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Abstract—Although cooperation generally increases the amount of resources available to a community of nodes, thus improving

individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of

one node’s resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that

cooperate using online caching algorithms, where the exposed resource is the storage at each node. Motivated by content networking

applications—including Web caching, content delivery networks (CDNs), and peer-to-peer (P2P)—this paper extends our previous

work on the offline version of the problem, which was conducted under a game-theoretic framework and limited to object replication.

We identify and investigate two causes of mistreatment: 1) cache state interactions (due to the cooperative servicing of requests) and

2) the adoption of a common scheme for cache management policies. Using analytic models, numerical solutions of these models, and

simulation experiments, we show that online cooperation schemes using caching are fairly robust to mistreatment caused by state

interactions. To appear in a substantial manner, the interaction through the exchange of miss streams has to be very intense, making it

feasible for the mistreated nodes to detect and react to exploitation. This robustness ceases to exist when nodes fetch and store

objects in response to remote requests, that is, when they operate as Level-2 caches (or proxies) for other nodes. Regarding

mistreatment due to a common scheme, we show that this can easily take place when the “outlier” characteristics of some of the nodes

get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a

diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the

development of mistreatment-resilient distributed selfish caching schemes.

Index Terms—Selfish caching, cooperative caching, overlay networks, peer-to-peer networks, content distribution networks.

Ç

1 INTRODUCTION

1.1 Background, Motivation, and Scope

NETWORK applications often rely on distributed resources
available within a cooperative grouping of nodes to

ensure scalability and efficiency. Traditionally, such group-
ings are dictated by an overarching common strategic goal.
For example, nodes in a content delivery network (CDN)
such as Akamai or Speedera cooperate to optimize the
performance of the overall network, whereas IGP routers in
an Autonomous System (AS) cooperate to optimize routing
within the AS.

More recently, however, new classes of network applica-
tions have emerged for which the grouping of nodes is
more “ad hoc” in the sense that it is not dictated by
organizational boundaries or strategic goals. Examples
include overlay protocols [3], [6] and peer-to-peer (P2P)
applications. Two distinctive features of such applications
are that 1) individual nodes are autonomous, and as such,
their membership in a group is motivated solely by the
selfish goal of benefiting from that group, and 2) group

membership is warranted only as long as a node is
interested in being part of the application or protocol, and
as such, group membership is expected to be fluid. In light
of these characteristics, an important question is this: Are
protocols and applications that rely on sharing of distributed
resources appropriate for this new breed of ad hoc node
associations?

In this paper, we answer this question for networking
applications, whereby the distributed resource being shared
among a group of nodes is storage. Although our work and
methodology are applicable for a wide range of applications
that rely on distributed shared storage, we target the
distribution of voluminous content as our application of
choice.1 In particular, we consider a group of nodes that
store information objects and make them available to their
local users, as well as to remote nodes. A user’s request is
first received by the local node. If the requested object is
stored locally, it is returned to the requesting user
immediately, thereby incurring a minimal access cost.
Otherwise, the requested object is searched for and fetched
from other nodes of the group at a potentially higher access
cost. If the object cannot be located anywhere in the group,
it is retrieved from an origin server, which is assumed to be
outside the group, thus incurring a maximal access cost.

Under an object replication model, once selected for
replication at a node, an object is stored permanently at
that node (that is, the object cannot be replaced later). In
[18], we established the vulnerability of socially optimal (SO)
object replication schemes in the literature to mistreatment
problems. We define a mistreated node to be a node whose
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1. Unlike content distribution for static (typically small) Web objects such
as HTML Web pages and images, voluminous content requires treating the
storage as a limited resource [19].
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access cost under SO replication is higher than the minimal
access cost that the node can guarantee under greedy local
(GL) replication. Unlike centrally designed/controlled
groups where all constituent nodes have to abide by the
ultimate goal of optimizing the social utility of the group, an
autonomous selfish node will not tolerate such a mistreat-
ment. Indeed, the emergence of such mistreatments may
cause selfish nodes to secede from the replication group,
resulting in severe inefficiencies for both the individual
users, as well as the entire group.

In [18], we resolved this dilemma by proposing a family
of equilibrium (EQ) object placement strategies that 1) avoid
the mistreatment problems of SO, 2) outperform GL by
claiming available “cooperation gain” that the GL algorithm
fails to utilize, and 3) are implementable in a distributed
manner, requiring the exchange of only a limited amount of
information. The EQ strategies were obtained by formulat-
ing the Distributed Selfish Replication (DSR) game and
devising a distributed algorithm that is always capable of
finding pure Nash EQ strategies for this particular game.
Apart from this work, we are aware of only two additional
works on game-theoretic aspects of replication, one is by
Chun et al. [4] (DSR under infinite storage capacities), and
the other is by Erçetin and Tassiulas [9] (market-based
resource allocation in content delivery); we are not aware of
any previous work on distributed selfish caching.

1.2 Distributed Selfish Caching

Proactive replication strategies are not practical in a highly
dynamic content networking setting, which is likely to be
the case for most of the Internet overlays and P2P
applications we envision. This is due to a variety of reasons:

1. Fluid group membership makes it impractical for
nodes to decide what to replicate based on which
(and where) objects are replicated in the group.

2. Access patterns, as well as access costs, may be
highly dynamic (due to bursty network/server
loads), necessitating that the selection of replicas
and their placement be done continuously, which is
not practical.

3. Both the identification of the appropriate reinvoca-
tion times [22] and the estimation of the nonsta-
tionary demands (or, equivalently, the timescale for
a stationarity assumption to hold) [12] are nontrivial
problems.

4. Content objects may be dynamic and/or may expire,
necessitating the use of “pull” (that is, on-demand
caching) as opposed to “push” (that is, proactive
replication) approaches.

Using on-demand caching is the most widely acceptable
and natural solution to all of these issues because it requires
no a priori knowledge of local/group demand patterns and,
as a consequence, responds dynamically to changes in these
patterns over time (for example, the introduction of new
objects, reduction in the popularity of older ones, etc.).

Therefore, in this paper, we consider the problem of
Distributed Selfish Caching (DSC), which can be seen as the
online counterpart to the DSR problem. In DSC, we adopt an
object caching model, whereby a node employs a demand-
driven temporary storage of objects, combined with

replacement. At this juncture, it is important to note that
we make a clear distinction between replication and caching.
Although these terms may be seen as similar (and indeed
used interchangeably in much of the literature), we note that
for our purposes they carry quite different meanings and
implications. Replication amounts to maintaining perma-
nent copies, whereas caching amounts to maintaining
temporary copies. This changes fundamentally the character
and the methodologies used in analyzing DSR and DSC.

1.3 Causes of Mistreatments under DSC

We begin our examination of DSC by considering the
operational characteristics of a group of nodes involved in a
distributed caching solution. This examination will enable
us to identify two key culprits for the emergence of
mistreatment phenomena.

First, we identify the mutual state interaction between
replacement algorithms running on different nodes as the
prime culprit for the appearance of mistreatment phenom-
ena. This interaction takes place through the so-called
“remote hits.” Consider nodes v and u and object o. A
request for object o issued by a user of v that cannot be
served at v but could be served at u is said to have incurred
a local miss at v but a remote hit at u. Consider now the
implications of the remote hit at u. If u does not discriminate
between hits due to local requests and hits due to remote
requests, which is the default behavior of the Internet Cache
Protocol (ICP)/Squid Web cache [8] and other systems (for
example, Akamai Content Distribution Network, IBM
Olympic Server Architecture), then the remote hit for
object o will affect the state of the replacement algorithm
in effect at u. If u is employing Least Recently Used (LRU)
replacement, then o will be brought to the top of the LRU
list. If it employs Least Frequently Used (LFU) replacement,
then its frequency will be increased, and so on with other
replacement algorithms [26]. If the frequency of remote hits
is sufficiently high, for example, because v has a much
higher local request rate and, thus, sends an intense miss
stream to u, then there could be performance implications
for the second: u’s cache may get invaded by objects that
follow v’s demand, thereby depriving the user’s of u of
valuable storage space for caching their own objects. This
can lead to the mistreatment of u, whose cache is effectively
“hijacked” by v.

Moving on, we identify a second, less-anticipated culprit
for the emergence of mistreatment in DSC. We call it the
common scheme problem. To understand it, one has to
observe that most of the work on cooperative caching has
hinged on the fundamental assumption that all nodes in a
cooperating group adopt a common scheme. We use the
word “scheme” to refer to the combination of 1) the
employed replacement algorithm, 2) the employed request
redirection algorithm, and 3) the employed object admission
algorithm. Cases 1 and 2 are more or less self-explanatory.
Case 3 refers to the decision of whether to cache locally an
incoming object after a local miss. The problem here is that
the adoption of a common scheme can be beneficial to some
of the nodes of a group but harmful to others, particularly
to nodes that have special characteristics that make them
“outliers.” A simple case of an outlier is a node that is
situated further away from the center of the group, where
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most nodes lie. Here, distance may have a topological/

affine meaning (for example, number of hops or propaga-

tion delay), or it may relate to dynamic performance

characteristics (for example, variable throughput or laten-

cies due to load conditions on network links or server

nodes). Such an outlier node cannot rely on the other nodes

for fetching objects at a small access cost and, thus, prefers

to keep local copies of all incoming objects. The rest of the

nodes, however, as long as they are close enough to each

other, prefer not to cache local copies of incoming objects

that already exist elsewhere in the group. Since such objects

can be fetched from remote nodes at a small access cost, it is

better to preserve the local storage for keeping objects that

do not exist in the group and, thus, must be fetched from

the origin server at a high access cost. In this setting, a

common scheme is bound to mistreat either the outlier node

or the rest of the group.

2 PROBLEM SETTING AND SUMMARY OF RESULTS

In this section, we first introduce the setting in which we

study DSC and then summarize our results.

2.1 Definitions and Notation

Let oi, 1 � i � N , and vj, 1 � j � n, denote the ith unit-sized

object and the jth node, and let O ¼ fo1; . . . ; oNg and V ¼
fv1; . . . ; vng denote the corresponding sets. Node vj is

assumed to have a storage capacity of up to Cj unit-sized

objects, a total request rate of �j (total number of requests

per unit time, across all objects), and a demand described by

a probability distribution over O, ~pj ¼ fp1j; . . . ; pNjg, where

pij denotes the probability of object oi being requested by

the local users of node vj. Successive requests are assumed

to be independent and identically distributed.2 Later in this

paper, we make the specific assumption that the popularity

of objects follows a power-law profile, that is, the ith most

popular object is requested with probability pi ¼ K=ia. Such

popularity distributions occur in many measured work-

loads [2], [23] and, although used occasionally in our work

(for example, in Section 3.1 to simplify an analytic argument

and in Section 4 for producing numerical results), they do

not constitute a basic assumption in the sense that

mistreatment can very well occur with other demand

distributions that do not follow such a profile.
Let tl, tr, and ts denote the access cost paid for fetching

an object locally, remotely, or from the origin server,

respectively, where ts > tr > tl.
3 User requests are serviced

by the closest node that stores the requested object along the

following chain: local node, group, and origin server. Each

node employs a replacement algorithm for managing the

content of its cache and employs an object admission

algorithm for accepting (or not) incoming objects.

2.2 Summary of Results

In addition to defining the DSC problem and the causes of
mistreatment, this paper presents a number of concrete
results regarding each one of these causes. These results are
intended to be used as basic design guidelines on dealing
with selfishness in current and future caching applications.

Mistreatment Due to Cache State Interaction. Regard-
ing the state interaction problem, our investigations answer
the following basic question: “Could and under which schemes
do mistreatments arise in a DSC group?” More specifically:

. We show that state interactions occur when nodes
do not discriminate between local and remote hits
upon updating the state of their replacement
algorithms.

. To materialize, state interactions require a substan-
tial request rate imbalance, that is, one or more
“overactive” nodes must generate disproportionally
more requests than the other nodes. Even in this
case, mistreatment of less active nodes depends on
the amount of storage that they posses: mistreatment
occurs when these nodes have abundant storage;
otherwise, they are generally immune to or even
benefit from the existence of overactive nodes.

. Comparing caching and replication with regard to
their relative sensitivities to request rate imbalance,
we show that caching is much more robust than
replication.

. Regarding the vulnerability of different replacement
algorithms, we show that “noisier” replacement
algorithms are more prone to state interactions. In
that regard, we show that LRU is more vulnerable
than LFU.

. Even the most vulnerable LRU replacement is quite
robust to mistreatment as it requires a very intense
miss stream in order to force a mistreated node to
maintain locally unpopular objects in its cache (thus
depriving it of cache space for locally popular
objects). In particular, the miss stream has to be
strong enough to counter the sharp decline in the
popularity of objects in typically skewed workloads.

. Robustness to mistreatment due to state interaction
evaporates when a node operates as a Level-2 (L2)
cache [31] for other nodes. L2 caching allows all
remote requests (whether they hit or miss) to affect
the local state (as opposed to only hits under non-L2
caching), leading to a vulnerability level that
approaches the one under replication.

Mistreatment Due to the Use of a Common Scheme. We
classify cooperative caching schemes into two groups:
Single Copy (SC) schemes, that is, schemes where there can
be at most one copy of each distinct object in the group (two
examples of SC schemes are HASH-based caching [28] and
LRU-SC [10]), and Multiple Copy (MC) schemes, that is,
schemes where there can be multiple copies of the same
object at different nodes.

. We show that the relative performance ranking of SC
and MC schemes changes with the “tightness” of a
cooperative group. SC schemes perform best when
the internode distances are small compared to the
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2. The Independent Reference Model (IRM) [5] is commonly used to
characterize cache access patterns [1], [2]. The impact of temporal
correlations was shown in [12] and [27] to be minuscule, especially under
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3. The assumption that the access cost is the same across all node pairs in
the group is made only for the sake of simplifying the presentation. Our
results can be adapted easily to accommodate arbitrary internode distances.



distance to the origin server; in such cases, the
maintenance of multiple copies of the same object
becomes unnecessary.4 MC schemes improve pro-
gressively as the internode distances increase and
eventually outperform the SC schemes.

. We demonstrate a case of mistreatment due to a
common scheme by considering a tight group of
nodes that operate under an SC scheme and a
unique outlier node that has a larger distance to the
group. We show that this node is mistreated if it is
forced to follow the same SC scheme.

Toward Mistreatment-Resilient DSC Schemes. More
constructively, we present a framework for the design of
mistreatment-resilient DSC schemes. Our framework allows
individual nodes to decide autonomously (that is, without
having to trust any other node or service) whether they
should stick to or secede from a DSC caching group based
on whether or not their participation is beneficial to their
performance compared to a selfish greedy scheme. Resi-
lience to mistreatments is achieved by allowing a node to
emulate the performance gain possible by switching from
one scheme to another or by adapting some control
parameters of its currently deployed DSC scheme. We use
a simple control-theoretic approach to dynamically para-
meterize the DSC scheme in use by a local node. We
evaluate the performance of our solution by considering
caching in wireless mobile nodes [32] where distances and
download rates depend on mobility patterns. We show that
our adaptive schemes can yield substantial performance
benefits, especially under skewed demand profiles.

3 MISTREATMENT DUE TO STATE INTERACTION:
ANALYSIS

Our goal in this section is to understand the conditions
under which mistreatment may arise as a result of (cache)
state interactions. We start in Section 3.1 with a replace-
ment-agnostic model that focuses on the rate imbalance
(between the local request stream and the remote miss
stream) necessary for mistreatment to set in. Next, in
Section 3.2, we present a more detailed analytical model
that allows for the derivation of the average access cost in a
distributed caching group composed of n nodes that
operate under LRU replacement.

3.1 General Conditions

We would like to determine the level of request rate
imbalance that is necessary for mistreatment to be feasible.
We model this imbalance through the ratio �n=�j, where �j
denotes the request rate of any normally behaving node vj,
and �n denotes the request rate of an overactive node,
which we use to instigate mistreatment problems. As a
convention, we assume this overactive node to be the last
(nth) node of the group.

We focus on the interaction between vj and vn. Fig. 1
shows a particular choice of demand patterns that fosters
the occurrence of mistreatment. The initial most popular
objects in~pj and~pn up to the two capacities (Cj for vj and Cn
for vn) are completely disjoint, whereas the remaining ones
in the middle part of the two distributions are identical;
both demands are assumed to be a power law with
parameter a. Let X denote the most popular object that is

common to both distributions. A boundary condition for the
occurrence of mistreatment can be obtained by considering
the ratio �n=�j that results in a switch of ranking between X
and Y at vj, where Y denotes the least most popular object
that would be kept in the cache of vj under a perfect ranking
of objects according to the local demand if no miss stream
was received. To derive the condition for the switch, we
first note that X is the ðCj þ 1Þth most popular object for vj
and the ðCn þ 1Þth most popular one for vn. Y is the Cjth
most popular object for vj. Let fðnÞ denote a function that
captures the operation of different object location mechan-
isms in a group of n nodes (used for locating and retrieving
objects from remote nodes). For example, fðnÞ ¼ 1 can be
used for modeling request flooding (following a local miss,
a request is sent to all other nodes in the group); fðnÞ ¼
1=ðn� 1Þ can be used for modeling index-based mechan-
isms [10] (following a local miss, a request is sent to only
one of the nodes that appear to be storing the object
according to some index). The boundary condition for the
occurrence of the switch can be written as follows:

�jpCj � �jpCjþ1 þ �npCnþ1fðnÞ )

�j
1

ðCjÞa
� �j

1

ðCj þ 1Þa þ �n
1

ðCn þ 1Þa fðnÞ )

�n
�j
� ðCn þ 1Þa

fðnÞ
1

Ca
j

� 1

ðCj þ 1Þa

 !
:

ð1Þ

Writing a continuous approximation for the rate of change
of 1=Ca with respect to C, we get

d 1
Ca

� �
dC

¼
1
Ca � 1

ðCþ1Þa

C � ðC þ 1Þ � �a �
1

C1þa )

1

Ca
� 1

ðC þ 1Þa � a �
1

C1þa :

ð2Þ

Using the approximation from (2) on (1), we obtain

�n
�j
� ðCn þ 1Þa

fðnÞ � a 1

ðCjÞ1þa
� a

fðnÞCj
Cn
Cj

� �a
: ð3Þ

Equation (3) states that the amount of imbalance in request

rates ð�n�jÞ that is required for the occurrence of mistreatment

is 1) increasing with Cn, 2) decreasing with Cj, and

3) increasing when request flooding is employed for

locating remote objects (in this case, all the nodes get the

full miss stream from vn; otherwise, the miss stream

weakens by being split into n� 1 parts).
Now, assume that as a result of the received miss stream,

k objects of vj are switched (objects with IDs Cj; . . . ; Cj �
kþ 1 evicted, objects Cj þ 1; . . . ; Cj þ k inserted); k can be
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computed from a condition similar to that in (1). Define the

Loss of vj as the reduction in the probability mass of the

objects that it caches locally:

Loss ¼
XCj

i¼Cj�kþ1

pi �
XCjþk

i¼Cjþ1

pi ¼

K � H
ðaÞ
Cj
�HðaÞCj�k �H

ðaÞ
Cjþk þH

ðaÞ
Cj

� �
¼

K � 2H
ðaÞ
Cj
�HðaÞCj�k �H

ðaÞ
Cjþk

� �
;

ð4Þ

where K is the normalization constant of the power-law

distribution pi ¼ K=ia. The generalized harmonic number

H
ðaÞ
C can be approximated by its integral expression (see

[30]) H
ðaÞ
C ¼

PC
i¼1

1
ia �

RC
1 1=ladl ¼ C1�a�1

1�a . Plugging this into

(4), we obtain

Loss ¼ K 2
Cj

1�a � 1

1� a � ðCj � kÞ
1�a � 1

1� a � ðCj þ kÞ
1�a � 1

1� a

 !
:

ð5Þ

From (5), it is clear that as Cj increases, both Cj � k and

Cj þ k! Cj, thus leading to Loss! 0. Combining our

observations from (3) and (5), we conclude that the

occurrence of mistreatment is fostered by small Cn and large

Cj. Its magnitude, however, decreases with Cj. Therefore,

practically, it is in the intermediate values of Cj that

mistreatment can arise in a substantial manner.

3.2 Analysis of Mistreatment under
LRU Replacement

In the remainder of this section, our objective will be to

derive the steady-state hit probabilities ~�j ¼ f�1j; . . . ; �Njg,
where �ij denotes the steady-state probability of finding

object oi at node vj that operates under LRU replacement.

We will then use these results for studying mistreatment in

the context of LRU.
Let ~� ¼ LRUð~p;CÞ denote a function that computes the

steady-state object hit probabilities for a single LRU cache in

isolation, given the cache size and the demand distribution.

Due to the combinatorial hardness of analyzing LRU

replacement, it is difficult to derive an exact value for ~� ;

there are, however, several methods for computing approx-

imate values for it (see, for example, [15] and references

therein). In this paper, we employ the approximate method

of Dan and Towsley in [7] that provides an accurate

estimation of ~� through an iterative algorithm that incurs

OðNCÞ time complexity. Having computed ~�j, 8vj 2 V , we

can obtain the per-node access cost costj, as well as the

social cost of the entire group costsoc ¼
P
8vj costj, by using

costj ¼XN
i¼1

pij � �ij � tlþ 1� �ij
� �

� �i�j � trþ 1� �ij
� �

� 1� �i�j
� �

� ts
� 	

;

where �i�j ¼ 1�
Y
8j0 6¼j
ð1� �ij0 Þ:

ð6Þ

In this equation, �i�j denotes the probability of finding oi in
any node of the group other than vj.

We can obtain ~�j by using the LRUð�; �Þ function for
isolated caches as our basic building block and taking into
consideration the impact on the local state of the hits caused
by remote requests. Deriving an exact expression for these
added hits based on the involved cache states is intractable,
as it leads to state-space explosion. Therefore, we turn to
approximate techniques and, in particular, to techniques
that consider the expected values of the involved random
variables instead of their exact distributions. The basic idea
of our approach is to capture these added hits by properly
modifying the input to the LRUð�; �Þ function.

Remote hits can be considered simply as an additional
request that augment the local demand, thereby creating a
new aggregate demand for the LRUð�; �Þ function, as
explained later. The idea of modifying the input of a
simpler system to capture a policy aspect of a more complex
system and then using the modified simpler system to
study the more complex one has been employed frequently
in the past [14]. Since the remote hits are shaped by the
cache states, which are coupled due to the exchanges of
miss streams, an iterative procedure is followed for the
derivation of the per-node steady-state vectors and access
costs. The uncoupled solution (corresponding to nodes
operating in isolation) is obtained first and is refined
progressively by taking into account the derived states and
the cooperative servicing of the misses. The resulting
approximate analytical model for predicting the average
access cost in a distributed caching group is described
below. In the next section, we show that the results
produced from this model match quite well with the results
obtained through simulations.
The iterative procedure is given as follows:

1. For each node vj, compute ~�
ð0Þ
j ¼ LRUð~pj; CjÞ, that

is, assume no state interaction among the different
nodes.

2. Initiate iteration. At the kth iteration, the aggregate

demand distribution for vj, ~pj
ðkÞ ¼ fpðkÞij g, 1 � i � N ,

is given by

p
ðkÞ
ij ¼

�j �pijþ
Pn

j0¼1;j0 6¼j
�j0 �pij0 �ð1��

ðk�1Þ
ij0

Þ�
�
ðk�1Þ
ijð Þ2Pn

j00¼1;j00 6¼j0
�
ðk�1Þ
ij00

" #þ
�
ðk�1Þ
ij

PN

i0¼1
�j �pi0jþ

Pn

j0¼1;j0 6¼j
�j0 �pi0j0 �ð1��

ðk�1Þ
i0j0

Þ�
�
ðk�1Þ
i0j

� �2

Pn

j00¼1;j00 6¼j0
�
ðk�1Þ
i0j00

2
4

3
5
þ

�
ðk�1Þ
i0j

0
BB@

1
CCA
ð7Þ

The function ½x�þy returns 0 if y ¼ 0 and x other-

wise.5 The steady-state vector of object hit prob-

abilities for vj at iteration k can be obtained from

~�
ðkÞ
j ¼ LRUð~pjðkÞ; CjÞ.
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5. This function is used to ensure correctness when the denominatorPn
j00¼1;j00 6¼j0 �

ðk�1Þ
ij00 becomes zero. Notice that the nominator �

ðk�1Þ
ij is included

in the denominator, so when �
ðk�1Þ
ij > 0, the denominator is guaranteed to be

nonzero.



3. Perform convergence test. If j~� ðkÞj �~� ðk�1Þ
j j <~� for all

vj, 1 � j � n, then set ~�j ¼ ~� ðkÞj , and compute the

per-node access costs from (6); ~� denotes a user-

defined tolerance for the convergence of the iterative

method. Otherwise, set ~�
ðk�1Þ
j ¼ ~� ðkÞj and ~p

ðk�1Þ
j ¼

~p
ðkÞ
j , and perform another iteration by returning to

Step 2.

The nominator of (7) adds the requests generated by the

local population of vj for object oi to the requests for the same

object due to the n� 1 miss streams from all other nodes that

create hits at vj. The explanation of the circumstances under

which such hits exist goes as follows (see also Fig. 2):

A request for oi received at the contributor node vj0

(probability pij0 ) affects the tagged node vj if the request

cannot be serviced at the contributor node (probability

ð1� �ðk�1Þ
ij0 Þ), can be serviced at the tagged node (probability

�
ðk�1Þ
ij ), and is indeed serviced by the tagged node and not by

any other helper node vj00 that can potentially service it

(probability �
ðk�1Þ
ij =

Pn
j00¼1;j00 6¼j0 �

ðk�1Þ
ij00 , that is, the model as-

sumes that when more than one helper nodes can offer

service, the request is assigned uniformly to any one of them).
Before we conclude this section, we note that our

aforementioned analysis could be construed as providing
a lower bound of the intensity of mistreatment assuming
that the proxy is configured such that only one peer (proxy
cache) replies to a remote request. Mistreatment could be
more severe if, upon a local miss, requests are routed to
more than one proxy, which is the case in many real
systems [8].

4 MISTREATMENT DUE TO STATE INTERACTION:
EVALUATION

In this section, we use a combination of simulation experi-
ments and numerical solutions of the analytical model
developed in the previous section to explore the design space
of distributed caching with respect to its vulnerability to the
onset of mistreatment as a result of the state interaction
phenomenon. We start by validating the accuracy of the
analytical model in Section 3.2 and follow that with an
examination of various dimensions of the design space for
distributed caching, including a comparative evaluation of
mistreatment in caching versus replication.

It is important to note that throughout this section, we
use a number of settings to gain an understanding of state
interaction in distributed caches and its consequences on
local and group access costs. Most of these settings are
intentionally very simple (that is, small “toy” examples) so
that they can be possible to track.

Also, it is important to note that the various parameter-
izations of our analytical and simulation models are not
meant to represent particular content networking applica-
tions. Examining specific incarnations of the state interac-
tion phenomenon is, after all, not our intention in this
paper—which is the first to identify and analyze the
problem. Rather, our exploration of the extent of mistreat-
ment is meant to help us gain insights into the fundamental
aspects of state interactions in distributed caching, such as
its dependence on the request rate imbalance and the nodes’
relative storage capacities.6 In most of the following
numerical results, we assume that nodes follow a common
power-law demand distribution with skewness a as
reported by several measurement studies [10]. We relax
the common demand distribution assumption in Section 4.3,
where we study the effect of nonhomogeneous demand on
mistreatment and the social cost of the group. Overall, we
pay greater attention to the case of homogeneous demand,
since it is under such demand that cooperative caching
becomes meaningful and effective (the benefits from
employing cooperative caching diminish when the similar-
ity of demand patterns is small).

4.1 Validation of the Analytic Model

The analytical model presented in Section 3.2 included a
number of approximations: 1) the basic building block, the
LRUð�; �Þ function, is itself an approximation, and 2) the
mapping of the effect of remote hits on the local state
through (7) is approximate; the solution of the model
through the iterative method is approximate.

In this section, we show that despite these approxima-
tions, the analytical model presented in Section 3.2 is able to
produce fairly accurate results. We do so by comparing the
model predictions with simulation results in Fig. 3. As
evident from these results, the aforementioned approxima-
tions have a very limited effect on the model’s prediction
accuracy. We have obtained similar results across a wide
variety of parameter sets. Thus, in the remainder of this
section, we use this model to study several aspects of
mistreatment due to state interaction.
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6. With respect to storage capacities, it is important to note that
performance results depend on the relative size of the cache to the object
space—that is, the ratio C=N , but not on the particular values of C and N ,
that is, our results are immune to scale.

Fig. 2. Graphical illustration for the explanation of (7).
Fig. 3. Validation of the approximate analytical model in Section 3.2

through comparison with simulation results on the social cost of the

group.



4.2 Understanding State Interaction

Fig. 4 provides a microscopic view of state interaction by
showing its effect at the object level. The results are from an
illustrative example involving a group ofn ¼ 4 nodes, each of
which has storage for up to C ¼ 4 objects in a universe of
N ¼ 10 objects (other parameters are shown in the caption
and legends of the figure). Nodes v1; . . . ; v3 have the same
fixed request rate �1 ¼ 1, whereas the overactive node v4 has
request rate �4 ¼ 1; 10; 100 (that is, we have three sets of
results that correspond to different�4, depicted in Figs. 4a and
4d, Figs. 4b and 4e, and Figs. 4c and 4f, respectively. Figs. 4a,
4b, and 4c depict the demand and the steady-state vector for
node v1 (which will be used as a representative for all three
nonoveractive nodes), and Figs. 4d, 4e, and 4f depict the
corresponding quantities for node v4. Each graph includes
four curves. The bottom two curves indicate the local demand
distribution ~p and the aggregate demand distribution ~p	,
which includes the effect of the other nodes’ miss streams
(each of these curves sums up to 1). The top two curves~� and
~�	 show the steady-state vectors of a node when the input is~p
(no miss stream present) and ~p	 (miss stream present),
respectively, as obtained from the analytical method in
Section 3.2 (each of these curves sums up to C).

Looking at Figs. 4d, 4e, and 4f, we see that overactive
node v4 is not affected by the miss streams of other nodes.
For �4 ¼ 10 and 100, its aggregate demand and its steady
state vector are identical to the corresponding ones without
state interaction, that is, ~p 	4 � ~p4 and ~� 	4 � ~�4. For �4 ¼ 1,
there is a very slight effect due to the presence of the miss
streams of the other three nodes, but this has almost no
effect on the steady-state vector ~� 	4 .

Looking at Fig. 4a, which corresponds to �4 ¼ 1, we see
that the same slight effect exists for node v1 due to the
reception of the other three miss streams. The situation,

however, changes radically when increasing �4 (Figs. 4b

and 4c). In that case, ~p 	1 and ~p1 and, as a consequence, ~� 	1
and ~�1 also become distinctively different. The intense miss

stream from v4 increases the popularity of some objects

from the middle part of ~p1, thereby making them the most

popular objects in~p	1. For example, when �4 ¼ 100, objects 2,

3, and 4 become more popular than object 1. This change in

the profile of ~p	1 is then reflected in ~�	1, thereby affecting its

access cost (6), as we explain below.

4.3 Effect on Performance

Fig. 5 provides a macroscopic view of state interaction by

considering its effects on the normalized access cost of each

node. The normalized cost of node vj under the aggregate

demand ~p 	j is defined as follows:

^costjð~p 	j ;~pjÞ ¼
costjð~p 	j Þ
costisoj ð~pjÞ

; ð8Þ
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Fig. 4. Analytical results on the effect of request rate imbalance on the per-object request and hit probabilities under LRU (values with “	” superscript)

and LRU without state interaction. ~p denotes the demand and ~� the steady-state hit probabilities. Other parameters include N ¼ 10, n ¼ 4, C ¼ 4,

and � ¼ 0:9.

Fig. 5. Analytical results on the effect of the state interaction on the

normalized access cost of the overactive node and the remaining nodes

of the group under different relative storage capacities and request rate

imbalances. No mistreatment occurs in this case.



where costisoj ð~pjÞ ¼
PN

i¼1 pij � �ij � tl þ ð1� �ijÞ � ts
� 	

is the
cost that would be incurred by vj if it operated in isolation
(outside the group) and received only its local demand~pj. If

^costj < 1, the node benefits from its participation in the
group; otherwise, it is being mistreated. When considering
two nodes, vj and vj0 , then the fact that 1 > ^costj > ^costj0

means that although both are better off by participating in
the group, vj gets a relatively larger benefit.

There are two main points to be concluded from Fig. 5.
First, it requires a very strong imbalance of request rates in order
to create a substantial difference in the incurred normalized access
costs. In the presented example, the overactive node v4 has a
30 percent reduction of its normalized cost, only when it
produces a 100-fold more intense request stream. Even such
a strong imbalance is not enough to mistreat the other
nodes (v1; . . . ; v3 have normalized access costs < 1). For the
occurrence of mistreatment, remote accesses have to be
even more expensive (this is shown in Fig. 6, where tr
increases from 1 to 1.4, thereby making the normalized
access cost of the group nodes > 1). Second, the nodes must
have a large storage capacity to be affected by state-interaction-
related phenomena. In the presented example, the nodes must
have at least a 20 percent relative storage capacity C=N to
be affected by the overactive node. Surprisingly, for small
C=N , for example, less than 15 percent, the group nodes
actually benefit more than the overactive node, that is, they
achieve a smaller normalized access cost. In [17], we
explained this peculiar phenomenon by arguing that the
miss stream from the overactive node actually helps the
other nodes in this case by creating more skewed demands
for them, which lead to higher hit ratios. Fig. 7 shows that
increasing the size of the group reduces the effects of the
state interaction. This occurs as the miss stream of the
overactive node(s) (here, just one) weakens by being
divided across more nodes.

4.4 The Case of Nonhomogeneous Demand
Patterns

What we have described so far is fairly optimistic as we
assumed that all participants in the distributed caching
group exhibit similar access patterns. If this assumption
does not hold, then the intensity of the mistreatment could
be much higher, even for small C=N . To underscore this
point, in this section, we will deviate from our course so far
and examine mistreatments and the social cost of the group
under nonhomogeneous demand distributions. For non-
overactive nodes, we will maintain the popularity ranking

of objects as it was ðo1; o2; . . .Þ. For the overactive node,
however, we will shift the popularity ranking by an offset O,
0 � O � N , therefore making object o1þðOþi�1Þ mod N be the
ith most popular object. We assign request probabilities
taken from the same generalized power-law profile with
skewness a ¼ 0:9 that is used for the nonoveractive nodes.
Fig. 9 depicts the demand distribution for the overactive
node for O ¼ N=2� 1. The two graphs in Fig. 10 depict the
normalized individual cost for the overactive and the
nonoveractive nodes, as well as the social cost (normal-
ization is obtained by dividing by the corresponding cost
obtained when remote hits are not allowed to affect the
local caching state). As is obvious, mistreatments can occur
even under nonhomogeneous demand distributions. The
concave profile with respect to O occurs as with high O; the
popularity ranking starts to look like the original one due to
“wrapping” after N . We have obtained similar results with
several other perturbations of the popularity ranking [29].

4.5 Caching versus Replication

In this section, we will consider both replication and caching
and compare their relative robustness to mistreatment. For
replication, we will consider the SO replication algorithm of
Leff et al. [20]. For simplicity of exposition and also to be able
to compare with our previous numerical results in [18], we
will consider a group with onlyn ¼ 2 nodes and a universe of
N ¼ 100 objects. The three graphs in Fig. 8 depict the
normalized access costs7 for nodes v1 and v2 (overactive) for
three cases of request imbalance: 1, 10, and 100. When there is
no request imbalance (first graph), no node is mistreated.
Caching yields the exact same performance for both nodes
(the two curves for v1 and v2 are coinciding), whereas
replication might unintentionally favor one of them (there
are several optimal solutions, and the particular one chosen
has to do with the specific solution algorithm that is
employed; here, it is a linear programming (LP) relaxation
of an integer problem solved via Simplex).

The different sensitivity to mistreatment becomes appar-
ent as soon as request imbalance is introduced, that is, with
�2=�1 ¼ 10 and 100 (Figs. 8a and 8b). By observing these
figures, we see that the curves for caching are always
contained within the angle specified by the curves for
replication (except for very small C=N , where we have the
peculiar behavior of caching discussed in the previous
section). The point to be kept from these results is that
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7. For the case of replication, the normalization is conducted by dividing
with the performance of the GL replication strategy. See [18] for details.

Fig. 6. Analytical results on the state interaction effect on the normalized

access cost of the overactive node and the remaining nodes of the group

under different relative storage capacities and request rate imbalances.

Mistreatment occurs due to larger tr.

Fig. 7. Analytical results on the effect of the state interaction on the

normalized access cost of the overactive node and the remaining nodes

of the group under different group sizes and request rate imbalances.



replication is much more sensitive to mistreatment than caching.
Under replication, the slightest imbalance of request
intensities is directly reflected in the outcome of the
replication algorithm. In contrast, the state interaction that
takes place in caching is a much weaker catalyst for
mistreatment. This fortunate weakness owes to the stochas-
tic nature of caching and to the requirement for the
concurrent occurrence of two independent events: An
unpopular object must first be brought to the cache due to
the local demand, and then, the miss stream must feed it
with requests if it is to lock it in the cache (and thereafter
beat the local request stream that tries to push it out and
reclaim the storage space).

4.6 LRU versus LFU

Fig. 11 shows analytical results under LRU replacement, as
well as simulation results under perfect LFU replacement
[26] (two group sizes, n ¼ 2 and n ¼ 4, are considered). We
plot the absolute instead of the normalized access costs, as
we are considering different replacement algorithms.
Looking first at LRU, we notice the following. The effects
of state interaction (reflected in the width of the angle
between group and overactive curves, after �n=�j ¼ 10)
decrease as the group grows larger, as also noted in the
previous section. Moreover, the absolute access costs for
both the group and the overactive node also decrease with
the size of the group. The reason is that a bigger group has
more aggregate storage capacity and thus succeeds in
caching more distinct objects, which in turn benefits all the
nodes.

Turning our attention to the LFU curves, we see a
completely different behavior. For a given n, both the
overactive node and the rest of the group have the same

access cost, that is, the request imbalance has no affect on the
nodes under LFU. This happens because once in a steady
state, perfect LFU avoids replacement errors and thus does
not give any opportunities for locking unpopular objects
and losing storage due to the miss stream of remote
overactive nodes. Thus, LFU has an advantage over LRU in
terms of its immunity to request imbalance. What is even
more interesting, however, is that the access cost under LFU
remains the same under different n, that is, increasing the
group size does not help in reducing the access costs. This
happens because under LFU and common demand pat-
terns, all the nodes end up caching exactly the same sets of
objects. In such a group, a local miss is bound to miss also in
the group. In other words, LFU eliminates all the cooperation
gain in groups of similar nodes. This does not occur when the
group operates under LRU: The replacement errors
committed by the individual nodes in this case create a
healthy amount of noise that increases the distinct objects
held in the group, thereby decreasing the access cost of all
the nodes. Thus, in large groups under small internode
distances, LRU is more appropriate than LFU (see, for
example, the access cost for small tr in Fig. 12 in Section 5.1,
where n ¼ 10). When the internode distances increase, then
the perfect ranking of objects under LFU becomes more
important than the cooperation gain, and thus, LFU
becomes better for the group (see Fig. 12 for large tr).

4.7 L2 versus Non-L2 Caching

When a cache operates in L2 mode, it fetches and maintains
a copy from the origin server for every request that it
receives from a remote node (whether it hits or misses
locally). In [17], we showed that L2 caching eliminates the
robustness to mistreatment of non-L2 caching, leading to a
vulnerability level similar to the one under replication. To
understand this, one has to observe that in L2-caching and
replication, locally irrelevant objects may occupy the local
cache without the intervention of the local demand,
whereas in non-L2 caching, the local demand has first to
bring the objects in the cache and thus give other nodes the
opportunity to maintain them there by feeding them with
requests.

5 MISTREATMENT DUE TO THE USE OF A COMMON

SCHEME

In this section, we study cases of mistreatment due to the
use of a common scheme vis-a-vis the object admission
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Fig. 8. Analytical results on the comparison of replication and caching under three cases of request imbalance: (a) 1, (b) 10, and (c) 100.

Fig. 9. The object demand distribution for the overactive node when the

popularity ranking has been shifted by an offset O and the remaining

nodes of the group.



control algorithm. Specifically, we consider SC schemes like
HASH and LRU-SC,8 that is, schemes that allow for the
existence of up to one copy of each object in the group, and
MC schemes, that is, schemes that allow for the existence of
multiple copies of the same object at different nodes of the
group. All the replacement algorithms when combined with
a non-SC object admission control fall into the MC category.

5.1 Single versus MC Schemes

Fig. 12 depicts simulation results showing the average
access cost of a group (social cost) under different SC and
MC schemes and for different values of tr representing
different levels of “tightness” of the group. Three types of
demand are considered: lightly ða ¼ 0:2Þ, moderately
ða ¼ 0:6Þ, and highly ða ¼ 0:9Þ skewed demand. The
following observations apply. SC schemes (that is, HASH
and LRU-SC, whose curves overlap almost completely in these
figures, as the two have very similar caching behavior) perform
better when the access cost between the nodes is small. In such
cases, the cost of local and remote accesses is similar, so it
pays to eliminate multiple copies of the same object at
different nodes and instead make room for storing a larger
number of distinct objects. MC schemes (that is, LRU and
LFU) perform better when the access cost between the nodes is
high. In such cases, a much higher cost is incurred when an
object is fetched from the group, so it becomes imperative to
maintain some of the most popular objects locally (thereby
creating multiple copies at different nodes). The threshold
value of tr at which the performance ranking between SC
and MC changes depends on the skewness of the demand:
the higher the skewness, the lower the value of tr and the
earlier the MC schemes become better.

It is also worthwhile noting that the curves for LFU are
parallel to the x-axis, that is, the access cost is immune to the
internode distance under LFU and identical demand. This
happens because, as noted earlier, under LFU, all the nodes
store the same objects, and this has the consequence of
eliminating all remote hits. In that case, the exact value of
the remote access cost does not affect the LFU curves, since

there are no remote hits. Regarding the comparison
between LRU and LFU, the figure shows that LFU is better
when the remote access cost is high (see the discussion in
Section 4.6 for an explanation of this).

The above observations highlight the fact that “fixed
schemes” operate efficiently only under specific parameter
sets. If these parameter sets are common to all the nodes,
then good design choices can be made among the different
schemes. However, when some of the parameters (for
example, internode distances) are not common to all nodes,
then it may well be the case that no single scheme is appropriate
for all the nodes. Enforcing a common scheme under such
conditions is bound to mistreat some of the nodes. The following
section illustrates such an example.

5.2 Relaxing the Common Scheme Requirement

So far, we have assumed that all group nodes employ the
same (common) caching scheme. In this section, we look at
the advantages to be gotten from relaxing this constraint.

Consider the group depicted in Fig. 13 in which n� 1
nodes are clustered together, meaning that they are very
close to each other ðtr ! tlÞ, while there is also a single
“outlier” node at distance t0r from the cluster. The n� 1
nodes would naturally employ the LRU-SC scheme in order
to capitalize on their small remote access cost. From the
previous discussion, it should be clear that the best scheme
for the outlier node would depend on t0r. If t0r ! tl, the
outlier should obviously follow LRU-SC and avoid dupli-
cating objects that already exist elsewhere in the group. If
t0r 
 tl, then the outlier should follow an MC scheme, for
example, LRU.

To permit the outlier to adjust its caching behavior
according to its distance from the group, we introduce the
LRUðqÞ scheme under which objects that are fetched from
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8. Under HASH, requests are received by the local node, which employs
a hash function to identify the node that is responsible for the requested
object. The responsible node returns the object immediately if it has already
cached it or contacts the origin server and then returns it, also keeping a
local copy in this case. The local node does not keep a local copy, unless it is
the one responsible for that object according to the employed hash function.
Under LRU-SC (single copy), a local copy is maintained at the local node
only for objects that were fetched from the origin server. When an object is
fetched from elsewhere in the group, no local copy is kept. In both cases, the
number of copies of each object in the group is limited to at most one.

Fig. 10. Analytical results of the state interaction on the normalized access cost of the outlier and the remaining nodes in the group and the

normalized social cost of the nodes in the caching group under nonhomogeneous demand distributions, where the overactive node’s popularity

ranking has been shifted rightwards by an offset O.

Fig. 11. Analytical results on the comparison LRU versus LFU.



the origin server are automatically cached locally, but objects
that are fetched from the group are cached locally only with
probability q. For q ¼ 0, LRUðqÞ reduces to LRU-SC, whereas
for q ¼ 1, it reduces to the MC LRU scheme. One may think
of q as a reliance parameter, capturing the confidence that a
node has in its ability to fetch objects efficiently (that is,
“cheaply”) from other members of the group.

Fig. 14 presents the performance of LRUðqÞ for q ¼
0; 0:1; 0:5; 1 under different t0r. The results are normalized by
dividing the access cost of each LRUðqÞ scheme by the
corresponding access cost of the LRUðq ¼ 1Þ scheme. The
later can be seen as a basis for what a node can achieve by
operating greedily, that is, when it always keeps a copy of
each incoming object. Such a behavior corresponds to a
node that wants to avoid relying on other nodes for fetching
objects. As with the state interaction case, mistreatment is
signified by a normalized access cost greater than 1.

Fig. 14 shows that for the considered scenario, always
keeping local copies of all incoming objects (that is,
employing LRU(1) and incurring a normalized access cost
of 1) is a reasonably good choice across most values of t0r.
The only case in which LRU(1) performs poorly is when t0r
becomes very small, which corresponds to the case in which
the node ceases to be an outlier and actually becomes part
of the cluster. As discussed earlier, in this case, maintaining
multiple object copies within the group becomes wasteful,
with the optimal scheme being the SC LRU(0) scheme.

Another interesting observation from the above results is
that there is a noticeable performance differential between
the SC LRU(0) scheme and any other MC LRUðqÞ scheme
with q > 0. A nonzero LRUðqÞ scheme, even one where q is
small, is capable of eventually caching locally the most
popular objects, even if this requires several misses. LRU(0),
on the other hand, has almost no chance of bringing a

globally popular object locally since it is much more likely
for such an object to be cached in the cluster before being
requested by the outlier node (which means that it will not
be cached locally). When this happens for several popular
objects, the performance degradation for the outlier node
becomes very serious. That is why LRU(0) performs poorly
for large values of t0r.

6 TOWARD MISTREATMENT-RESILIENT CACHING

From the exposition so far, it should be clear that there exist
situations under which an inappropriate, or enforced,
scheme may mistreat some of the nodes. Although we have
focused on detecting and analyzing two causes of mistreat-
ment which appear to be important (namely, due to cache
state interactions and the adoption of a common cache
management scheme), it should be evident that mistreat-
ments may well arise through other causes. For example,
we have not investigated the possibility of mistreatment
due to request rerouting [25], not to mention that there are
vastly more parameter sets and combinations of schemes
that cannot all be investigated exhaustively.

To address the above challenges, we first sketch a general
framework for designing mistreatment-resilient schemes.
We then apply this general framework to the two types of
mistreatments that we have considered in this work. We
target “open systems” in which group settings (for example,
number of nodes, distances, and demand patterns) change
dynamically. In such systems, it is not possible to address
the mistreatment issue with predefined, fixed designs (for
example, using the results of the previous section for
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Fig. 12. Simulation results on the effect of the remote access cost tr on the performance ranking of different SC and MC schemes for three cases of

skewness of demand: (a) a ¼ 0:2, (b) a ¼ 0:6, and (c) a ¼ 0:9. MC schemes (LRU and LFU) perform better when tr ! ts.

Fig. 13. An example of a group composed of a cluster of n� 1 nodes

and a unique outlier.

Fig. 14. Simulation results on the effect of the remote access cost t0r on

the normalized access cost of the outlier node under different LRUðqÞ
schemes.



selecting a fixed value for the reliance parameter q). Instead,

we believe that nodes should adjust their scheme dynamically so

as to avoid or respond to mistreatment if and when it emerges. To

achieve this goal, we argue that the following three

requirements are necessary:
Detection Mechanism. This requirement is obvious but

not trivially achievable when operating in a dynamic

environment. How can a node realize that it is being mistreated?

In our previous work on replication [18], a node compared

its access cost under a given replication scheme with the

guaranteed maximal access cost obtained through GL

replication. This gave the node a “reference point” for a

mistreatment test. In that game-theoretic framework, we

considered nodes that had a priori knowledge of their

demand patterns and thus could easily compute their GL

cost thresholds. In caching, however, demand patterns

(even local ones) are not known a priori, nor are they

stationary. Thus, in our DSC setting, the nodes have to

estimate and update their thresholds in an online manner.

We believe that a promising approach for this is emulation.

Fig. 16 depicts a node equipped with an additional virtual

cache, alongside its “real” cache that holds its objects. The

virtual cache does not hold actual objects but rather object

identifiers. It is used for emulating the cache contents and

the access cost under a scheme different from the one being

currently employed by the node to manage its “real” cache

under the same request sequence (notice that the input

request stream is copied to both caches). The basic idea is

that the virtual cache can be used for emulating the threshold cost

that the node can guarantee for itself by employing a greedy

scheme.
Mitigation Mechanism. This requirement ensures that a

node has a mechanism that allows it to react to mistreatment

—a mechanism via which it is able to respond to the onset of

mistreatment. In the context of the common scheme problem,

the ability to adjust the reliance parameter q acted as such a

mechanism. In the context of the state interaction problem,

one may define an interaction parameter ps and the corre-

sponding LRUðpsÞ scheme in which a remote hit is allowed to

affect the local state with probability ps, whereas it is denied

such access with probability ð1� psÞ. As will be demon-

strated later on, nodes may avoid mistreatment by selecting

appropriate values for these parameters according to the

current operating conditions.

Control Scheme. In addition to the availability of a
mistreatment mitigation mechanism (for example, LRUðqÞ),
there needs to be a programmatic scheme for adapting the
control variable(s) of that mechanism (for example, how to
set the value of q). Since the optimal setting of these control
variables depends heavily on a multitude of other time-
varying parameters of the DSC system (for example, group
size, storage capacities, demand patterns, and distances), it
is clear that there cannot be a simple (static) rule of thumb
for optimally setting the control variables of the mitigation
mechanism. To that end, dynamic feedback-based control
becomes an attractive option.

To make the previous discussion more concrete, we now
focus on the common scheme problem and demonstrate a
mistreatment-resilient solution based on the previous three
principal requirements. A similar solution can be developed
for the state interaction problem.

6.1 Resilience to Common-Scheme-Induced
Mistreatments under “Soft Selfishness”

We start with a simple “binary” policy that allows a node to
change operating parameters by selecting between two
alternative schemes. This can be achieved by using the virtual
cache for emulating the LRU(1) scheme, that is, the scheme in
which the reliance parameter q is equal to 1 (capturing the
case that the outlier node does not put any trust on the remote
nodes for fetching objects and thus keeps copies of all
incoming objects after local misses). Equipped with such a
device, the outlier can calculate a running estimate of its
threshold cost based on the objects it emulates as present in
the virtual cache.9 By comparing the access cost from sticking
to the current scheme to the access cost obtained through the
emulated scheme, the outlier can decide which one of the two
schemes is more appropriate. For example, it may transit
between the two extreme LRUðqÞ schemes—the LRUðq ¼ 0Þ
scheme and the LRUðq ¼ 1Þ scheme. Fig. 15 shows that the
relative performance ranking of the two schemes depends on
the distance from the group t0r and that there is a value of t0r for
which the ranking changes.

The above mechanism is appropriate for avoiding
mistreatments as defined for “soft-selfish” nodes that are
satisfied if they can guarantee a performance level at least
as good as the one they can guarantee for themselves in
isolation. In the sequel, we sketch a scheme for addressing
“hard-selfish” nodes, that is, nodes that want to minimize
their cost granted the current behavior by other nodes. Such
a goal is clearly more ambitious than just avoiding
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9. The outlier can include in the emulation the remote fetches that would
result from misses in the emulated cache contents; this would give it the
exact access cost under the emulated scheme. A simpler approach would be
to disregard the remote fetches and thus reduce the internode query traffic;
this would give it an upper bound on the access cost under the emulated
scheme.

Fig. 15. Simulation results on the effect of the remote access cost t0r on

the access cost of the outlier node under the virtual cache and LRU(0)

schemes.

Fig. 16. Block diagram of a node equipped with a virtual cache.



mistreatment. In game-theoretic terms, it amounts to
selecting a “best response” strategy.

6.2 Resilience to Common-Scheme-Induced
Mistreatments under “Hard Selfishness”

Hard selfishness demands setting the reliance parameter q so
as to minimize the local cost under the current behavior by the
other nodes. Indeed, there are situations in which inter-
mediate values of q, 0 < q < 1, are better than both q ¼ 0 and
q ¼ 1, which is what the previous binary scheme allows (see
the LRU(0.1) and LRU(0.5) curves in Fig. 14). Consider two
different values of the reliance parameter q1 and q2 such that
q1 < q2. Fig. 17 illustrates a typical development of the
average object access cost under q1 and q2 as a function of
the distance t0r of the outlier node from its cooperative cluster.
As discussed in the previous section, q1 ðq2Þ will perform
better with small (large) t0r.

In a longer version [16] of this article, we propose and
analyze a Proportional-Integral-Differential (PID) controller
for controlling the value of q so as to achieve the
aforementioned best response. A brief sketch of its opera-
tion follows: The controller maintains running averages of
the actual cost under the current q and the corresponding
one from a virtual cache that emulates an LRUðq ¼ 1Þ
scheme. The controller changes the actual q so as to
minimize the actual cost. In doing so, it uses as point of
reference the emulated cost (see [16] for details). In the same
document, we argue that such a controller can be realized

with minimal overhead in terms of information exchange,
required memory, and processing.

Performance Evaluation. In order to evaluate our
adaptive scheme, we compare its cumulative average access
cost to the corresponding cost of one of the two extreme
static schemes ðLRUðq ¼ 0Þ;LRUðq ¼ 1ÞÞ. Thus, we define
the following performance metric:

minimum cost reduction ð%Þ ¼ 100 � coststatic � costadaptive
coststatic

;

ð9Þ

where costadaptive is the access cost of our adaptive
mechanism and coststatic is the minimum cost among the
two static schemes:

coststatic ¼ minðcostðLRUðq ¼ 0Þ; LRUðq ¼ 1ÞÞ:

This metric captures the minimum additional benefit that
our adaptive scheme has over the previous static schemes.
To capture the maximum additional benefit of our adaptive
scheme (the optimistic case), we similarly define the
maximum cost reduction as in (9), where

coststatic ¼ maxðcostðLRUðq ¼ 0Þ; LRUðq ¼ 1ÞÞ:

We evaluate the performance of our PID-style feedback
controller experimentally by considering a scenario in
which the distance between the outlier node and the
cooperative group ðt0rÞ changes according to the Modified
Random Waypoint Model [21]. The motivation for such a
scenario comes from a wireless caching application [32]. A
detailed description of the design of this experiment can be
found in [16]. Fig. 18 summarizes results we obtained under
different cache sizes, demand skewness, and movement
speed Vmax ¼ 1 distance units/time unit (similar results are
observed under higher speeds as well). All experiments
were repeated 10 times, and we include 95th-percentile
confidence intervals in the graphs.

By employing our adaptive scheme, the outlier achieves
a maximum cost reduction that can be up to 60 percent
under skewed demand. The depicted profile of the
maximum cost reduction curve can be explained as follows:
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Fig. 17. Representative development of the average object access cost

as a function of the reliance parameter and distance of the outlier from

the cluster.

Fig. 18. Simulation results on the cost reduction that is achieved using our adaptive mechanism. (a) The minimum cost reduction. (b) The maximum

cost reduction.



The worst performance of the static schemes appears at the
two extremes of skewness. Under uniform demand, a ¼ 0,
we get the worst performance of the LRU(1) static scheme,
whereas under highly skewed demand, a ¼ 1, we get the
worst performance of the LRU(0) static scheme. In the
intermediate region, both static schemes provide for some
level of compromise, and thus, the ratio of the cost achieved
by either scheme to the corresponding cost of the adaptive
scheme becomes smaller than in the two extremes.

Turning our attention to the minimum cost reduction, we
observe that it can be substantial under skewed demand
and disappears only under uniform demand (such demand,
however, is not typically observed in measured workloads
[2]). The explanation of this behavior is as follows: At the
two extreme cases of skewness, one of the static scheme
reaches its optimal performance—under low skewed
demand, the best static scheme is the LRU(0), and under
high skewed demand, the best static scheme is the LRU(1).
Thus, the ratio of the cost achieved by the best static scheme
and the corresponding cost of our adaptive scheme gets
maximized in the intermediate region in which neither of
the static schemes can reach its best performance.

6.3 Resilience to State-Interaction-Induced
Mistreatments

Immunizing a node against mistreatments that emerge from
state interactions could be similarly achieved. The interac-
tion parameter ps can be controlled using schemes similar to
those we considered above for the reliance parameter q. It is
important to note that one may argue for isolationism (by
permanently setting ps ¼ 0) as a simple approach to avoid
state-interaction-induced mistreatments. This is not a viable
solution. Specifically, by adopting an LRUðps ¼ 0Þ ap-
proach, a node is depriving itself from the opportunity of
using miss streams from other nodes to improve the
accuracy of LRU-based cache/no-cache decisions (assum-
ing a uniform popularity profile for group members). This
was highlighted in the results shown in Fig. 5.

To conclude this section, we note that the approaches we
presented above for mistreatment resilience may be viewed
as “passive” or “end to end” in the sense that a node infers
the onset of mistreatment implicitly by monitoring its utility
function. As we alluded at the outset of this paper, for the
emerging class of network applications for which grouping
of nodes is “ad hoc” (that is, not dictated by organizational
boundaries or strategic goals), this might be the only
realistic solution. In particular, to understand “exactly how
and exactly why” mistreatment is taking place would
require the use of proactive measures (for example,
monitoring/policing group member behaviors, measuring
distances with pings, and so forth), which would require
group members to subscribe to some common services or to
trust some common authority—both of which are not
consistent with the autonomous nature (and the mutual
distrust) of participating nodes.

7 SUMMARY AND CONCLUDING REMARKS

Distributed on-demand caching enables loosely coupled
groups of nodes to share their (storage) resources to achieve
higher efficiencies and scalability. In addition to its

traditional use in content distribution/delivery networks,
distributed caching is also used as an important building
block of many emerging applications and protocols,
including its use in route caching in ad hoc networks [24]
and in P2P content replication [6], [13].

Summary. This paper has uncovered the susceptibility of
nodes participating in a distributed on-demand caching
group to being mistreated. We have identified two causes of
mistreatments, namely, mistreatment due to cache state
interactions between various members of the group and
mistreatment due to the use of a common scheme for cache
management across all members of the group. We have
backed up our findings by analytic models, numerical
solutions of these models, and simulations in which
assumptions (necessary for analysis) have been relaxed.

The results of our analysis and evaluation suggest that
on-demand distributed caching is fairly resilient to the
onset of mistreatment as long as proxying (L2 caching) is
not enabled and as long as intragroup access costs do not
include outliers. More constructively, we have outlined an
efficient emulation-based approach that allows individual
nodes to decide autonomously (that is, without having to
trust any other node or service) whether they should stick to
or secede from a caching group, based on whether or not
their participation is beneficial to their performance
compared to a selfish greedy scheme.

Other Incarnations of Mistreatment in Online Distrib-
uted Resource Management Problems. In this paper, we
focused on distributed caching as an instance of an online
protocol for the management of a distributed resource,
namely, the limited storage available at each node.
Although our exposition has focused on the well-known
problem of caching “retrievable” content (for example, Web
pages and media objects), it should be evident that our
results extend to any other type of cached content, including
nonretrievable content used as part of the control plane of a
distributed protocol or application (for example, route
paths stored in routing tables of group members). Clearly,
given the different nature of the workloads that such
distributed resources must support, a more specific exam-
ination of potential mistreatments in such settings is
warranted and is a current subject of our inquiry.

Coincidental versus Adversarial Mistreatment. In this
paper, we focused on the onset of mistreatment due to
benign operating conditions of a caching group. For
instance, we identified rate imbalance (of local versus
remote requests streams) conditions, as well as cache sizing
conditions, that are necessary for mistreatment to occur. As
such, the cases of mistreatment we have uncovered could be
considered “coincidental.” Another possible source of
mistreatment, however, could be adversarially motivated
in the sense that one (or more) of the group members
collude to negatively impact the performance of other
members. Although we did not consider adversarial
mistreatments per se, our results suggest that distributed
caching is fairly immune to high potency exploits [11] (low-
rate attacks) by nonclairvoyant adversaries. More work is
needed to characterize the vulnerability of distributed
caching to more elaborate adversarial exploits, including
those from more powerful agents (for example, those with
knowledge of a victim’s cache contents).
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