 5, 8, 11, 12, and 14 are the
clients and the remaining nodes are routers. The links in
Fig. 1a are labeled with the actual loss rates on these links.
Fig. 1b shows the loss topology T for this physical tree
when ¢ =0. Notice that in 7, paths with intermediate
nodes of unit out-degree (e.g., the path between nodes 0
and 3 and the path between nodes 6 and 8) are collapsed
into a single (logical) link. Figs. 1c and 1d show the loss

1. Note that the values on adjusted links must be updated in a metric-
specific way after each collapse operation. We discuss the significance of
this in Section 3.2.

1056

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11,

NOVEMBER 2005

A
shar

[

procedure that enables the evaluation of the
ed metric value between any pair of endpoints

J

y

Yes -Integration

Monotone

times.

-Inference of metric-induced trees.

topologies obtained at different

of mutually consistent

\ 4

Yes
Separable

-Labeling of metric-induced trees.

-Integration of metric-induced trees
connecting a set of servers to a set
of clients.

\ J

Rely on a Metric-
Specific Technique

Fig. 2. Summary of MINT framework functionality.

topologies for this physical tree when 0.03 < ¢ < 0.04 and
when 0.04 < ¢ <0.05, respectively. These topologies are
obtained from 7 by collapsing internal links with loss
probabilities that are less than the sensitivity parameter c.
For the sake of simplicity in this example, we have taken the
liberty of merging loss probabilities on consecutive links by
using simple addition (at the cost of a small degree of
inaccuracy).

3.2 MINT Inference and Labeling

The topology inference framework we present next applies
to a broad class of metrics (encompassing packet loss rates,
propagation delay, and network bandwidth) satisfying
three technical conditions. We define those conditions next,
then demonstrate how our inference techniques 1) can be
recursively applied to large topologies, 2) can incorporate
observations taken at multiple points in time, and 3) can
incorporate incorporate observations taken at multiple
points in space.

To define these conditions, we need a bit more
terminology. We denote a path between two hosts A and
B by pa_.p and denote a general path between any two end
hosts as p;, where the subscript represents a path identifier.
We refer to path p; as a subpath of p; if the sequence of edges
forming p; is a subsequence of the edges forming p;.

Let us then denote p; ; as the maximal subpath common
to both p; and pj, i.e., p;; is the shared portion of p; and p;.
We classify metrics based on three different properties:

e Monotonicity: A metric f is monotonically increasing
if for any pair of paths p;, p; for which p; is a subpath
of pj, f(p:i) < f(p;). Similar definitions hold for
metrics which are monotonically nondecreasing,
monotonically decreasing, and monotonically non-
increasing, and we refer to any such metric as

monotone.

-Inference and labeling of metric-
induced topologies connecting a
set of servers to each other.

Separability: A metric f is separable if for any path p
composed of the union of two disjoint subpaths p;
and p;, f(p;) = 9(f(p), f(p)) for some function g.
Note that the value of one subpath is determined by
the values on the full path and the value on the peer
subpath.

Symmetry: A metric f is symmetric if for any path p;
the value f(p;) is equal as observed from either end
of Di-

Metrics of interest are diverse with respect to these three
properties. For example, loss rate is monotone, separable
but not symmetric; propagation delay is monotone, separ-
able and (sometimes) symmetric; round-trip time is mono-
tone, separable, and symmetric; available bandwidth is
monotone, but not necessarily symmetric and definitely not
separable; and jitter is neither monotone, nor separable, nor
symmetric. Fig. 2 summarizes the MINT framework
capabilities in the presence (or absence) of the monotonicity,
separability, and symmetry properties. We will now show
how the presence (or absence) of each these properties in a
metric f affect our ability to infer, label, and aggregate
topologies induced by f using end-to-end measurements.
We do so through a sequence of theorems.

Theorem 1. Given a procedure that evaluates f(ps,—a), f(Dsy—b),
and f(ps,—a.sy—b) for some monotone metric f between a
server sy and any two nodes a and b, one can infer the base
topology induced by f over an arbitrary physical topology T in
polynomial time. In the event that f is separable, one can also
label the topology induced by f for any sensitivity parameter
¢ > 0 in polynomial time.

Proof (Sketch). We first demonstrate how to recursively
infer the base topology 7, based on end-to-end evalua-
tions of a monotonically increasing function f. Consider
a set of n endpoints si,s2,...s,. Sort all pairs of
endpoints (s,, s,) on the value of f(ps,—s,.sp—s,), and let

BESTAVROS ET AL.: INFERENCE AND LABELING OF METRIC-INDUCED NETWORK TOPOLOGIES

si1 and s;o be one such pair of endpoints which obtains
the maximal value. Of the endpoints in the list, s;; and s;2
have a maximal degree of sharing and, thus, there exists
an internal node r in 7, at which the paths from s;; and
sip diverge, but between r and s;; and between r and s,
there are no additional branches in 7,. We prove this
latter claim by contradiction. Suppose there were a
branch at node ¢ between r and s;;, branching between
si1 and a third endpoint s;3. Then, by monotonicity,
F(Psyosn.s0—si) > (Psy—siso—sn), Which in turn violates
maximality and leads to a contradiction. At this point,
we have identified an internal node r and two of its
children, but we have not identified all of its children. To
do so, note that for each of 7’s children s., we must have
that f(ps,—sy.s0—s.) = (Pso—si.so—sn)- S0, to locate all of r’s
children, we simply scan the set of endpoint pairs whose
shared path value was maximum, and include all those
meeting the criterion above. Note that we may bypass
those node pairs (s,, s,) whose value also happens to be
maximal, but who are unrelated to r’s children.

The above construction identifies an internal node r in
the logical topology, and gives a method for computing
JF(Psy—r) = f(Psy—s;.50—s;), and identifying all of r’s direct
descendants in the base topology. Therefore, we can
remove s;, s; and all other children of r from considera-
tion and replace them with the single node r. This
reduces the problem of finding the logical topology
connecting a server s; to n endpoints to the smaller
problem of finding the logical topology connecting that
same server to strictly fewer than n endpoints. Applying
this reduction repeatedly, eventually yields the base
topology with respect to f.

In the event that the metric f is also separable, we can
prove the second part of Theorem 1 for any sensitivity
parameter ¢ > Oby repeatedly applying the following step.

Compression and Relabeling: In a bottom-up fashion, we
collapse an internal node r; into its parent node r; iff
9(f(Psy—r;), f(Psy—r;)) < c. (Note that the path to the child
is the full path, and the path to the parent is the subpath.)
Recall that collapsing r; into r; entails deleting edge
(ri,r;) from the tree and attaching all children of r; to r;.
The label of the edges connecting former children of r; to
r; must be updated. By the separability condition, the
updated value is g(f(ps,—r); f(Ps,—r;))- The result is a
labeled topology as depicted in Fig. 1. O

An immediate corollary to the theorem above is that
inference and labeling can be conducted between a set of
servers and a single endpoint provided the metric is
monotone and separable.

3.3 Integrating MINT Snapshots

For nonstationary metrics such as loss rates and available
bandwidth, the labels on the edges of a metric-induced
topology will change over time. Moreover, at different
points in time, measured observations over a link or set of
links may fail to reach the threshold specified by the
sensitivity parameter. For both of these reasons, time-
varying observations of a metric-induced topology mea-
sured from the same endpoints may contain different sets of
observable internal edges. Therefore, one can hope to

1057

integrate a set of MINT snapshots generated at different
points in time to produce an inferred (but unlabelled)
topology which includes the union of all internal edges
observed in the snapshots. A dynamic picture of the MINT
snapshots over time may be useful in providing the
temporal evolution of the bottlenecks. It is natural to
consider whether one can efficiently produce such an
integrated topology from a set of mutually consistent
topological snapshots. The following theorem shows that
this can be achieved.

Definition 4. Consider a set of unlabeled metric-induced tree
topologies T1,7T3,...,T}, rooted at a node x and spanning
destination sets Ey,Es,...Ey, respectively. These trees are
mutually consistent if there exists a tree T' spanning all
destinations in |J; E; from which for any i, T; can be
generated from T' by repeated collapse operations.

Theorem 2. The minimal tree T' spanning a set of mutually
consistent topologies 71,74, ..., T, connecting a server to a
set of m clients is unique and can be constructed in
O(nm?log(m)) time.

Proof. In order to prove the theorem, we first demonstrate
that the minimal tree spanning any fwo mutually
consistent topologies is unique and can be constructed
in O(m?logm) time. The construction which we present
for merging two trees is associative with respect to
preserving minimality and uniqueness, thus it can be
applied n — 1 times in succession: first, to merge 7 and
T, then between the resulting unique minimal tree and
T3, etc. The overall running time is then O(nm? log(m)).0

We now prove the lemma that two mutually consistent
topologies can be merged efficiently.

Lemma 1. The minimal tree T' spanning two mutually consistent
topologies T and T 5 from a single server to a set of m clients is
unique and can be constructed in O(m? log(m)) time.

Proof. We first prove uniqueness by demonstrating
necessary conditions for nodes to be present in 7". First,
all leaf nodes (the m clients) and the root must
necessarily be present. Furthermore, an internal node
corresponding to each branch point in either 7, or 7T,
must be present in 7”, since collapse operations never
remove branch points. In particular, let leavesr(x)
denote the set of leaves in the subtree rooted at node x
in 7. Then, let £L(7',z) = leavest, (z) | leavesr,(x), and
L(T') = User,oreer, £(T',), e.g., the set of all distinct
subsets of clients in a rooted subtree of 7; or 7 5. In the
final tree 7' we will have a node for each element of
L(T'"), noting that such a node may correspond to branch
points in both 71 and 7. This set of nodes is minimal,
and can be formed into a tree since the two topologies are
assumed to be mutually consistent. Moreover, this tree is
unique since node z is an ancestor of node y if and only if
leavest (y) C leavesy(z), thus the node placement in the
tree 7 is uniquely determined.

We now give a deterministic bottom-up construction to
build this tree in O(m?log(m)) time. We start with some
additional terminology. Let parentr(x) be the parent of
node zintree 7, let childreny (x) be the setof nodes thatare
direct descendants of node z, and let leavesy (x) again be

1058 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2005

{[[x.ly,z}},u,ﬂ@
{{x.{y.z} },u,v}é
{x.{y.z}}

@, {y.z}

[{XaY»Z}-[u,V]@

{x.y,z} _p <_{uv)

©
GO b

SO 053 33

{{{X-{y.lll,{u.\’l})@
Hx.(y.zl).(mv))@
{x,{y.z}}
{uv)
! y2) @

{{x,y,u},[z.V]l@

{xyu @ | <G>[2.VJ
ofo
d)

(

Fig. 3. Sample trees used to illustrate the minimal tree construction technique.

the set of leaves that are in the subtree rooted at node z.
Finally, let ancestory (S) be the least common ancestor of
all the nodes in the set S. For example, by referring to
Fig.3b, parentr(3) =2, childreny (3) = {z, 4}, leavesr (3) =
{z,y,2}, and ancestorr({4,u}) =2. Note that for any
node N in 7, all nodes in childrenys (N) share exactly the
same path from the root of 7 to N and, thus, they all have
the same shared metric value.

Fig. 4 gives the algorithmic details of the minimal tree
construction technique. Intuitively, we use a bottom-up
procedure to inspect internal nodes of the two topologies
to determine whether they are equivalent, distinct, or
inconsistent, building the minimally consistent tree as we
go. For example, it is straightforward to verify that
feeding tree of Figs. 3a and 3b to the MinimalTree-
Construction function leads to the tree (Fig. 3d), while
tree in Figs. 3a and 3c are inconsistent.

The construction uses 7 as a potential minimal tree,
and is based on comparing each node N of 7; (in
descending order of their depth) to a corresponding node
W in T4, where W = ancestorr, (childrent, (N)) to deter-
mine whether new nodes should be added to T5. The
construction relies on keeping the following invariants:
1) By checking 7 internal nodes in descending order of
their depth, the construction ensures that the subtrees
rooted at an internal node being checked are consistent
and minimal. 2) Whenever two nodes (one in 7 and the

other in 7») have been assigned the same label N, then the
rooted subtrees at these nodes are consistent and span the
same set of clients leavesr, (N) = leavest,(N). The con-
struction evaluates the nodes in childrens,(N) and
childrens,(W) and considers four possible cases:

Case 1 (Exact Match): (childrens,(N) = childrent,
(W)). In this base case, N and W are trivially consistent,
and the construction simply assigns the label NV tonode .

Case 2 (Reduction): (childreny,(N) C childrent,(W)).
In this case, node N identifies greater sharing among
nodes in childrens, (N) than the level reflected by node
W in T5. As a result, the construction inserts node N
between W and childreny, (N) in T 5.

Case 3 (Compression): (childreny,(N) ¢ childrent,
(W) AND |leavest,(N)| = |leaves,(W)|). In this case,
node IV reflects greater sharing than that of node N;and as
a result, 7, already contains full information about this
subtree and need not be updated.

Case 4 (Inconsistency): (childreny,(N) ¢ childreny,
(W) AND |leavest,(N)| # |leavest,(W)|). In this case,
nodes in the subtree rooted by node W represent an
inconsistency as they should have appeared in the subtree
rooted by node N in 7.

Construction Running Time: As shown in Fig. 4, the
construction is a loop over all nodes in 75 (O(m) such
nodes) and, for each of these nodes there is, in addition

MinimalTreeConstruction(7;,73)

else return NULL;
return (73);

endfor

for (all nodes N in 77 in decreasing order of their depth) do
let W be the least common ancestor in 73 of the children of N in 7;

if (childreny, (V) == childreny, (W)) then
Set the label of node W in 75 to be V;

else if (childrenz, (N) Cchildreny, (W)) then
Insert new node N in 73 with parent W and children = childrens, (V)

else if (leavesyq (V) ==leavesys(W)) then
Set the label of node W in 75 to be N;

/*Inconsistent topology */

/* T3 now is the minimal tree of 7; and old 75 */

/* Exact match */
/* Reduction */

/* Compression */

Fig. 4. Minimal tree construction technique.

BESTAVROS ET AL.:

2/ 1%

R

INFERENCE AND LABELING OF METRIC-INDUCED NETWORK TOPOLOGIES

1059

Fig. 5. Example of integrating MINT snapshots from servers to clients. Panel (a) depicts the integration of trees 7, and 7, from the server's
perspective. Panel (b) depicts the integration of three trees from the client’s perspective. Panel (c) depicts the integrated view incorporating all

vantage points.

to a constant number of comparisons, a construction of
ancestory(.), leavesr(.), and childrens(.) which takes
O(mlog(m)) time each. Also, there is a comparison
between two childrens(.) sets which takes O(mlogm)
time. The overall running time of the construction is thus
O(m?log(m)). This concludes the proof of the lemma
and, as a consequence, the theorem.

Another important problem that is similar to the
integration of time-varying observations is that of integrat-
ing observations made from spatially distinct vantage points.
As motivated in the introduction, a content delivery
network (CDN) consisting of a number of distributed
servers already performs a vast number of end-to-end
observations in the normal course of daily operations and
could benefit from a methodology to integrate these
observations. We provide the following additional defini-
tions to generalize the notions above to enable the
integration of metric-induced topological snapshots made
from different points in space—namely, how to produce a
graph which is mutually consistent with a set of consistent
snapshots collected from a set of distributed servers.

Definition 5. Consider a set of metric-induced topologies
T1,7T,,...,T} rooted at different servers. We say that these
topologies are mutually consistent if there exists a graph G
spanning all endpoints in | J T ; and when G is restricted to the
routing tree induced by shortest-path routing then T ; can be
generated from that subgraph by repeated application of the
collapse operation.

Theorems 3 and 4 generalize the topology integration
process to merge consistent topologies. Theorem 3 applies
to topologies observed from an arbitrary set of servers to an
arbitrary set of clients. Theorem 4 applies to topologies
observed between an arbitrary set of collaborating servers.

Theorem 3. Given a set of n servers sy, Sz, ..., sy, 4 set of m
clients c¢1, co, ..., ¢n, and a procedure that enables the
evaluation of:

. fPsi—e,) Vi=1,2,....nand YVk=1,2,...,m

20 f(Psmersoe) Vi=1,2,.. nandVk,1=1,2,...,m,
where k # 1.

3. fWsisas—e) Vi, =1,2,... ,nandVk =1,2,...,m,
where i # j.

For some monotone and separable metric f, one can efficiently
infer and label the base topology G induced by f over the
physical topology induced through shortest-path routing and
connecting the n servers to the m clients for any sensitivity
parameter ¢ > 0.

Proof (Sketch). We only present the high-level steps in the
proof as the main constructions follow directly from
methods we have already derived. These steps are:
1) Inferring the metric induced trees 7; connecting each
server s; to the set of all clients ¢;. By applying the
construction provided in the proof of Theorem 1, 7'; can be
inferred and labeled. Fig. 5a shows the integration of 7
and 7 connecting each of two servers s; and s; to three
clients ¢y, co, and c3. 2) Inferring the metric induced trees By,
connecting each client ¢;, to the set of all servers s;. By
applying the Corollary to Theorem 1, B, can be inferred
and labeled. Fig. 5b shows the integration of By, B2, and B3
connecting the servers s; and s; to each of three clients ¢,
¢z, and c3. 3) Integrating the 7; and By, trees to construct the
MINT graph. Fig. 5c shows a sample graph resulting from
the integration of the trees in Figs. 5a and 5b. The methods
behind the construction leverage the ideas used in the
proof of Theorem 1 in a straightforward manner. The
algorithm is presented in Fig. 6 and a sample step of this
construction is presented in Fig. 5.

Interpreting the algorithm in Fig. 6, we reconcile each
triple of trees consisting of a pair of server trees 7; and
7T;, and a client tree Bj. For triples of this form, we
consider the paths s; — ¢, and s; — ¢; in 7;, 7; and By.
Fig. 5a shows the paths from s; and s, to ¢; for 7 and
T,; and Fig. 5b shows the paths from s; and s, to ¢; for
B, during one step of this merge process. 0

Theorem 4. Given a set of n servers sy, Sy, ..., s, and a
procedure that enables the evaluation of f(psj), f(ps,), and
f (Ps,usk-) for some monotone, separable and symmetric metric f
and assuming symmetric routing, one can efficiently infer and
label the base topology G induced by f over the physical
topology induced through shortest-path routing and connect-
ing the n servers for any sensitivity parameter ¢ > 0.

Proof (Sketch). The proof is based on the efficient inference
of T;, connecting server ¢ to the other n — 1 servers, Vi =
1,2,...,n the base topology induced by f over the
physical topology connecting server s; to the other n — 1
servers (Theorem 1). Monotonicity and separability of f

1060

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11,

NOVEMBER 2005

MINTSnapshotsIntegration(7, B)

let G=T
for (all pairs 7; and 7;, i # j) do

for (all trees Bj) do
let ¢ be the root of By

for (all identified nodes z in S) do

endfor
endfor
endfor
return G

let s; and s; be the roots of 7; and 7}, respectively

let S be the segment ps, ., s, —c, 0 Bk

Insert a node w in ps, ., in G such that f(ps,—.) in G is equal to f(ps,—z) in By
Insert a node v in p; ., in G such that f(ps;.) in G is equal to f(ps;) in By
Merge nodes u and v and merge the paths py—., and py—., in G

Fig. 6. Construction for integrating MINT snapshots from servers to clients.

ensure that we can infer and label 7;. Also, symmetric
routing ensures that a path connecting server s; to server
s; is the same path connecting s; to s; in the reverse
direction. This means that internal nodes on the path
connecting s; to s; in 7; are also on the path connecting
sj to s; in 7T ;. It should be emphasized that symmetric
routing is not widespread in current wide-area networks,
such as today’s Internet. Monotonicity and symmetry of
f allow us to order the internal nodes on the path
between s; and s;, and separability of f allows us to label
every hop along this path. 0

4 PERISCOPE IMPLEMENTATION

We have embodied our MINT framework in Linux by
developing an API called PERISCOPE [20] (a Probing Engine
for the Recovery of Internet Subgraphs) that implements the
functionality necessary to infer and label metric-induced
topologies, using the constructions presented in Section 3.2
Currently, PERISCOPE is designed to infer MINT topologies
by sending explicit probes (active probing), as opposed to
doing the inference during the normal course of operation
of existing applications. PERISCOPE server-side functional-
ity consists of: 1) orchestrating probe transmission, 2) main-
taining probe statistics relative to the metric of interest, and
3) running the inference and labeling processes. PERISCOPE
requires no support from clients beyond the ability to
respond to ICMP ECHO REQUESTSs. Fig. 7 depicts the main
components of the PERISCOPE architecture.

The Manager keeps a record of all endpoints (i.e.,
clients) under consideration. Endpoints are partitioned into
application-defined groups—applications specify clients in a
group through a custom system call. The inference and
labeling procedures are applied on flows to endpoints
belonging to a single group. Periodically, the Manager
reports inference and labeling results through application
callbacks, whose implementation we discuss momentarily.
The Scheduler uses a timer for each group. Whenever a
timer associated with a group of endpoints expires, a new

2. The PERISCOPE API can be downloaded from http://www.csc.ncsu.
edu/faculty /harfoush/periscope.

probe for this group is inserted in the IP stack for
transmission. This probe consists of a specific packet
sequence to a subset of the group’s endpoints, as required
by the probing engine. The Scheduler ensures that the
packets within a packet sequence are inserted in correct
sequential order on top of the IP stack. For example, in
order to send two packets back-to-back, we extended the
kernel library with a dynamic, downloadable kernel
module that sends two packets back-to-back with a single
system call. The endpoints to which probes are targeted are
selected by the Scheduler in a random fashion to avoid
synchronization effects The Monitor keeps track of the
probe statistics for each endpoint in each group. These
statistics are updated as a result of the receipt of an ICMP
ECHO REPLY from an endpoint.

PERISCOPE is implemented in the kernel library. By
implementing the scheduling and monitoring functional-
ities in the kernel, PERISCOPE minimizes user/kernel
boundary crossings. The user/kernel boundary is crossed
only during group setup, flow registration, and periodic
application callbacks to report inference and labeling
results. This optimization is valuable for busy servers. In
most cases, the procedure used to infer shared metric values
requires sending back-to-back probe packets, which can only

API Calls Application Callbacks
—
User
Space 3 I APl l
e >_ __
MANAGER
| DEFINITIONS | | Loaic |
> Periscope
Kernel t t
Space <
MONITOR SCHEDULER

l 4
= o~ IP Layer

- T)

Fig. 7. PERISCOPE architecture.

BESTAVROS ET AL.: INFERENCE AND LABELING OF METRIC-INDUCED NETWORK TOPOLOGIES

be guaranteed by implementing the probing procedure in
the kernel to avoid context-switching by the operating
system. The interface between applications and PERISCOPE
is done through the use of control sockets. System calls are
translated through ioctl calls to perform appropriate
actions in the kernel. An application uses the select
system call to receive PERISCOPE callbacks. This approach
(control socket + select + ioctl) restricts code changes caused
by PERISCOPE to the networking stack and provides a well-
defined and flexible interface for applications.

5 CASE StuDY: UNICAST LoSs TOPOLOGY
IDENTIFICATION

As established by Theorem 1, any end-to-end procedure
which is capable of labeling a metric-induced topology with
two clients can be recursively applied to label an arbitrarily
large metric topology provided the metric is monotone and
separable. However, since the exact nature of a particular
procedure used to label a topology with respect to a
particular metric may vary widely, the accuracy of such a
procedure as well as the extent to which such a labeling
process scales must be analyzed in the context of the
particular algorithm used. In this section, we focus our
presentation on applying the theoretical results and the
PERISCOPE embodiment presented earlier to a particular
metric—namely, loss rate. Instantiations for other metrics
such as queuing delay and capacity bandwidth are also
possible using procedures such as those presented in [15],
[21]. We use the term loss topology to refer to the
instantiation of MINT for the loss rate metric. We begin
this case study with a presentation of three criteria that
enable us to evaluate the goodness of MINT inference and
labeling. We then proceed to describe the specific procedure
we used to measure shared losses between a sender and a
pair of receivers. This procedure has also been imported
into our PERISCOPE architecture. We then describe our
experimental evaluation of our approach, conducted both
by extensive ns [29] simulations and by validation through
PERISCOPE Internet experiments.

5.1 Success Criteria for Inference and Labeling

We now introduce our three evaluation criteria. The first
two criteria are used to evaluate the goodness of a MINT
inference technique, whereas the third is used to evaluate the
goodness of a MINT labeling technique. In practice, all three
of these values will be computed by running experiments
over a representative set of similar trees, computing the
values over those inputs, then averaging the results to
derive an estimate. In each of the definitions below, we
assume that the inference/labeling process starts at ¢ = 0.

Definition 6. The inference accuracy A(t) of a MINT inference
strateqy at time t is the probability that the strateqy yields the
correct topology at time t.

In our experiments, to measure accuracy at time ¢, we
calculate the percentage of experiments in which the correct
MINT topology was identified at time ¢. The accuracy
criterion is absolute in the sense that it does not allow for a
quantification of how “close” an inferred MINT topology is
to the exact MINT topology, in the event that it is
inaccurate. We will now introduce a discrepancy measure
to provide such a relative quantification for tree topologies.

1061

(©)

Fig. 8. lllustration of the use of the Inference Discrepancy and Labeling
Error Measures. (a) Inferred tree. (b) Labeled tree.

Definition 7. The inference discrepancy D(t) of a MINT
inference strategy on a tree topology T' at time ¢ is given by:

D(t)= | > (dij(t) _di’j)2/<]\24>7

i5Jii]

where d; ; denotes the depth of the least common ancestor of a
pair of clients i and j in the actual topology induced by T,
d; ;(t) denotes the depth of least common ancestor of a pair of
clients i and j in the inferred topology at time t, and M is the
number of nodes in T.

To give an intuition for the discrepancy criterion,
consider the loss topology shown in Fig. la and assume
that as a result of applying an inference procedure with
¢ = 0.05, the topology shown in Fig. 8a is obtained. The
inferred topology is not identical to the correct 75 loss
topology shown in Fig. 1d and the discrepancy between the
inferred topology and 7T¢; is 4/3/15 = 0.447. Unlike
quantification of the success of an inference process, which
can be done independent of the metric(s) used to develop
inferences, quantifying the success of a labeling process
must necessarily reflect the metrical labels. The following
definition applies specifically to labeled loss topologies.

Definition 8. The labeling error E(t) of a loss topology labeling
process on a topology T' at time t is

E(t) = (&) —e)*/L,

Mh

=1

where e, denotes the correct loss probability for link 1, &/(t)
denotes the measured loss probability for link [at time t, and L
is the number of links in T.

To give an intuition for the labeling error measure, which
can be interpreted as the average inaccuaracy in the labeling
of an arbitrary link in a topology, consider the tree shown in
Fig. 1a. Assume that the labeled topology shown in Fig. 8b
is obtained. As a result of applying a labeling procedure
with ¢ = 0.05, obviously, the labels on that topology are not
identical to the labels on the 75 loss topology shown in
Fig. 1d. The labeling error is then

/(0,022 +0.012 + 0.012) /8 = 0.00866.

1062

5.2 Bayesian Probing

Our procedure for identifying shared loss between a pair of
clients is the Bayesian Probing (BP) technique developed in
[19]. Consider clients 11 and 14 in the topology shown in
Fig. 1a. Using the terminology of Section 3, paths p;; and p4
from the server to each of these clients can be partitioned
into two subpaths: the portion that is shared between the
two paths, pi114, and the portion that is not. Specifically,
L¢Ly is a shared segment, whereas LigLy; and Li3L4 are
not. The BP technique provides us with a simple probing
methodology that enables the estimation of p;, p; and p; ; for
all 4,5 as required by Theorem 1 and PERISCOPE APIL To
that end, the technique uses two types of probe sequences:

Definition 9. A 1-packet probe sequence S;(A) is a sequence
of packets destined to client i such that any two packets in
Si(A) are separated by at least A time units.

Definition 10. A 2-packet probe sequence S;;(A,¢) is a
sequence of packet-pairs where one packet in each packet-pair is
destined to i and the other is destined to j, and where the
intrapair packet spacing is at most € and the interpair spacing
is at least A time units.

One-packet probe sequences provide a baseline loss rate
over end-to-end paths, while 2-packet probe sequences
enable measurement of loss rates over shared links. The
intuition developed in [19] is that, because of their temporal
proximity, packets within a packet pair have a high
probability of experiencing a shared fate on the shared
links. If the incidence of shared loss on the shared links is
high, this leads to an increased probability of witnessing
coupled losses within a packet pair, provided that the
queues are drop-tail gateways. (As noted in [19], the
method is sensitive to the drop-tail assumption and is not
effective when RED gateways are employed.) While we
describe appropriate settings of A and e in the experimental
results, we generally find that setting € to be on the order of
a millisecond and A to be on the order of hundreds of
milliseconds achieves high dependence and ensures near-
independence, respectively. Using statistics of successful
packet delivery of 1-packet and 2-packet probes, the BP
techniques enables the estimation of the magnitude of
packet losses on the shared segment of paths from a server
to two clients.

5.3 Performance Evaluation in ns

In this section, we present results of extensive ns [29]
simulations that demonstrate the accuracy, convergence,
and robustness of our approach.

Link Baseline Model: Each of the links in our simula-
tions is modeled by a DropTail queue. The link delays were
all set to 40ms and the link buffer sizes were all set to
20 packets. Each link was subjected to bursty background
traffic resulting from aggregating a set of Pareto ON/OFF
UDP sources with a constant bit rate of 36Kbps during the
ON times using a packet size of 200 bytes. The average ON
and OFF times were set to 2 and 1 seconds, respectively.
The Pareto shape parameter (a) was set to 1.2. After a
“warm-up” period of 10 seconds, the probing processes and
associated inference and labeling processes begin.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11,

NOVEMBER 2005

Setting High Mild Low
Link Bandwidth 1Mbps 1Mbps 100Mbps
of background flows 60 56 44
Observed Loss Rate 7-15% <% < 1%

Fig. 9. Link congestion settings and resulting loss rates.

To represent the various levels of congestion that any of
these links may exhibit, we have chosen three sets of
parameters that reflect “High,” “Mild,” and “Low” levels of
congestion. The baseline parameter settings for these
congestion levels (and the resulting loss rates) are tabulated
in Fig. 9. Our choice of very high loss rates (7-15 percent) for
highly congested links was meant to stress-test our
technique under severe congestion (we primarily observed
instances of lightly congested links in the wide area when
testing our implementation). We set the value of the
sensitivity parameter ¢ to a fixed loss rate of 0.04. This
value was chosen empirically based on our experimental
set-up; we imagine that in general, the sensitivity parameter
will have to be chosen in an application and metric-specific
way. We note that the exact upper bound on link losses is
unimportant since the sensitivity parameter setting of
¢ =4 percent is small enough to observe links with losses
> 4 percent. Our simulation results are slightly worse with
such high maximum loss rates because the presence of
highly lossy links slows BP’s ability to characterize
subtopologies downstream of those links.

Topology Baseline Model: In order to test our inference
and labeling techniques, we generated a baseline test set of
random tree topologies of varying shape, depth, and with
variable fanout (up to degree 4) on 14 nodes, of which five
leaves were then selected as clients. The congestion level for
each tree edge was then chosen at random from the link
baseline models with the following distribution: 50 percent
Low, 30 percent Mild, and 20 percent High.

Configuring Bayesian Probing: The BP technique
requires specification of the A and ¢ parameters describing
the temporal constraints imposed on 1-packet and 2-packet
probe sequences. In our experiments, each probe sequence
was generated using an independent Poisson process with a
mean probing rate of 5 probes/sec, or 200ms average
interpacket spacing. A lower bound on A was not
guaranteed. For 2-packet probing processes, the value of e
was set to 0; that is packets within a packet-pair were sent
back-to-back, with no time separation. The 2-packet probes
in a probe sequence alternate between the two possible
packet orderings.

Experimental Setup: To determine the accuracy of our
loss topology inference technique, we generated 20 5-client
baseline trees at random, as described earlier. We ran the
loss topology inference technique from the root node by
creating an ns agent that sends the probes, collects statistics
about these probes, calculates the needed estimates, and
executes our topology inference procedure. The setup of the
labeling experiment was similar, except that the ns server
agent ran the labeling procedure on a provided (i.e., correct)
loss topology. For each one of the 20 randomly generated
trees, we ran the inference and labeling experiments
20 times, each time seeding the cross-traffic with a different
random seed. The results reported below were then
averaged over these 400 experiments.

BESTAVROS ET AL.: INFERENCE AND LABELING OF METRIC-INDUCED NETWORK TOPOLOGIES 1063
1 05 0.16
W"‘,{ c=0.05 0.14
0.8 ?ﬁ;ﬂ“ E 04 1 o012
25 3 5
§‘0.6 :.;’a» 7 03 i’ d LEO'IO
¥ g .
o CE 2008
< 04F & o02lea 138 0.06
¢ FAY 5 0.
Fad ~ o004
0.2 o1 1 :
c5§.§§ . 0.02
c=(). x
0 e 0 0
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time Time Time

(@)

(b) ()

Fig. 10. (a) Accuracy, (b) discrepancy, and (c) labeling error of loss topology.

Results: Fig. 10 shows the accuracy and discrepancy for
our loss topology inference experiments as functions of
time, for different values of the sensitivity parameter c. Our
inference technique converges rapidly as a function of the
number of probing rounds. Fig. 10 indicates that both
accuracy and discrepancy settle to within 10 percent of their
steady-state values within 50 seconds. Fig. 10c shows the
labeling error as a function of time. The labeling error
converges to within 1 percent of the actual links loss rates.
We noted that in most of the cases, the labeling results are
very close to the actual losses; except for the cases where the
shared links between two clients contain more than one
highly congested bottleneck. In this case, cross-traffic
packets intervene between the packet-pair probes and space
the packet-pair out after the first bottleneck, causing less
correlated behavior when passing through the second
bottleneck. This leads to an accurate assessment of the first
bottleneck loss rate, while most of the loss on the second
shared bottleneck loss is incorrectly assigned to indepen-
dent links.

5.4 Internet Validation Using PERISCOPE

To validate the ability of PERISCOPE to correctly infer and
label loss topologies in an Internet setting, we hand-picked
a set of seven hosts and used PERISCOPE to infer and label
the loss topology to these endpoints from a local server
(Pentium II processor running RedHat Linux version
2.2.14). The seven endpoints were selected to ensure the
existence of different lossy paths that are shared between
the server and various subsets of endpoints. In addition, by
placing the server below a slow uplink, we ensured the
existence of a (possibly) lossy path between the server and
all endpoints. These choices were all made with the goal of
stress-testing our inference and labeling techniques in
mind.® Fig. 11 depicts the logical topology between the
server and the seven hosts, constructed by collapsing chains
of hops in the tree as explained in Section 3.1 and Fig. 1).
Intermediate router IP addresses were obtained through the
use of traceroute. The server is in the continental US Hosts A,
B, and C are in China with hosts A and B on the same LAN

3. Validating our tool requires observing loss-topologies of appreciable
structure—hence, our choice of an international set of endpoints. Our
ongoing work on Internet loss topology characterizations to small sets of
random endpoints (such as from CAIDA/NLANR logs) do not often yield
rich and interesting structures. The depicted topology is meant to be
illustrative, not representative. Also, experiments to the selected set of
endpoints did not consistently reveal high losses. Fig. 11c was constructed
only after integrating consistent inferred loss topologies viewed at different
times.

of Beijing University of Aeronautics and Astronautics and
host C in Northeast China Institute of Electric Power
Engineering. Hosts D and E are in Egypt, on the same LAN
of the Arab Academy for Science and Technology (AAST).
Hosts F and G are in Italy at two different universities:
Politecnico di Bari and Universita Degli-Studi di Bergano.

To validate the accuracy of PERISCOPE, we need to
establish a “reference” against which we could compare the
inferred and labeled loss trees we obtain for a given
sensitivity parameter c. The logical tree (shown in Fig. 11) is
such a reference for ¢ = 0. Obtaining such a reference for a
nonzero sensitivity parameter is impossible since it requires
knowledge of loss rates on all links of the logical tree.
Moreover, loss rates cannot be assumed stationary for the
duration of a PERISCOPE experiment and may not always be
above the sensitivity parameter specified in PERISCOPE.
While the logical tree in Fig. 11 cannot be used to directly
validate loss trees inferred by PERISCOPE, it can be used to
check whether the loss trees generated by PERISCOPE are
mutually consistent, as defined in Section 3. We performed
20 experiments using PERISCOPE to infer and label the loss
topology to the seven endpoints of the logical topology in
Fig. 11. These 20 experiments were conducted at different
times. Each experiment consisted of 100 probing phases
with 64-byte probes. At a probing rate of 5 probes/sec, it
takes PERISCOPE about four minutes to complete 100 phases
of probing. Notice that this time could be decreased by
reducing the number of phases or by increasing the probing
rate. Indeed, in most experiments, the loss topology tree
stabilized within 10 phases—i.e., less than 24 seconds.
However, increasing the probing rate is not desirable
because it may result in the violation of the interprobe
independence assumption of the BP approach discussed in
Section 5. Fig. 12a shows the percentage of PERISCOPE
inferred trees that are found to be inconsistent with the
logical tree in Fig. 11 for various values of the sensitivity
parameter c. This relationship is shown for three different
periods of running PERISCOPE—namely, after 20, 40, and
80 phases. As expected, the inconsistency of the inferred
tree decreases as the sensitivity parameter increases.

As explained in Section 3, the nonstationarity of losses on
the various links in a logical topology makes it unlikely that
all of the potentially lossy links will be observable in a given
experiment at a given time. Thus, one would expect that the
loss topologies inferred by PERISCOPE will be different
when run on the tree in Fig. 1la. Indeed, PERISCOPE
inferred six different loss topologies. Over the 20 experi-
ments we conducted, the most frequently inferred loss

1064

202.112.1.62

202.112.42.3

202.198.8.5

163.121.43.2
202.112.128.55 202.112.128.5

163.121.43.3

(a)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 11,

NOVEMBER 2005

Fig. 11. PERISCOPE Validation: (a) Logical tree used as a test case, (b) most frequent inferred loss tree, and (c) minimal loss tree spanning all

inferred trees.

07 phase #20 —— 02 phase #20 —— 05
3 06 phase #40 i 0.8 phase #40 —x— 1
s phase #80 phase #80 = 04
s 0.5+ 0.7 AN] - .
= B | m 03¢+
§ 0.4 1 OO § 0.5 &
?'5 03+ g 0.4 I; 02
E 02 3] a 03 ﬁ
P ", \\‘ R 0.2
2] 0.1+ W"‘*“W
) 0.1 .) X \< 0.1

0 SE—— 0 0
0 0.01 0.02 0.03 0.04 0.5 0 0.01 0.02 0.03 0.04 0.05 0 20 40 60 80 100
Sensitivity (C) Sensitivity (C) Phase No

(@)

(b) (€

Fig. 12. PERISCOPE: (a) Inference inconsistency, (b) discrepancy, and (c) labeling error for the Internet topology shown in Fig. 11.

topology tree is shown in Fig. 11b. This tree was inferred
11 times at times ranging between 3am and 7am EST
(consistent with the fact that the lossy paths were the ones
connecting our server to the hosts in China). Using the
procedure described in Theorem 2, we constructed the
minimal loss tree spanning all six of the loss topologies
inferred by PERISCOPE when ¢ = 0.01. The resulting tree
(which itself is not one of the trees inferred by PERISCOPE)
is shown in Fig. 11c. Clearly, that tree is consistent with the
logical tree depicted in Fig. 11a. To validate the labeling
accuracy of PERISCOPE, we implemented a simple tool
which repeatedly probes all nodes of the logical tree of
Fig. 11, including internal nodes, concurrently with our use
of PERISCOPE. Loss statistics obtained from this Poisson
probing tool are compiled to yield the loss rates on the
various links of Fig. 11. Then, the resulting labeled tree is
compressed using the same sensitivity parameter of
PERISCOPE. The discrepancy and labeling error between
the loss trees obtained using this tool and those obtained
using PERISCOPE are measured and presented in Fig. 12.
Fig. 12b shows the discrepancy between the PERISCOPE-
inferred loss trees and the loss trees obtained using the tool
described above for various values of c. The results show
that the discrepancy decreases slightly as ¢ decreases. To
demonstrate the convergence characteristics of PERISCOPE,
Fig. 12c shows the reduction in the labeling error as the
number of phases executed increases from 0 to 100 phases,
spanning approximately 4 minutes.

6 CONCLUSION

In this paper, we presented MINT—a general framework
for the representation of shared network resources as

captured by a given metric of interest. One key contribution
of our work is to classify metrics as satisfying monotonicity,
separability, and symmetry properties, and to demonstrate
the connections between these properties and our ability to
infer and label MINT topologies using these metrics from
one or more vantage points. Using the MINT framework, it
is possible to create a “network caricature” highlighting
only those network regions of interest, whether they be with
respect to significant loss, delay, jitter, or other metric.

We then presented PERISCOPE, a publicly available
embodiment of MINT constructions implemented in Linux.
We instantiated MINT for a specific metric of interest—
packet loss rates—and presented results of simulation and
Internet measurement experiments that confirmed the
effectiveness and robustness of our constructions over a
wide range of network conditions.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation grants ANI-9986397 and ANI-0093296. A
preliminary version of results presented in this paper
appeared in part in [18], [3], [20].

REFERENCES

[1] A. Adams, T. Bu, R. Céceres, N. Duffield, T. Friedman, J.
Horowitz, F.L. Presti, S. Moon, V. Paxson, and D. Towsley, “The
Use of End-to-End Multicast Measurements for Characterizing
Internal Network Behavior,” IEEE Comm. Magazine, May 2000.

[2] M. Allman and V. Paxson, “On Estimating End-to-End Network
Path Properties,” Proc. ACM SIGCOMM, 1999.

BESTAVROS ET AL.:

(3]

4
(5]

(o]

il

8]

]

[10]

(1]

(12]

[13]

(14]

[15]

[16]

(171

(18]

(19]

(20]
(21]
(22]
(23]
[24]

[25]

[20]

[27]

(28]

[29]
(30]

(31]

A. Bestavros,]J. Byers, and K. Harfoush, “Inference and Labeling
of Metric-Induced Network Topologies,” Proc. IEEE Infocom, June
2002.

J.C. Bolot, “End-to-End Packet Delay and Loss Behavior in the
Internet,” Proc. ACM SIGCOMM, pp. 289-298, Sept. 1993.

T. Bu, N. Duffield, F. LoPresti, and D. Towsley, “Network
Tomography on General Topology,” Proc. ACM SIGMETRICS,
June 2002.

R. Caceres, N.G. Dulffield, J. Horowitz, D. Towsley, and T. Bu,
“Multicast Based Inference of Network-Internal Characteristics:
Accuracy of Packet-Loss Estimation,” Proc. IEEE Infocom, Mar.
1999.

R. Céceres, N.G. Duffield, S.B. Moon, and D. Towsley, “Inference
of Internal Loss Rates in the MBone,” Proc. IEEE Global Internet
(Globecom) Conf., 1999.

R. Caceres, N. Duffield, and T. Friedman, “Impromptu Measure-
ment Infrastructures Using RTP,” Proc. IEEE Infocom, June 2002.
R. Carter and M.E. Crovella, “Measuring Bottleneck Link Speed in
Packet Switched Networks,” Proc. PERFORMANCE '96, Int’l Conf.
Performance Theory, Measurement and Evaluation of Computer and
Comm. Systems, Oct. 1996.

M. Coates and R. Nowak, “Network Loss Inference Using Unicast
End-to-End Measurement,” Proc. ITC Conf. IP Traffic, Modeling and
Management, Sept. 2000.

N. Duffield,]. Horowitz, F. LoPresti, and D. Towsley, “Multicast
Topology Inference from Measured End-to-End Loss,” IEEE Trans.
Information Theory, vol. 48, no. 1, Jan. 2002.

N. Duffield, J. Horowitz, D. Towsley, W. Wei, and T. Friedman,
“Multicast-Based Loss Inference with Missing Data,” IEEE
J. Selected Areas of Comm., vol. 20, no. 4, May 2002.

N. Duffield, F.L. Presti, V. Paxson, and D. Towsley, “Inferring
Link Loss Using Striped Unicast Probes,” Proc. IEEE Infocom, Apr.
2001.

N. Duffield,]J. Horowitz, and F.L. Presti, “Adaptive Multicast
Topology Inference,” Proc. IEEE Infocom, Apr. 2001.

N. Duffield,]J. Horowitz, F.L. Presti, and D. Towsley, “Network
Delay Tomography from End-to-End Unicast Measurements,”
Proc. Int’l Workshop Digital Comm., Sept. 2001.

R. Govindan and A. Reddy, “An Analysis of Internet Inter-
Domain Routing and Route Stability,” Proc. IEEE Infocom, Apr.
1997.

T. Griffin and G. Wilfong, “An Analysis of BGP Convergence
Properties,” Proc. ACM SIGCOMM, pp. 277-288, Sept. 1999.

K. Harfoush, “A Framework and Toolkit for the Effective
Measurement and Representation of Internet Internal Character-
istics,” PhD dissertation, Boston Univ., Aug. 2002.

K. Harfoush, A. Bestavros, and J. Byers, “Robust Identification of
Shared Losses Using End-to-End Unicast Probes,” Proc. Eighth
IEEE Int’l Conf. Network Protocols (ICNP), Nov. 2000.
“PeriScope: An Active Probing APIL” Proc. 2002 Passive and
Active Measurement Workshop, PAM 02, Mar. 2002.

“Measuring Bottleneck Bandwidth of Targeted Path Segments,”
Proc. IEEE Infocom, Apr. 2003.

“IPMA: Internet Performance Measurement and Analysis,”
http:/ /www.merit.edu/ipma, 2005.

V. Jacobson, “Pathchar: A Tool to Infer Characteristics of
Internet Paths,” ftp://ftp.ee.Ibl.gov/pathchar, 2005.

S. Keshav, “Congestion Control in Computer Networks,”
dissertation, Univ. of California at Berkeley, Sept. 1991.

K. Lai and M. Baker, “Measuring Link Bandwidths Using a
Deterministic Model of Packet Delay,” Proc. ACM SIGCOMM,
Aug. 2000.

“Nettimer: A Tool for Measuring Bottleneck Link Bandwidth,”
Proc. USENIX Symp. Internet Technologies and Systems, Mar. 2001.
F. LoPresti, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-
Based Inference of Network-Internal Delay Distributions,” IEEE/
ACM Trans. Networking, vol. 10, no. 6, Dec. 2002.

“Mtrace: Tracing Multicast Path between a Source and a
Receiver,” ftp://ftp.parc.xerox.com/pub/netsearch/ipmulti,
2005.

“ns: Network Simulator,” http:/ /www isi.edu/nsnam/ns/, 2005.
V. Padmanabhan, “Addressing the Challenges of Web Data
Transport,” PhD dissertation, Univ. of California at Berkeley,
Sept. 1998.

J.-J. Pansiot and D. Grad, “On Routes and Multicast Trees in the
Internet,” Computer Comm. Rev., vol. 28, no. 1, pp. 41-50, Jan. 1998.

PhD

INFERENCE AND LABELING OF METRIC-INDUCED NETWORK TOPOLOGIES

1065
[32] V. Paxson, “Measurements and Analysis of End-to-End Internet
Dynamics,” PhD dissertation, UC Berkeley and Lawrence Berke-
ley Laboratory, 1997.

S. Ratnasamy and S. McCanne, “Inference of Multicast Routing
Trees and Bottleneck Bandwidths Using End-to-End Measure-
ments,” Proc. IEEE Infocom, pp. 353-360, Mar. 1999.

D. Rubenstein, J. Kurose, and D. Towsley, “Detecting Shared
Congestion of Flows via End-to-End Measurement,” IEEE/ACM
Trans. Networking, vol. 10, no. 3, June 2002.

S. Seshan, M. Stemm, and R. Katz, “SPAND: Shared Passive
Network Performance Discovery,” Proc. Usenix Symp. Internet
Technologies and Systems (USITS), Dec. 1997.

M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and
Modeling of the Temporal Dependence in Packet Loss,” Proc. IEEE
Infocom, pp. 345-352, Mar. 1999.

(33]

(34]

(33]

(30]

Azer Bestavros received the SM degree in
1988 and the PhD degree in 1992, both in
computer science from Harvard University. He is
currently a professor and chairman of computer
science at Boston University. Professor Bestav-
ros’ research interests are in the general areas
of networking and real-time systems. His semi-
nal works include his generalization of the
classical rate-monotonic analysis to accommo-
‘ !l date probabilistic guarantees, his pioneering of
the push model for Internet content distribution adopted years later by
CDNs, his characterization of Web traffic self-similarity and reference
locality, his development of various caching and streaming media
delivery protocols, and his development of efficient techniques for
inference of network caricatures using real-time end-to-end measure-
ment. He received distinguished service awards from both the IEEE and
the ACM. He served as chair, officer, or PC member of most major
conferences in real-time and networking systems, including ICNP,
Infocom, Sigmetrics, Sigmod, RTSS, RTAS, and ICDE. His research
has been funded by grants totaling more than $12M from various
government agencies and industrial labs. He is a member of the IEEE
and the IEEE Computer Society.

John W. Byers is an assistant professor of
computer science at Boston University. Prior to
joining BU, he received the PhD degree in
computer science at the University of California
at Berkeley in 1997 and was a postdoctoral
researcher at the International Computer
Science Institute in Berkeley in 1998. His
research interests include algorithmic aspects
of networking, Internet content delivery, and
network measurement. Dr. Byers received a US
National Science Foundation CAREER Award in 2001, and the IEEE
ICDE Best Paper award in 2004. He serves on the program committees
for numerous conferences, including ACM SIGCOMM, ACM SIG-
METRICS and IEEE Infocom. He is currently on the editorial board of
IEEE/ACM Transactions on Networking, and has been a member of the
ACM since 1999.

Khaled A. Harfoush received the PhD degree
in computer science from Boston University in
2002. He is currently an assistant professor in
the Department of Computer Science at North
Carolina State University, which he joined in
2002. His research interests are in the general
areas of network modeling, Internet measure-
ment, peer-to-peer systems, and network secur-
ity. Professor Harfoush is a recipient of the
prestigious US National Science Foundation
CAREER award. He serves on the program committees for numerous
conferences including IEEE INFOCOM and IEEE ICNP. He is a member
of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

