
Distributed Network Formation for
n-Way Broadcast Applications

Georgios Smaragdakis, Nikolaos Laoutaris, Pietro Michiardi,

Azer Bestavros, Senior Member, IEEE Computer Society, John W. Byers, and Mema Roussopoulos

Abstract—In an n-way broadcast application, each one of n overlay nodes wants to push its own distinct large data file to all other

n� 1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling

such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of

receivers, and thus, by necessity, employs a suboptimized overlay topology. n-way broadcast applications, on the other hand, owing to

their inherent complexity, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale

constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a

consequence deliver far superior performance compared to random and myopic (greedy) approaches. We present the Max-Min and

Max-Sum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available

bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable

for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using

measurements from a PlanetLab prototype implementation and trace-driven simulations, we demonstrate that the performance of

swarming protocols on top of our constructed topologies is far superior to the performance of random and myopic overlays.

Index Terms—Network formation, n-way broadcast, swarming protocols, flow networks.

Ç

1 INTRODUCTION—OUTLINE

1.1 Motivation

THE BitTorrent protocol [2] has established swarming,
i.e., parallel download of a file from multiple peers

with concurrent upload to other requesting peers, as one
of the most efficient methods for multicasting bulk data.
A fundamental characteristic of the existing BitTorrent is
that the overlay graph resulting from its bootstrap and
choke/unchoke algorithms is mostly ad hoc, in the sense
that it is the outgrowth of random choices of neighboring
peers. This is justified given the scale of P2P file
swapping networks.

P2P file swapping is not the “be all and end all” for
swarming. In this work, we consider n-way broadcasting—
another class of applications, in which each one of n overlay
nodes must push a very large chunk of data (a distinct file)
to all other n� 1 peers, as well as pull the n� 1 files pushed

by these other peers. Once completed, this push-pull cycle
may be repeated with new sets of files.

Applications using n-way broadcasting would involve
small/medium-sized networks, as they are inherently of n2

nature. Examples include: distribution of large scientific
data sets in grid computing (e.g., CERN’s Large Hadron
Collider data sets), distribution of large traffic log files for
network-wide distributed intrusion/anomaly detection
schemes [3], synchronization of distributed databases [4],
distributed batch parallel processing and storage applica-
tions [5], and several other enterprise applications. Contrary
to the prevailing assumption underlying the design of
BitTorrent, the nodes that make up such networks are
basically cooperative (at an extreme case, they belong to the
same administrative authority).

Even for relatively small networks, n parallel broadcasts
of distinct large files can create data volumes that are
impossible to handle via centralized solutions: uploading
each file to a centralized server, and then, copying it back to
all destinations in a point-to-point manner means that the
same file is transmitted OðnÞ times over the same link, i.e.,
imposing an OðnÞ stress on the physical links.

1.2 n-Way Broadcast via Swarming

Swarming is clearly an attractive approach to supporting n-
way broadcast applications. The obvious solution is to
outsource the push-pull functionality to BitTorrent: set up
n different torrents, each one seeded by a different node.

In this paper, we question the effectiveness of BitTorrent
for n-way broadcasting (which is not what it is primarily
designed to support). In particular, we note that BitTorrent
runs on the topologies that result from the composition of
its bootstrapping and choke/unchoke algorithms. These
topologies are mostly unoptimized. Indeed, the only

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010 1427

. G. Smaragdakis is with the Deutsche Telekom Laboratories/Technical
University of Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany.
E-mail: georgios@net.t-labs.tu-berlin.de.

. N. Laoutaris is with Telefonica Research, Via Augusta 177, 08021
Barcelona, Spain. E-mail: nikos@tid.es.

. P. Michiardi is with the Institut EURECOM, 2229, route des Cretes, BP
193, F-06560 Sophia-Antipolis, France.
E-mail: pietro.michiardi@eurecom.fr.

. A. Bestavros and J.W. Byers are with the Computer Science Department,
Boston University, 111 Cummington Street, Boston, MA 02215.
E-mail: {best, byers}@cs.bu.edu.

. M. Roussopoulos is with the Department of Informatics and Telecommu-
nications, University of Athens, GR 15771, Ilisia, Athens, Greece.
E-mail: mema@di.uoa.gr.

Manuscript received 28 May 2009; revised 15 Dec. 2009; accepted 13 Jan.
2010; published online 25 Jan. 2010.
Recommended for acceptance by P. Mohapatra.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-05-0242.
Digital Object Identifier no. 10.1109/TPDS.2010.23.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

topological optimization in BitTorrent is a local one: under
the choke/unchoke algorithm, fast peers are matched up
with other fast peers from within the same randomly boot-
strapped neighborhood. By virtue of the relatively small size of
neighborhoods compared to the entire network, the result-
ing topology is close to being random. While randomly
bootstrapped graphs may possess desirable theoretical
properties (such as small diameters), they are likely to be
inefficient when compared to graphs that are systematically
constructed to optimize a specific application. Notice that
BitTorrent’s matching of fast nodes is mostly in the protocol
as an efficient tool against free-riding [6], rather than as a
conscious attempt to optimize the overall overlay topology
for applications such as n-way broadcast.

1.3 Our Work—Optimized Overlays for n-Way
Broadcast

For n-way broadcast applications (as well as for other
potential classes of applications), the main goal is to
minimize the file download time by optimizing the efficiency
of the entire overlay as opposed to creating a tit-for-tat
environment to reign in selfish, free-riding behavior of
individual nodes. Also, the scale of the applications we
envision makes it possible/practical to optimize the con-
struction of the overlay, especially if distributed optimiza-
tion is used.

Armed with this realization, our goal will be to construct
highly efficient topologies to be used by swarming proto-
cols for n-way broadcast. Specifically, we construct an
optimized, common overlay network, upon which swarm-
ing is used. In order to control the stress of the physical
links supporting the overlay, we impose an upper bound on
the degree of the nodes in the constructed overlay network.

Next, we present justification for several of the salient
features of our solution—features that will be developed
and presented fully later in the paper.

Why swarming on top of an overlay? Because hop-by-
hop relay of the entire file over a shortest path tree
embedded on the overlay topology and rooted at the seed
node would take too long. We want to harness the power of
parallel downloads as exemplified in BitTorrent.

Why use a common overlay? Because a topological
optimization requires monitoring the performance of over-
lay links, and we want to amortize the cost of such
monitoring—pay it only once per link and reuse the result
for the benefit of all n transmissions (and avoid monitoring
the same link up to n times as can happen if one builds
n independent overlays).

How could swarming benefit from an end-to-end
optimized overlay? Our overlays are optimized for end-
to-end performance over multihop paths, e.g., by maximiz-
ing the minimum available bandwidth to any destination
over multiple paths, or by maximizing the total available
bandwidth to all destinations over all available paths. From
a single node’s perspective, swarming involves point-to-
point transfers within the neighborhood of that node. Each
node, however, has in its neighborhood nodes that also
belong to other “adjacent” neighborhoods. Noting this, one
can see that, through swarming, data chunks eventually
reach their destinations through multihop paths formed
through single-hop transfers between neighborhoods. If

these multihop paths are end-to-end optimized, then
swarming will be more effective in operating upon them
as compared to upon unoptimized paths.

Why optimize the overlay based solely on network
characteristics, without consideration of data availability?
Arguably, one could conceive of more general overlay
constructions in which neighbors are selected based on
criteria involving both the network characteristics and the
availability of chunks at each candidate connection point. In
our work, we adopt a bandwidth-centric/data-agnostic
approach to the construction of the overlay for two main
reasons: 1) for large objects, it is high bandwidth that leads
to small delivery completion times and high object
throughput; and 2) the global state in terms of available
chunks per node changes too frequently (with each
successful chunk exchange between two nodes), resulting
in an optimized topology that changes too frequently to be
of practical use. The fact that we do not consider data
availability in the construction of the overlay does not mean
that data availability does not play a role in our approach: it
does, but not at the overlay construction time scale.
Specifically, we advocate a “two-pronged approach” operating
at two distinct time scales: at a coarse time scale, we address
issues related to network characteristics through the
construction of a dynamic, distributively optimized overlay,
and at a finer time scale, we address issues related to data
availability through the upload/download scheduling
algorithms employed in the swarming protocol that runs
on top of the overlay.

2 RELATED WORK

This work is the fusion of two very recent thrusts in
networking research: network creation games and swarming
protocols. Network creation games appeared in computer
science with the work of Fabrikant et al. [7] in which a set of
nodes forms a network in a distributed manner driven by
self-interest—each node pays for the creation of a number of
links to other “neighbors” so as to minimize a hybrid cost
that captures the purchase cost of these links and the delay
for routing packets to all other destinations using own and
remote links. The model targeted the creation of physical
telecommunication networks through peering agreements
between ISPs (hence, the explicit modeling of the cost of
buying a link). Laoutaris et al. [8] studied the “capacitated”
version of the above problem, targeting the construction of
overlay routing networks—each node is given a bound on
the number of immediate peering relationships that it can
establish (defined by the protocol that implements such an
overlay network) and selects the best neighbors so as to
minimize its sum of distances to all destinations through the
shortest path routes over the resulting overlay topology.
These works differ fundamentally from ours in that they
target routing, i.e., they assume that a packet from v to u is of
interest only to u. Intermediate nodes w that lay on the
overlay path from v to u are there just to assist in the routing
of the packet. In the current work, each node is broadcasting a
file to all destinations, and thus, intermediate nodes are also
receivers in addition to being relay points. More fundamen-
tally, in our case, the delivery of information from v to u
occurs not through a single path but (potentially) through all

1428 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

the available connected paths between the two end points
(because the file is cut into chunks which travel in parallel
along different paths on the overlay). For this reason, we
employ max-flows as building blocks for designing the
overlay (as opposed to shortest paths which are used in
point-to-point routing [7], [8]). Max-flows reflect better the
nature of our application (broadcasting) as well as the nature
of the employed technique for implementing it (swarming).

The BitTorrent protocol [2] has established swarming as
one of the most fresh and promising ideas in contemporary
networking research, and thus, has kick-started a (tidal)
wave of research articles in the area. Our fundamental
difference from this body of work, whether analytic, e.g., Qiu
and Srikant [9], Massoulie and Vojnovic [10], Fernandess and
Malkhi [11], Kumar and Ross [12], and Sanghavi et al. [13],
experimental, e.g., Bharambe et al. [14], or measurement
based, e.g., Izal et al. [15] and Legout et al. [16], is that we
have substituted the (close to) random graph resulting from
BitTorrent’s bootstrap and choke/unchoke algorithms with a
highly efficient distributively optimized graph. As we show
later on, such a switch boosts the performance of a swarming
protocol running on top of it. We are able to obtain such
highly efficient graphs because our interest is on smaller
networks. We show that at such scales, one can do much
better than close to random.

Some other relevant works are the following ones.
Massoulie et al. [17] recently showed that a simple
distributed randomized algorithm can achieve the theore-
tical optimal broadcast rate given by Edmond’s theorem
[18] for a source node in a flow network. Compared to this
work, we let each node select its neighbors, and thus,
participate in the construction of the flow network, as
opposed to taking it for granted. Gkantsidis and Rodriguez
[19] have proposed the use of network coding as an
alternative to BitTorrent’s chunk scheduling algorithm.
The performance benefit/added complexity ratio of em-
ploying network coding is not yet generally agreed upon
[16]. Although we focus on BitTorrent-like swarming here,
our optimized topologies should also benefit network-
coding-based swarming because they are oblivious to
whether network coding is used or not. Fan et al. [20]
performed a complete characterization of the different rate
assignment strategies of BitTorrent-like protocols. They
showed the fundamental trade-off between the perfor-
mance and fairness for the aforementioned protocols. Their
observations provide justification for one of our design
choices, which is to fully utilize the upload capacity of each
node in a cooperative fashion.

Guo et al. [21] and Tien et al. [22] look at the design of
multitorrent systems. Their contribution is mostly on the
measurement and the design of interpeer incentive mechan-
isms for peers that participate in multiple torrents concur-
rently. They do not look at overlay construction issues.
Interestingly, Tien et al. [22] provide justification for one of
our design choices, which is to enforce that at any time,
there should be only one active torrent between any two
nodes (more in Section 4). They show that deviating from
this choice and allowing the transfer of multiple chunks in
parallel between two nodes (one for each torrent) slow
down the system by overpartitioning the upload bandwidth
of nodes.

Other end-system multicast systems such as SplitStream
from Castro et al. [23] and Bullet from Costic et al. [24]
could be used to support n-way broadcasting by creating a
separate overlay for each source. The problem with this
approach is that there is no coordination across different
overlays, and thus, there can be performance inefficiencies
as well as significant overheads due to the redundant
monitoring of the same physical paths multiple times from
different overlays. Our approach is to construct one overlay
for all sources, and thus, jointly optimize as well as share
the monitoring cost.

The only work we are aware of on the intersection of
overlay creation and BitTorrent is a very recent one from
Zhang et al. [25]. It looks at the formation of Nash equilibria
topologies in view of download-selfish peers that partici-
pate in a single torrent. Our overlay formation, although
distributed and based on local utility functions, is:
1) primarily targeting the optimization of the social utility
of the network, meaning that all nodes are assumed to be
under common control, and 2) considering both upload and
download performance for multiple torrents, one at each
node. We examine selfishness issues and how these could
be addressed toward the end of our paper, but this is just a
supplement of our main contribution.

3 PEER SET SELECTION

Let V ¼ fv1; v2; . . . ; vng denote a set of nodes. Node vi
selects k other nodes to be in its peer set si ¼ fvi1 ; vi2 ; . . . ; vikg
and establishes bidirectional links to them. Let S ¼
fs1; s2; . . . ; sng denote the edge set of the overlay graph G ¼
ðV ; SÞ resulting from the superposition of the individual
peer sets. Each link of G is annotated with a capacity cij
which captures the available bandwidth [26], henceforth
abbreviated availbw, on the underlying IP layer path that
goes from vi to vj. Capacities can be asymmetric, meaning
that cij 6¼ cji in the general case. Let MF ðvi; vj; SÞ denote the
resulting max-flow from vi to vj under S. Let also �ðvi; SÞ
and �ðvi; SÞ denote the minimum max-flow from vi to any
other node under S, and the sum of max-flows from vi to all
other nodes under S, respectively, i.e.,

�ðvi; SÞ ¼ min
vj2V�i

MF ðvi; vj; SÞ;�ðvi; SÞ ¼
X

vj2V�i
MF ðvi; vj; SÞ:

In the above definitions, each max-flow from vi to an
individual destination is computed independently of other
max-flows from the same node to different destinations (i.e.,
each one is computed on an empty flow network G). These
definitions should not be confused with multicommodity
flow problems in which multiple distinct flows coexist. In n-
way broadcast, each node is potentially a destination of a
flow and the piece forwarding is difficult to analyze. Thus,
the classical multicommodity flow fails to capture the
dynamics of the system.

Definition 1 (Max-Min and Max-Sum peer sets). A peer set
si is called Max-Min if it maximizes the minimum max-flow
of node vi, i . e . , �ðvi; fsig þ S�iÞ � �ðvi; fsi0 g þ S�iÞ,
8si0 6¼ si, where S�i denotes the superposition of the peer sets
of all nodes but vi. Similarly, a peer set is called Max-Sum if
�ðvi; fsig þ S�iÞ � �ðvi; fsi0 g þ S�iÞ, 8si0 6¼ si.

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1429

Lemma 1. Finding a Max-Min or Max-Sum peer set for vi given
S�i is an NP-hard problem.

Proof. See Appendices A and B. tu

These peer set selection policies optimize the connectiv-
ity of a given node to the remaining network. One could say
that this constitutes selfish behavior. This is indeed the case
if the nodes use this connectivity to only disseminate their
own file. However, when they also indiscriminately relay
the files of others, which is the assumption for the
applications we consider, then optimizing one’s connectiv-
ity boosts the aggregate social performance of the network.
Later on, in Section 6, we study the implications when the
swarming protocol (running above the overlay) ceases to be
indiscriminate with respect to the upload quality, it gives to
local and remote files.

3.1 Why Max-Min and Max-Sum?

Given a flow networkG, the broadcast problem asks what is the
maximum (broadcast) rate at which a source vi can deliver its
stream concurrently to all other nodes. Edmonds showed in
[18] that the broadcast rate is equal to minvj2V�i mincutðvi; vjÞ,
which, in view of the max-flow/min-cut theorem, is equal to
minvj2V�iMF ðvi; vjÞ. Therefore, the Max-Min peer set is the
peer set that maximizes the broadcast rate of a node, or
conversely the delivery rate to the slowest receiving peers
that might be the obstacle to improve the overall perfor-
mance of the system. It does so by placing the links so as to
boost the max-flow to these slowest peers. Of course, for this
to be possible, there must be available bandwidth to be
utilized at the IP level (this is reflected on the cijs which steer
the peer set selection, and which are obtained through
measurements as explained in Section 4). Edmonds gave an
exponential time centralized algorithm for achieving the
broadcast rate, which was later improved to a small
polynomial time by Lovasz, Gabow, and others [27].
Recently, Massoulie et al. [17] showed that a simple
randomized decentralized algorithm can achieve a delivery
rate that is arbitrarily close to the broadcast rate.

A Max-Sum peer set, on the other hand, is a peer set that
maximizes the theoretical maximum aggregate transmission rate
from a node. Contrary to the Max-Min peer set that
maximizes a provably attainable broadcasting rate, the
Max-Sum maximizes only an upper bound on the aggregate
rate which, in the general case, is not attainable due to
contention for link bandwidth when max-flows from the
same source to different destinations share common overlay
links.1 We elaborate with an example.

Consider the flow network in Fig. 1 (top-left) in which all
links have unit capacity and node 1 is the source. Computing
each max-flow on an empty network, we get that the max-
flow from the source to nodes 2, 3, and 4 is equal to 1,
whereas that to nodes 5 and 6 is equal to 2, thereby �ð1Þ ¼ 7.
Consider now the maximum real flows that can exist
concurrently from the source to nodes 5 and 6 (top-center).

Breaking the file into two equal parts A and B, the source can
transmit A at full rate over the dotted paths (1! 2! 5 and
1! 4! 6) and B at full rate over the dashed path (only once
over link (1, 3)) and achieve concurrent real flows that match
the capacity of corresponding max-flows on an empty graph,
i.e., RFð1; 5Þ ¼ MFð1; 5Þ ¼ 2 and RFð1; 6Þ ¼ MFð1; 6Þ ¼ 2.
This is possible because a single transmission of B on the
edge (1, 3) suffices for contributing to both RF(1, 5) and
RF(1, 6). Thus, the two flows do not compete for bandwidth
on the shared link and can achieve the same capacity as the
corresponding max-flows on empty networks. This is not,
however, generally possible. On the top right part of the
figure, we depict the situation when sending from the source
to all destinations (nodes 2-6) concurrently. In this case,
the entire file (both A and B) has to go over links (1, 2), (1, 3),
and (1, 4), and thus, RFð1; 5Þ ¼ RFð1; 6Þ ¼ 1 < MFð1; 5Þ ¼
MFð1; 6Þ ¼ 2 leading to a real aggregate rate ~�ð1Þ ¼ 5
smaller than the bound �ð1Þ ¼ 7.

Generally, the bound becomes less tight with increasing
link density k=n. On the bottom left part of Fig. 1, we add to
the previous network two new links: (3, 2) and (3, 4). It is
easy to verify that the max-flow from the source to nodes 2,
4, 5, and 6 is now 2 and to node 3 is 1, leading to �ð1Þ ¼ 9.
As before, if we consider only the flows to 5 and 6, it is easy
to see that their max-flow values can coexist. Considering,
however, the flows to all destinations, we see that any
partition of the file into parts will inevitably lead again to all
real flows being 1, whereas the corresponding max-flows
with the exception of MF(1, 3) are now 2.2 In other words,
although the new links increased both MF(1, 2) and MF(1, 4)
by 1 compared to the previous network, they cannot
increase any of the real flows, and thus, widen the gap
between the bound (�ð1Þ ¼ 9) and the maximum attainable
aggregate rate (~�ð1Þ ¼ 5).

To sum up, we propose and study these peer selection
policies for the following reasons: 1) Max-flows are used to
capture the fact that in a swarming protocol, the chunks of a
source node vi travel toward a sink node vj over
(potentially) all the available paths of the overlay graph of
point-to-point peer relationships. 2) The gap between the
bound on the aggregate rate �ðvi; SÞ given by a Max-Sum
peer set and the actual maximum attainable aggregate rate

1430 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

1. The contention between max-flows “from” different sources does not
come explicitly in these objective functions. It is captured in our framework
through the measured availbw cij: the availbw on a direct overlay link from
vi to vj depends on the capacity of the underlying physical path and the
amount of this capacity already captured by the competing max-flows from other
sources. At this level, the problem is indeed a multicommodity flow.

Fig. 1. Mixing max-flows. Left: empty network. Middle: RF(1, 5) and
RF(1, 6) coexisting. Right: RF(1, 2), RF(1, 3), RF(1, 4), RF(1, 5),
RF(1, 6) coexisting. Top: initial network. Bottom: Initial augmented
with edges, (3,2) and (3,4).

2. The fact that the entire file has to go over the edge (1, 3) eliminates any
chance for increasing the real flows to nodes 2, 4, 5, and 6 beyond 1.

~�ðvi; SÞ which factors in the sharing of overlay links from
multiple max-flows to different destinations is reduced by
the fact that swarming protocols guarantee that any chunk
is transmitted at most once between any two peers;
therefore, ~�ðvi; SÞ can use an overlay link multiple times
(for different max-flows) but would seize bandwidth only
once, thereby reducing its gap from the bound �ðvi; SÞ that
assumes that the entire flow network is available to each
individual max-flow from vi. 3) The overlay network has to
be rather sparse (small k) so as to limit the stress on the
physical links. Thus, the bound Max-Sum will not be very
much off from the actual achievable aggregate rate and it
makes sense optimizing the peer set based on it. Regarding
Max-Min, this is provably attainable and optimal for
broadcast rate as discussed earlier.

Since a node cares to both upload its local file to all
other nodes as well as download from them all remote
files, we combine the previous definitions in the following
objective functions:

�̂ðvi; siÞ ¼ ��ðvi; fsig þ S�iÞ
þ ð1� �Þ min

vj2V�i
MF ðvj; vi; fsig þ S�iÞ;

�̂ðvi; siÞ ¼ ��ðvi; fsig þ S�iÞ
þ ð1� �Þ

X

vj2V�i
MF ðvj; vi; fsig þ S�iÞ:

In the above functions, the parameter � regulates the
relative importance between upload and download quality
in selecting a peer set. If the link capacities are symmetric,
then optimizing �̂ or �̂ reduces to optimizing � or �,
independently of �.

4 NODE ARCHITECTURE

Nodes consist of the following components: a peer selection
module implementing the peer set selection algorithms
described in Section 3; a downloader module, responsible for
issuing requests to neighboring nodes and downloading
missing chunks; and an uploader module, responsible for
sending back local and in-transit chunks (an in-transit
chunk is a chunk that does not belong to the local source
file). In this section, we describe these three modules under
the assumption that nodes are cooperative (therefore, we
don’t need mechanisms like choke/unchoke). Later on, in
Section 6, we relax this assumption.

4.1 Peer Selection Module

Every time period T , a node: 1) measures its available
bandwidth to all other nodes using pathChirp [28]; and
2) executes a peer set selection algorithm from Section 3 and
connects to the corresponding nodes (incoming links are left
untouched). Since both Max-Min and Max-Sum are NP-
hard, we use a fast local search heuristic [29] to compute
approximately optimal peer sets. Each node initially selects
k other nodes as peers. Each node is allowed to periodically
drop the connection to a uniformly at random selected peer
and establish a connection with a nonpeer node to improve
its connectivity. In our implementation of local search, each
node connects to the best candidate of nonpeer nodes. We
verified to be always within 1 percent of the exact optimal

for all problem sizes on which we were able to use integer
linear programming to compute the latter. Once links are
established, the node keeps monitoring them (including the
incoming ones) and relays their capacity to all other nodes
through an overlay link-state announcement protocol.
Remote nodes need this information to compute their own
peer sets. Although each node measures OðnÞ overlay links
every rewiring epoch T , the monitoring and announcement
overhead is only OðknÞ and not Oðn2Þ since only the OðkÞ
established links are monitored and announced in between
the (infrequent) rewiring epochs, where k� n.

4.2 The Downloader Module

The downloader module monitors the available chunks on
the peer set and issues requests for downloading missing
ones. The selection is based on the well-established Local
Rarest First (LRF) heuristic [16] that looks at the peer set and
issues a request for any missing chunk that is among the
least replicated ones in the peer set. New requests are
triggered either upon the completion of a download, or if an
overlay link is inactive upon the detection on the other side
of the link of a missing chunk.

4.3 The Uploader Module

The uploader receives requests and sends back chunks. Our
baseline uploader allows for up to 1 active upload (chunk) per
overlay link (neighbor). It implements this by maintaining an
FIFO queue for each overlay connection. This choice bounds
the number of concurrent uploads by the number of
neighbors thereby avoiding excessive fragmentation (over
partitioning) of the upload bandwidth of the local (physical)
access link of a node (this choice is backed up by results
appearing in [22]). We also experimented with an uploader
that allows up to 1 active chunk per source file per
connection, but this can lead to up n� 1 parallel uploads
per overlay link, which becomes problematic as n increases.
Indeed, overpartitioning the upload bandwidth defeats the
entire concept of swarming: it takes too much time to upload
an entire chunk, and during this time, the downloading node
is underutilizing its upload bandwidth as it cannot relay the
chunk before it completes the reception. We want to note,
however, that our baseline design is by no means claimed to
be optimal. For an example, consider a node that can upload
to its first k� 1 neighbors with rate x and to the last one with
rate larger than k � x. Then, as long as this last neighbor can
always find k missing chunks from our node, and can also
itself disseminate them further down in the network faster
than the k� 1 slow neighbors, then the system would be
better off allowing up to k parallel uploads to the fast one at
the expense of the slow ones. Such situations though are
rather peculiar and even if they arise, it is difficult to check
the necessary conditions for taking advantage of them, so we
leave their investigation to future work and stick to the
simple one-chunk-per-connection policy.

5 PERFORMANCE EVALUATION

In this section, we compare the performance of Max-Min and
Max-Sum peer selection policies against three reference
selection policies: Random (node vi selects k peers at random
from the set of all nodes in V�i); k-Widest (node vi selects

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1431

node vj if cij is among the k largest ones across all nodes in
V�i); Rand k-Widest (vi performs k-Widest on a random
subset of V�i of size � � k). Rand k-Widest is included in the
evaluation to mimic the effect of combining random boot-
strapping with choke/unchoke in BitTorrent.3

We compare these policies in terms of (node, remote
file) finish times. We denote fðj; iÞ the time that the sink vj
completes downloading the file of source vi, assuming that
all exchanges start at time 0. In all experiments, we assume
that nodes are fully cooperative (they belong to the same
authority), and thus, follow exactly and truthfully the
peer-selection policies of Section 3 and the swarming
protocol of Section 4 (i.e., no choke/unchoke mechanism is
employed). We discuss the impact of selfishly behaving
nodes in Section 6.

Our performance evaluation is done in two settings. In
the first, we assume that the n-way broadcast is to be
carried over the Internet. We do so by evaluating the
performance of a prototype implementation of our archi-
tecture on PlanetLab. In the second, we assume that the n-
way broadcast is to be carried on a closed (controlled/
isolated) network. We do so by evaluating the performance
of a prototype implementation of our architecture on a
discrete event simulator of the closed network.

5.1 Case Study 1: A PlanetLab Prototype

In this setting, we compare the performance of different
overlay topologies when the underlying physical network is
the Internet and the overlay nodes are single-homed, i.e., all
overlay links of a node go over the same physical access
link. For this purpose, we selected n ¼ 15 PlanetLab nodes.
The distribution of nodes is as follows (we tried to use
operationally stable and geographically diverse node set):
10 in North America,4 one in South America,5 three in
Europe,6 and one in Asia.7 Each one of the aforementioned
nodes disseminated a unique 100 MByte file and was
allowed to connect to k ¼ 2 neighbors (and accept addi-
tional incoming links). Notice that we limited our experi-
ment to only 15 nodes and only 100 MBytes per node so as
to keep the amount of exchanged traffic on PlanetLab at
reasonable levels, while also allowing us to monitor the
network throughout the experiment. Notice that if data
were to be transferred in a point-to-point manner, then it
would amount to over a Terabyte for each execution of the
entire experiment: five different peer set selection policies,
each one generating 15� 14� 100 MBytes of data at each
run, and repeated 10 times to get confidence intervals (the
experiment was performed between 4 June and 30 June
2007). We let the rewiring epoch be T ¼ 10 minutes and
the measurement/announcement epoch for existing links
be 2 minutes. Also, we set � ¼ 0:5 to indicate that nodes
care equally for download and upload quality. In all our
experiments, we used pathChirp [28], an end-to-end
active probing tool which requires the installation of sender

and receiver modules of the aforementioned tool in each
node. pathChirp is a lightweight, fast, and accurate tool,
which fits well with the PlanetLab-specific constraints;
namely, it does not impose a high load on PlanetLab nodes
since it does not require the transmission of long sequences
of packet trains and does not exceed the max-burst limits of
PlanetLab. The additional overhead of the tool in terms of
bandwidth consumption is negligible and does not affect
the performance of the content distribution. We limited the
maximum experiment duration to 10 seconds per peer
(thus, a full estimation for the available bandwidth from
any node to all the other nodes was achieved in
approximately 2 minutes) and we used as available
bandwidth the average available bandwidth (per peer)
observed during the experiment. In Fig. 2, we plot the
cumulative distribution function (CDF) of the pairwise
available bandwidth as well as the scatter plot illustrating
the available bandwidth among nodes of a typical experi-
ment in PlanetLab. The diversity of available bandwidth
between peers that observed was moderate. We did not
observe huge variability of the available bandwidth while
performing our experiments (variability was limited to the
available bandwidth among a few nodes only).

To perform the experiment, we modified both a
BitTorrent client and tracker. We used the mainline

4.0.2 BitTorrent client. We disabled the choke, unchoke,
and optimistic unchoke functionality, and set no limits for
both the upload and download rate as well as the number of
active peers. Although we are aware of the intrinsic
limitations of PlanetLab as well as the PlanetLab policy of
fair sharing of bandwidth among slices that use the same
node, we were able to achieve very high upload and
download rates (close to the estimated available band-
width). To minimize the interaction of our experiment with
other bandwidth demanding experiments, we performed
the experiments after monitoring the activity of competing
slices for bandwidth in the selected nodes.

We used the phpbttrkplus-2.2 BitTorrent tracker,
which is a php-based tracker that maintains records about
the activity of nodes (in a mysql database). We installed the
aforementioned tracker in one of our machines (ego-
ist.bu.edu), and modified it to reply to requests initiated
by nodes, by providing the summary of the requested peer
set (ip, port, status) and not of a random peer set (as was
initially designed).

For a node vj, we compute its maximum finish time
maxðjÞ ¼ maxi6¼j fðj; iÞ, i.e., the time at which it has
completed downloading all n� 1 remote files, as well as
its average finish time avgðjÞ ¼ 1=ðn� 1Þ

P
i6¼j fðj; iÞ. For

1432 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

Fig. 2. PlanetLab experiment, empirical CDF, and scatter plots of
available bandwidths.

3. Unless otherwise noted, we used � ¼ 2.
4. planetlab4.csail.mit.edu, planetlab2.millennium.berkeley.edu, plane-

tlab2.utep.edu, planetlab2.acis.ufl.edu, planetlab-8.cs.princeton.edu, plane-
tlab-2.cs.colostate.edu, planetlab5.cs.duke.edu, planetlab1.cs.northwestern.
edu, planetlab3.flux.utah.edu, planetlab01.cs.washington.edu.

5. planetlab-02.ece.uprm.edu.
6. planet2.zib.de, planet2.colbud.hu, planetlab3.xeno.cl.cam.ac.uk.
7. planetlab1.netmedia.gist.ac.kr.

peer set selection policy X , we let maxðXÞ ¼ maxj maxðjÞ
denote its maximum finish time across all nodes, and
avgðXÞ ¼ 1=n

P
j avgðjÞ denote its average finish time across

all nodes.
On the left-hand side of Fig. 3, we present the normal-

ized average finish time of each policy with respect to the
average finish time of the Max-Sum policy. On the right-
hand side, we present the normalized maximum finish
time of each policy with respect to the maximum finish
time of the Max-Min policy. These results show that the
various policies perform quite similarly with respect to
average finish time. When looking at maximum finish
times though, the picture is completely different. Max-Min
manages to complete all downloads anywhere between 40
and 120 percent faster than the heuristics and almost
30 percent faster than Max-Sum. This can be very
significant for Bulk Synchronous Parallel (BSP) applications
[30] in which the global progress depends on the finish
time of the slowest node. It is worth noticing that
optimizing the maximum finish time is much more difficult
than optimizing the average, and thus, it should come as
no surprise that the heuristics perform well, on average,
but fail to improve the worst case.

5.2 Case Study 2: A Dedicated Network Prototype

In this setting, we examine overlay networks whose links
are dedicated, meaning that they do not compete for
bandwidth in the underlying physical network. This model
is plausible for (multihomed) networks set up in support of
an enterprise through the acquisition of dedicated links to
connect its various locations. Such link acquisitions could be
done through SLA contracts with ISPs or through virtua-
lization technologies such as those envisioned for Cabo [31]
or GENI.8 In either cases, a dedicated link could be set up
between two enterprise nodes i and j for a given price. Any
such dedicated link will have a nominal capacity cij, which
may depend on any number of factors (e.g., physical
constraints of the underlying technology, the demand at the
ISP for carrying traffic between these two locations, or the
price paid for various links). Since setting up a complete
network to connect all n nodes directly to each other may
not be feasible (especially for systems of moderate sizes),
designers of such enterprise networks are likely to construct
the network so as to maximize its utility with respect to
some objective function. Independent of which process/
strategy is used to construct the optimized overlay, the
resulting network would allow all enterprise nodes to
communicate either directly or through overlay paths.

The construction we propose for optimizing the overlay
for n-way broadcast proceeds as follows: First, we order the
nodes according to their ids (ids are assigned in increasing
order, by selecting the overlay nodes uniformly at random).
Next, we proceed in rounds in which nodes take turns in
selecting their peer sets (as discussed in Sections 3 and 4).
This process is repeated until we converge by reaching a
round that does not introduce changes in the constructed
overlay topology.9

Toward our goal of evaluating the impact of various peer
selection policies on the performance of n-way broadcast in
this setting, we developed a discrete-event simulator that is
able to run over dedicated overlay networks. We con-
structed the dedicated overlay (enterprise) network using
the procedure described above, using the publicly available
trace of Sprint physical topology taken from Rocketfuel
[32].10 In particular, we assumed that the dedicated capacity
that could be acquired from the ISP (Sprint) would reflect
an “equal-share” partitioning, which we approximated as
follows: We counted the number of shortest paths (for all
physical node pairs) that go over a physical link and set the
available bandwidth of that link to be its real capacity
divided by this number.11 Then, for an overlay link ði; jÞ, we
set ci;j to be equal to the available bandwidth of the tightest
physical link on the induced shortest path over the physical
topology. This produces the amount of available bandwidth
that the ISP can guarantee for the new application if it
admits it into its network and treats it equally with
preexisting ones. In Fig. 4, we plot the CDF of the pairwise
available bandwidth as well as the scatter plot illustrating
the available bandwidth among nodes of a typical experi-
ment. The diversity of available bandwidth between peers
is more intense (compared to the PlanetLab experiment), as
there are nodes which are connected to other nodes
achieving very high available bandwidth and others that
are connecting achieving very low available bandwidth.

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1433

Fig. 3. PlanetLab experiment and performance evaluation of different
wiring strategies. Fig. 4. Sprint physical topology, empirical CDF, and scatter plots of

available bandwidths.

8. GENI: Global Environment for Network Innovations. http://
www.geni.net.

9. It is worth mentioning that the convergence of the above procedure
relates to a question regarding the existence of pure Nash equilibria, and
their reachability through local improvement paths, in a strategic game
with Max-Min or Max-Sum as its payoff function. Although interesting
from a theoretical standpoint, the question is not directly relevant here
as we have assumed that nodes forward indiscriminately local and in-
transit chunks. In all our experiments, we got fast convergence but could
also stop prematurely after a maximum number of iterations so as to
deal with inexistence, unreachability, or slow convergence to stable
overlay topologies.

10. The topology was inferred using the methodology described in [32].
The link weights we used for the shortest path algorithm are those inferred
in [33]. The capacities of the links were made publicly available by Sprint.

11. The idea is that each pair of physical nodes represent a different
application that is assigned an equal share of the physical capacity of all
links on which it competes with other applications.

One advantage of simulations (compared to PlanetLab
prototyping) is that it allows us to consider a bigger network.
In particular, in the experiments that follow, we study
overlays of size n ¼ 50 nodes, which are selected uniformly
at random12 from the physical SPRINT network—each node
holding a 500 MByte file. As in the PlanetLab prototype,
there is no notion of choke, unchoke, and optimistic
unchoke. The local piece selection follows a rarest first
policy, there is no limit in the upload and download rate and
the files are cut into 256 KByte chunks (that maintains blocks
of 16 KBytes which is the actual transmission unit).

In Fig. 5, we plot the speed of convergence from an
arbitrary initial overlay topology (100 topologies generated)
to a stable overlay topology for different link densities
(k=n). Fig. 5 shows that a stable overlay topology can be
found within a small number of iterations, especially when
the link density is small. The speed of convergence can be
further improved if we allow rewirings only when the
improvement in performance exceeds a particular thresh-
old. Moreover, the figure shows that there is a diminishing
return in the performance gain due to rewiring in high link
density overlays after a small number of iterations.

In Fig. 6, we compare the average and maximum finish
times of different policies for different link densities (k=n).
Compared to the previous results from PlanetLab, we
observe a qualitatively similar behavior. The gap, however,
between Max-Min and the rest in terms of maximum finish
time widens substantially: Max-Min is able to finish 2-3 times
faster in this setting, even for relatively large k=n (�10%). The
reason is that Max-Min has more real bandwidth to work
with in this case. When it places a link ði; jÞ, the capacity
(both upload and download) of the two endpoints increases
by the capacity of the newly added dedicated overlay link,
whereas in PlanetLab, the physical bandwidth is fixed, so
when Max-Min places an overlay link, it can only benefit by
whatever unused bandwidth exists in the underlying
physical network.

It is worth mentioning that Max-Sum may lead to poor
performance when the ratio k=n is low.13 This is expected as
the rational behind the Max-Sum wiring strategy is to
maximize the average maximum flow from one node to all
the other nodes. Nodes that do not contribute significantly
to increasing the maximum flow are not popular; thus, few
connections are established (by other overlay nodes) to

these nodes. As more network resources (links) are allowed
to be available to overlay nodes, they establish connections
that do not contribute a lot to the maximum flow,
improving the maximum finish time. This is observed in
Fig. 6 (bottom); the maximum finish time of Max-Sum
decreases significantly as the link density increases.
Similarly, observations are observed for the average finish
time per file per node (see Fig. 6 (top)), although there are
no significant differences among the performance of
different wirings.

Another important observation is that under any wiring
strategy, the maximum finish time of the nodes is almost
identical (see Fig. 6 (bottom)). This is another indication that
the finish time is dominated by the slowest pieces (see also
Fig. 7). Moreover, the performance of k-Widest may be

1434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

Fig. 5. Sprint physical topology and speed of convergence to a stable
overlay topology with 50 overlay nodes using different peer-selection
policies.

Fig. 6. Simulation of a closed overlay network based on Sprint physical
topology.

Fig. 7. Maximum finish time per node based on Sprint physical topology
with link density k=n ¼ 0:04. The horizontal dashed line indicates the
maximum finish time on the Max-Min topology.

12. The CDF of available bandwidths for the sampled set is similar to
that of the entire set of nodes in the Sprint physical topology.

13. This should not be confused with the discussion in Section 3 on the
tight bound of Max-Sum under low link density.

worse than the performance of Rand k-Widest, as a globally
greedy selection of peers may penalize the slowest peers
more than a local greedy selection.

To characterize the graphs obtained by Max-Min and
Max-Sum, we compare them with an optimal centralized
construction (which may not be feasible). Let maxoutðvÞ be
the sum of the bandwidths of node v’s outgoing links
(assuming that node v established k links and n� k� 1

links are established by other nodes. In a social optimal
graph, node v’s total output rate cannot exceed:

sðvÞ ¼
X

8u 6¼v
minðmaxoutðvÞ;maxoutðuÞÞ:

Define the
P
8v sðvÞ as the Utopian Max-Sum social rate.

Define as the Utopian Max-Min rate the value of

smin ¼ min
8u;v
ðminðmaxoutðvÞ;maxoutðuÞÞÞ:

The Max-Sum and Max-Min social rates are defined accord-
ingly for any wiring wheremi (n� 1 � mi � k) links are used
by any node vi on a given topology. In Fig. 8, we illustrate the
Max-Sum and Max-Min social rate obtained by the Max-Sum
and the Max-Min wiring normalized by the Utopian Max-
Sum and Utopian Max-Min social rate, respectively (left and
right figure, respectively), for different values of link density.
Both the Utopian social rates increase with link density and
Max-Min social rate of the Max-Min wiring is close to the
Utopian social rate even for low link density.

In Fig. 9, we illustrate the node degree; on the x-axis,
nodes are ranked according to each maxout, i.e., the node
with the lowest maxout is ranked last for low link density

(qualitatively, similar observations are obtained for higher
link density). In the Max-Min topology, nodes with low
maxout have high degree. Note that simple heuristics like
link establishment between any node with the node with
the lowest maxout may be useful only in the extreme
scenario where there is only one node with low maxout (as
we will comment in the next section). In general, we
observe that the distribution of the degree of the nodes is
related to the distribution of the maxout, and thus, it is
difficult to construct heuristics that can work well in
practice. We found that the above observation holds for
topologies with higher link density.

Turning our attention to the average and maximum time
for a document to be disseminated, we observe that the Max-
Min wiring strategy has the tendency to (slightly) increase
the average time that a file needs to be disseminated, but the
decrease of the maximum time of any file to be disseminated
is significant. The delay is mainly due to the injection of rare
pieces by the slowest node or nodes. To depict this, we plot
the CDF of the average and maximum finish time for low
link density (see Fig. 10). Qualitatively, similar observations
are obtained for higher link density. Finally, an important
observation is the continuous availability of requested
pieces (thus, the assumption of utilized parallel downloads
with TCP is valid). This is consistent with observations we
made in the PlanetLab prototype. This is expected, as in
contrast with the case of a single torrent, pieces from
different files are distributed among the nodes.

5.3 Case Study 2b: A Dedicated Network Prototype
with a Very Slow Node

We study the case where there is a very slow node (the
maxout of this node significantly deviates from the value of
maxout of the other nodes) based again on the Sprint
physical topology. In Fig. 11, we illustrate the average and
maximum finish time under different wiring strategies. In
the presence of a very slow node, the performance of Max-
Min topology is superior compared with the performance of
the other wiring strategies, for average and especially for
the maximum finish time for high link density. In Max-Min
topologies, nodes are able to download all the file 3-6 times

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1435

Fig. 8. Normalized Max-Sum and Max-Min rate with respect to the
Utopian one based on Sprint physical topology.

Fig. 9. Node degree on different overlay topologies for k=n ¼ 0:04.

Fig. 10. CDF for the average and maximum finish time per file per node
for link density k=n ¼ 0:04.

faster than in any other topology, even when the link
density is high. Moreover, as we show in Fig. 12, the
average delay that is introduced for the dissemination of the
documents, except the one that is uploaded by the slowest
node, is negligible. On the other hand, the improvement of
the maximum finish time in the Max-Min topology is
significant. In the presence of a very slow node, the
performance of the Max-Sum can be very bad. In
the aforementioned setting, we observed that the perfor-
mance of a simple heuristic where each node establishes
connections with the slowest node may improve the
maximum finish time. However, Max-Min provides the
lower maximum finish time as it takes into consideration
the capability of each node while keeping the degree
distribution close to uniform.

6 DEALING WITH SELFISH BEHAVIOR

Up to now we have assumed that nodes are fully
cooperative, which is a realistic assumption for the applica-
tions enumerated in Section 1. In this section, we explore
ways to accommodate applications that involve selfish
nodes. We focus on the following definition of selfishness:

Definition 2 (Upload-selfishness). An upload-selfish node
is a node that wants to use as much of its upload capacity as
possible for forwarding its local chunks and avoid “wasting” it
on relaying any in-transit chunks that it holds.

6.1 A Brief Taxonomy of Deterrence Mechanisms

The amount of extra benefit for an upload-selfish node (and
potential harm to others) depends on the mechanisms that
the network deploys for discouraging such behavior. We
examine the following cases:

Case 0 (neutral). Here, the network stays neutral and
does not deploy any deterrence mechanism. In such a

setting, the upload-selfish node could simply upload its
own chunks and ignore all other requests. The harm to
cooperative nodes can easily be quantified for this case, so
we do not discuss it further; it will be proportional to the
number of upload-selfish nodes. Cooperative nodes will be
slowed down and at an extreme case will be unable to
receive some files (e.g., when all their neighbors are upload-
selfish, which is similar to the case of an Eclipse attack [34]).

Case 1 (oblivious retribution). A network can employ
several retribution mechanisms to punish a node that fails
to deliver a chunk after a request. The choke/unchoke [2]
mechanism of BitTorrent or modified versions based on bit-
level tit-for-tat [14], [21] are two established existing
proposals. Contrary to the original BitTorrent, such me-
chanisms are marginally useful here because they are
oblivious to whether a node uploads local or in-transit
chunks. An upload-selfish node will appear to be con-
tributing by the mere fact that it is uploading its own
chunks. Thus, oblivious strategies fail to punish nodes that
“free-ride” by not uploading in-transit chunks.

Case 2 (nonoblivious retribution). Assume that there
exists a nonoblivious retribution mechanism that punishes a
node that fails to service requests14 for in-transit chunks that
it holds. What can a selfish node do against such a
mechanism? The simplest strategy is to hide (by not
announcing) the availability of in-transit chunks it holds,
and thus, get rid of the burden of having to service requests
for these chunks. This can be addressed with a simple two-
hop announcement strategy in which a node that uploads to
another node announces on its behalf the availability of the
chunk (using HAVE messages [2]) to downloaders belong-
ing to the peer set of the receiving node. This requires
obtaining upon bootstrap (and rewiring) second-hop
neighbors. Assuming that the retribution is severe enough,
the upload-selfish node will have to honor all requests.
Nonetheless, the upload-selfish node still has some room to

1436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

Fig. 11. Simulation of a closed overlay network based on Sprint physical
topology in the presence of a very slow node.

Fig. 12. CDF for the average and maximum finish time per file per node
for link density k=n ¼ 0:04, in the presence of a very slow node.

14. We do not want to punish nodes that do not have enough in-transit
content for whatever reason (slow local link or peer set) but would relay if
they had, so we only punish when a request exists and is not honored.

game the system by changing the uploader and the
downloader as follows:

. The upload-selfish node can substitute each FIFO
queue at its uploader with a selfish FIFO (S-FIFO)
that gives priority (preemptive or nonpreemptive) to
requests for local chunks.

. The upload-selfish node can switch from Least
Replicated First to Most Replicated First (MRF)
downloads. Highly replicated chunks receive fewer
requests, and thus, reducing the “waste” of upload
bandwidth for sending in-transit chunks is smaller
since most nodes already have these chunks and
any requests for these chunks will be divided over
many peers.

Since it is difficult to detect such deviations from the
protocol, we instead quantify their impact.

6.2 Quantifying the Impact of S-FIFO/MRF

We quantify the advantage for a single upload-selfish node
by looking at the ratio between the time it takes to upload its
file to all other nodes when it is selfish and when it is
cooperative, granted that all other nodes are cooperative. We
examined this ratio for different overlays built on the Sprint
trace and for different choices with respect to the choice of
selfish node. We consider three cases, where the selfish node
is: 1) the slowest node, i.e., the one whose adjacent links
have the minimum aggregate upload capacity; 2) the fastest
node; or 3) a typical node (median upload capacity).

On the Max-Min overlay, the selfish node reduced its
maximum upload finish time by 30 percent when it was the
slowest one. There is also, on average, a 15 percent reduction
on the maximum finish time of all the other nodes. When it
was a typical (or the fastest one), then it got almost no benefit,
since in these cases, the bottleneck is at the downloading
nodes (so, local selfish behavior cannot help). In all other
overlays, the selfish node got almost no benefit, even when it
was the slowest node. Unlike the Max-Min, the other
overlays are not optimized for the slowest node, so even if
this bottleneck node tries to selfishly upload its file, it cannot
really benefit because it has very limited bandwidth.

From the above, it is clear that there exist cases in which
upload-selfishness pays substantially. Given that upload-
selfishness is hard to detect, we now examine its impact on
cooperative nodes. We consider again a single selfish node
(one can easily extrapolate for multiple selfish nodes). The
impact depends on the considered metric and the identity
of the selfish node. If we care about the worst-case finish
time of cooperative nodes and let the selfish node be the
slowest node, then counterintuitively, the impact on the
cooperative nodes is positive. This is because by being
selfish, the slowest node helps all other nodes improve
their (bottleneck) downloads from it. To depict this, we
show a scatter plot on the first row (left plot) of Fig. 13 with
the finish time for each pair (node, remote file) when the
topology is random and all the nodes are cooperative. The
solid black line that stands out corresponds to the slowest
node (node 29), whose file is the last one to be downloaded
by all others. Qualitatively, similar observations are
obtained for all other wiring strategies15 except Max-Min

(see the first two rows of Fig. 13). To contrast this, we plot
in the last row the corresponding times when the topology
is Max-Min and all nodes are cooperative (bottom left plot)
and when the topology is Max-Min and the slowest node is
upload-selfish (bottom right plot). A first observation is
that the Max-Min topology does a pretty good job at
smoothing out the differences in the maximum finish times
with slight increase on the average finish time (note that
some cells may be darker on the Max-Min topology
compared to the corresponding cells on other topologies).
As can be seen, the combination of Max-Min topology and
upload-selfish scheduling on the slowest node (see last
row, right plot) does even a better job at smoothing out the
differences in maximum finish times. If, on the other hand,
the selfish node is a typical node or the fastest node, then
its effect on the download quality of others is marginal.
First, its own file is not a bottleneck. Second, the relay of in-
transit chunks is largely carried by the other n� 1 nodes.
Third, S-FIFO and MRF impact primarily first-hop neigh-
bors and have small impact on nodes further away.
Although we present the scatter plot for low link density
(k=n ¼ 0:04), qualitative similar observations are observed
for higher link densities. Qualitatively similar observations
are obtained even in the presence of a very slow node
(node 44), as illustrated in Fig. 14.

Overall, upload-selfishness, unlike its name suggest, is
not necessarily bad. A socially inclined global scheduling
policy, for example, would certainly make slow nodes
upload only their own chunks so as to reduce the severity
of the bottlenecks that they cause. More generally, for social
optimality, one should split the upload bandwidth of a node

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1437

Fig. 13. Maximum finish time for all nodes and all files under different
wirings (from left to right): MaxSum, Random, k-Widest, Rnd k-Widest,
MaxMin strategies with cooperative nodes, and Max-Min with upload-
selfish slowest node (k=n ¼ 0:04).

15. Note that the slowest node may not be the same among different
topologies.

between local and in-transit chunks according to the relative
speed of the node. Nodes that are fast should contribute
heavily in relaying in-transit chunks. Nodes that are slow
should focus only on uploading their own chunks so as to
avoid becoming bottleneck points. Stated differently, a single
uploading policy across all nodes cannot be socially optimal.

6.3 Download-Selfishness

It is tempting to ask whether a notion of download-selfishness
would make sense. Our answer leans toward the negative.
First, there is no contention between local and in-transit
chunks in the incoming direction toward a node—only in-
transit chunks flow there. Second, as long as the down-
loader keeps all its overlay connections busy by immedi-
ately identifying and requesting missing chunks, its
download-finish time will be the same, so it gets no
foreseeable benefit by deviating from LRF. Finally, trying
to manipulate the system by advertising false cijs for the
established links can be disclosed by having nodes
periodically “audit” others by measuring some remote cijs
and comparing with the advertised values on the link-state
protocol. Such methods are quite elaborate and fall outside
the scope of this paper.

7 THE EFFECT OF DELAYED FILE REQUEST AND

AVAILABILITY

Up to now we have assumed that the file download requests
are perfectly synchronized and all the files are immediately
available. This might not be always the case either due to

dissimilarity in request patterns or due to hardware failures
and recovery. To quantify the effect of request desynchro-
nization or file availability on the finish time for each (node,
remote file) pair, we used the experimental setting presented
in Section 5.2. We grouped the nodes into three sets, based
on their upload capacities, with each set containing the five
fastest, slowest, and median nodes, respectively. We
repeated the experiment and delayed the requests for
remote files and the availability of local files by nodes that
belonged to each one of the aforementioned sets. The delay
we introduced was a fraction of the maximum finish time in
the Max-Min topology.

In Fig. 15, we plot the normalized maximum finish time in
Max-Min topology with respect to the maximum finish time
in the same topology when file requests are synchronized
and all the files are immediately available. We vary the lag
and the set of nodes that are delayed. When the set of slow
nodes is delayed, the maximum finish time is increased even
for relatively small lag. Moreover, we observed that all the
nodes finished at around the same time because the last
pieces to be downloaded are those served by the slow nodes
(despite the fact that local rarest first algorithm helps the
dissemination of the these fresh pieces). When the set of
median or fast nodes is delayed, the maximum finish time
increases only for relatively high lag (a quarter of the
maximum finish time) and only for the slowest peers.

8 CONCLUSION

In this paper, we showed that swarming protocols for bulk
data transfers perform much better when operating over
optimized overlay topologies that take into consideration
the end-to-end performance characteristics of the under-
lying network. Such topologies improve the aggregate
transmission capacity of nodes, but where they make a
huge difference compared to existing heuristic approaches
is on relieving bottleneck points. Random and myopic
heuristics used, in practice, lack the required sophistication
for overcoming such bottlenecks.

Our optimized topologies are formed in a distributed
fashion and are oblivious to the details of the swarming
protocol that runs on top. They leverage the available
bandwidth of the underlying network and abstract the
swarming protocol by viewing it as a series of max-flows.
Thus, they can benefit a variety of swarming protocols with

1438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

Fig. 15. Normalized maximum finish time when a set of nodes is delayed
in Max-Min topology with respect to the maximum finish time when all
the file requests are synchronized and the file is immediately available.
The lag is a percentage of the maximum finish time of the reference
setting.

Fig. 14. Maximum finish time for all nodes and all files under different
wirings (from left to right): MaxSum, Random, k-Widest, Rnd k-Widest,
MaxMin strategies with cooperative nodes, and Max-Min with upload-
selfish slowest node, in the presence of a very slow node (k=n ¼ 0:04).

different upload/download scheduling characteristics.
Since our topologies are data-blind, it is the job of the
swarming protocol to make the best use of the end-to-end
bandwidth that they offer. To that end, we have shown that
a commonly parameterized swarming protocol is far from
being optimal.

APPENDIX A

NP-HARDNESS OF MAXIMIZING THE MINIMUM

MAX-FLOW

Consider a node s that wants to select a set of neighbors �
from a network composed of m nodes vi 2 V , n nodes
uj 2 U , and a single node t, so as to maximize its broadcast
bandwidth defined to be its minimum max-flow to any
destination, i.e., �ðs; �Þ ¼ minx2ðV [U[ftgÞMF ðs; x; �Þ, where
MF ðs; x; �Þ denotes the max-flow from s to x under strategy
�. Node s can use k < m links whose bandwidth is b1 if the
other end point belongs to V , and � � 0 in any other case,
implying that an optimal strategy � for s must satisfy
� 	 V ; j�j ¼ k. Each node vi has directed links of bandwidth
b2 to a subset Ui of the nodes of U . Each node uj has a link of
bandwidth b3 to t. Node t has links of bandwidth b1 to all
nodes of V and U (see Fig. 16 for an illustration). Link
bandwidths obey:

b1
 b2
 b3: ð1Þ

Let �ðs;X; �Þ ¼ minx2XMF ðs; x; �Þ denote s’s minimum
max-flow to any node in the set X. Combining k < m and
(1), we get that under any �, at least one node of V will get
s’s flow only indirectly through t, i.e.,

�ðs; V ; �Þ ¼MF ðs; t; �Þ: ð2Þ

The max-flow from s to uj is equal to the max-flow from s to
t, plus b2 for each connected path s! vi ! uj under �,
minus the amount of flow that crosses the link from uj to t in
a max-flow from s to t under �. Since this flow on the ðuj; tÞ
link is either 0, or b3 < b2 when there’s at least one connected
path s! vi ! uj in �, we get MF ðs; uj; �Þ �MF ðs; t; �Þ,
8uj 2 U , or equivalently:

�ðs; U; �Þ �MF ðs; t; �Þ: ð3Þ

The max-flow to node t is

MF ðs; tÞ ¼ b3 � pathsðs; V ; UÞ; ð4Þ

where pathsðs; V ; UÞ is the number of connected paths s!
vi ! uj that do not share ðvi; ujÞ edges, or equivalently the

number of nodes uj that carry a nonzero flow in a max-flow
from s to t. Equations (2) and (3) suggest that the
maximization of the broadcast bandwidth calls for the
maximization of MF ðs; tÞ, which in view of (4), is achieved
through the maximization of pathsðs; V ; UÞ. Maximizing
pathsðs; V ; UÞ requires choosing k subsets Vi so as to
maximize the cardinality of their union. A straightforward
reduction from set cover can be used to show that max
pathsðs; V ; UÞ is an NP-hard problem (see Appendix C).
Therefore, maximizing the broadcast bandwidth is also NP-
hard as it implies a solution to max pathsðs; V ; UÞ.

APPENDIX B

NP-HARDNESS OF MAXIMIZING THE SUM OF

MAX-FLOWS

Consider a node s that wants to connect to a network
composed of m nodes vi 2 V , n nodes uj 2 U , and h nodes
wl 2W , where h is a function of the out-degrees of the vis as
will be explained shortly, so as to maximize the sum of its
max-flows to all nodes in the union of V ; U;W . Node s can
use k < m links whose bandwidth is 1 if the other end point
belongs to V , and � � 0 in any other case, implying than an
optimal strategy � for s must satisfy � 	 V ; j�j ¼ k. Each
node vi has directed links of unit bandwidth to a subset Ui
of the nodes of U . Each node uj has a link of unit bandwidth
to each one of the nodes of W (see Fig. 17 for an illustration).
The cardinality of W is equal to the highest out-degree of
any node in V , i.e., h ¼ max1�i�m jUij.

Define ðs;X; �Þ ¼
P

x2X MF ðs; x; �Þ, where MF ðs; x; �Þ
denotes the max-flow from s to x under strategy �. Node s
wants to select a strategy � that maximizes �ðs; �Þ ¼
 ðs; V ; �Þ þ ðs; U; �Þ þ ðs;W; �Þ across all possible strate-
gies. We will show that such an optimal strategy has to
maximize the number of nodes in U to which there exists a
connected path s! vi ! uj.

Notice thatMF ðs; vi; �Þ ¼ 1 iff vi 2 � and 0 otherwise, and
thus, ðs; V ; �Þ ¼ k independently of the particular strategy
� chosen. Therefore, we only need to care to maximize
 ðs; U; �Þ þ ðs;W; �Þ. If s chooses to connect to vi, meaning
that vi 2 �, the contribution to ðs; U; �Þwill be jUij, because
each outgoing link of vi increases by 1 every max-flow from s
to a node u 2 Ui. The contribution to ðs;W; �Þ will be h for
each node u 2 U that is reachable from s if vi is included in �
but becomes unreachable if it is taken out (“connecting” u
increases all max-flows from s to nodes w 2W by 1).
Therefore, if by switching vi 2 � with vi0 62 �, we get a
strategy �0 which has a higher number of nodes of U

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1439

Fig. 16. Reduction from MAX-UNIQUESðkÞ to Max-Min.
Fig. 17. Reduction from MAX-UNIQUESðkÞ to Max-Sum.

reachable from s, then we should perform the switch because
�ðs; �0Þ > �ðs; �Þ. To see that notice that the switch can hurt

 ðs; U; �Þ by at most h� 1, if vi has the highest degree and vi0

has degree 1 (it must have at least 1 to be increasing the

number of unique us reached), whereas it benefits ðs;W; �Þ
by at least h as it increases the number of nodes of U

reachable from s. The above argument implies that an
optimal � must maximize the number of unique nodes of U

reachable from s. Therefore, an optimal solution to max-
imizing the sum of max-flows for s implies an optimal

solution to the NP-hard problem MAX-UNIQUESðkÞ of
Appendix C. Therefore, max sum max-flows is also an NP-

hard problem.

APPENDIX C

NP-HARDNESS OF MAXIMIZING THE NUMBER OF

UNIQUES

Let MAX-UNIQUESðkÞ be an optimization problem in

which one has to select k subsets Ui, 1 � i � m of a set U
with n elements so as to maximize the cardinality of the

union UðkÞ ¼
S
i2choice Ui. Let UNIQUESðkÞ be the corre-

sponding decision problem in which one asks whether

there is a choice leading to jUðkÞj ¼ l. UNIQUESðkÞ is clearly
NP-complete because for l ¼ n a solution to UNIQUESðkÞ
would imply a solution to SET-COVER. Therefore,
MAX�UNIQUESðkÞ is NP-hard.

ACKNOWLEDGMENTS

G. Smaragdakis is supported by a Strategic Research grant

from Deutsche Telekom Laboratories. N. Laoutaris and P.
Michiardi are supported in part by the NANODATACEN-

TERS program (FP7-ICT-223850) of the EU. P. Michiardi is
supported by the French National Research Agency (ANR)

VERSO program VIPEER project. A. Bestavros and J. Byers
are supported in part by a number of the US National

Science Foundation (NSF) awards, including CISE/CSR
Award #0720604, ENG/EFRI Award #0735974, CISE/CNS

Awards #0952145, #0524477, #0520166, and CISE/CCF
Award #0820138. M. Roussopoulos is supported in part

by the NoAH Specific Support Action (FP6-RIDS-011923) of
the European Union. Part of this work appeared in the
proceedings of the 27th IEEE Infocom conference [1].

REFERENCES

[1] G. Smaragdakis, N. Laoutaris, P. Michiardi, A. Bestavros, J.W.
Byers, and M. Roussopoulos, “Swarming on Optimized Graphs
for n-Way Broadcast,” Proc. IEEE INFOCOM, 2008.

[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc. First
Workshop Economics of Peer-to-Peer Systems, 2003.

[3] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, and G.
Iannaccone, “Detection and Identification of Network Anoma-
lies,” Proc. ACM Internet Measurement Conf. (IMC), 2006.

[4] P.A. Bernstein and N. Goodman, “Concurrency Control in
Distributed Database Systems,” ACM Computing Surveys, vol. 13,
no. 2, pp. 185-221, 1981.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Comput-
ing,” Technical Report UCB/EECS-2009-28, EECS Dept., Univ. of
California, Berkeley, Feb. 2009.

[6] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering
and Sharing Incentives in BitTorrent Systems,” Proc. ACM
SIGMETRICS, 2007.

[7] A. Fabrikant, A. Luthra, E. Maneva, C.H. Papadimitriou, and S.
Shenker, “On a Network Creation Game,” Proc. ACM Symp.
Principles of Distributed Computing (PODC), 2003.

[8] N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. Byers,
“Implications of Selfish Neighbor Selection in Overlay Networks,”
Proc. IEEE INFOCOM, 2007.

[9] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks,” Proc. ACM SIGCOMM,
2004.

[10] L. Massoulie and M. Vojnovic, “Coupon Replication Systems,”
Proc. ACM SIGMETRICS, 2005.

[11] Y. Fernandess and D. Malkhi, “On Collaborative Content
Distribution Using Multi-Message Gossip,” J. Parallel and Dis-
tributed Computing, vol. 67, no. 12, pp. 1232-1239, 2007.

[12] R. Kumar and K.W. Ross, “Optimal Peer-Assisted File Distribu-
tion: Single and Multi-Class Problems,” Proc. IEEE Workshop Hot
Topics in Web Systems and Technologies (HOTWEB), 2006.

[13] S. Sanghavi, B. Hajek, and L. Massoulie, “Gossiping with Multiple
Messages,” IEEE Trans. Information Theory, vol. 53, no. 12,
pp. 4640-4654, Dec. 2007.

[14] A.R. Bharambe, C. Herley, and V.N. Padmanabhan, “Analyzing
and Improving a BitTorrent Networks Performance Mechanisms,”
Proc. IEEE INFOCOM, 2006.

[15] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A.A.
Hamra, and L. Garces-Erice, “Dissecting BitTorrent: Five Months
in a Torrent’s Lifetime,” Proc. Passive and Active Measurements
(PAM), 2004.

[16] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and
Choke Algorithms Are Enough,” Proc. ACM Internet Measurement
Conf. (IMC), 2006.

[17] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez,
“Randomized Decentralized Broadcasting Algorithms,” Proc.
IEEE INFOCOM, 2007.

[18] J. Edmonds, “Edge-Disjoint Branchings,” Proc. Ninth Courant
Computer Science Symp. Combinatorial Algorithms, pp. 91-96, 1972.

[19] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” Proc. IEEE INFOCOM, 2005.

[20] B. Fan, J.C.S. Lui, and D.-M. Chiu, “The Design Trade Offs of
BitTorrent-Like File Sharing Protocols,” IEEE/ACM Trans. Net-
working, vol. 17, no. 2, pp. 365-376, Apr. 2009.

[21] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang,
“Measurements, Analysis, and Modeling of BitTorrent-Like
Systems,” Proc. ACM Internet Measurement Conf. (IMC), 2005.

[22] Y. Tian, D. Wu, and K.-W. Ng, “Analyzing Multiple File
Downloading in BitTorrent,” Proc. Int’l Conf. Parallel Processing
(ICPP), 2006.

[23] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Co-
operative Environments,” Proc. ACM Symp. Operating Systems
Principles (SOSP), 2003.

[24] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High-
Bandwidth Data Dissemination Using an Overlay Mesh,” Proc.
ACM Symp. Operating Systems Principles (SOSP), 2003.

[25] H. Zhang, G. Neglia, D. Towsley, and G.L. Presti, “On
Unstructured File Sharing Networks,” Proc. IEEE INFOCOM,
2007.

[26] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth:
Measurement Methodology, Dynamics, and Relation with TCP
Throughput,” IEEE/ACM Trans. Networking, vol. 11, no. 4, pp. 537-
549, Aug. 2003.

[27] S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A Survey
of Gossiping and Broadcasting in Communication Networks,”
Networks, vol. 18, pp. 319-349, 1988.

[28] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“PathChirp: Efficient Available Bandwidth Estimation for Net-
work Paths,” Proc. Passive and Active Measurements (PAM), 2003.

[29] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit, “Local Search Heuristics for K-Median and Facility
Location Problems,” SIAM J. Computing, vol. 33, no. 3, pp. 544-562,
2004.

[30] R.H. Bisseling, Parallel Scientific Computation: A Structured
Approach Using BSP and MPI. Oxford Univ. Press, 2004.

1440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 10, OCTOBER 2010

[31] N. Feamster, L. Gao, and J. Rexford, “How to Lease the Internet in
Your Spare Time,” SIGCOMM Computer Comm. Rev., vol. 37, no. 1,
pp. 61-64, 2007.

[32] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measur-
ing ISP Topologies with Rocketfuel,” IEEE/ACM Trans. Network-
ing, vol. 12, no. 1, pp. 2-16, Feb. 2004.

[33] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring
Link Weights Using End-to-End Measurements,” Proc. Second
ACM SIGCOMM Workshop Internet Measurement (IMW), 2002.

[34] A. Singh, M. Castro, P. Druschel, and A. Rowstron, “Defending
against Eclipse Attacks on Overlay Networks,” Proc. ACM
SIGOPS European Workshop, 2004.

Georgios Smaragdakis received the diploma in
electronic and computer engineering from the
Technical University of Crete, Greece, and the
PhD degree in computer science from Boston
University, Massachusetts. He interned at Tele-
fónica Research, Barcelona, Spain. He is a
senior research scientist at Deutsche Telekom
Laboratories and the Technical University of
Berlin, Germany. His research interests include
the design and analysis of computer networks

and content distribution systems with main applications in overlay
network creation and maintenance, service deployment, network
storage, distributed caching, and network security.

Nikolaos Laoutaris received the PhD degree in
computer science from the University of Athens
in 2004. He is a researcher at the Internet
Research Group of Telefonica Research in
Barcelona. Prior to joining the Barcelona Lab,
he was a postdoc fellow at Harvard University
and a Marie Curie postdoc fellow at Boston
University. His general research interests are on
system, algorithmic, and performance evalua-
tion aspects of computer networks and distrib-

uted systems with emphasis on content distribution, overlay networks,
P2P, and multimedia communications.

Pietro Michiardi received the MS degree in
communication systems from EURECOM in
1999, the MS degree in electrical engineering
from Politecnico di Torino in 2001, and the PhD
degree in computer science from Telecom
ParisTech (former ENST, Paris) in December
2004. Since January 2005, he has been an
assistant professor in the Networking & Security
Department at EURECOM. His research inter-
ests cover distributed algorithms and systems.

Azer Bestavros received the PhD degree in
computer science from Harvard University in
1992. He is a professor and former chairman of
computer science at Boston University. His
research interests are in networking and in
real-time systems. His networking research
contributions include his pioneering of the push
content distribution model adopted years later by
CDNs, his seminal work on traffic characteriza-
tion and reference locality modeling, his work on

various network transport, caching, and streaming media delivery
protocols, his work on identifying and countering adversarial exploits
of system dynamics, his work on game-theoretic approaches to overlay
and P2P networking applications, his work on verification of network
protocol compositions, and his work on virtualization services and
programming environments for embedded sensor networks. His work
has culminated so far in 13 PhD theses, more than 80 masters and
undergraduate student projects, five US patents, two start-up compa-
nies, and more than 3,000 citations. His research has been funded by
more than $15 million of government and industry grants. He has served
as the general chair, program committee chair, officer, or PC member of
most major conferences in networking and real-time systems. He has
received distinguished service awards from both the ACM and the IEEE.
He is the chair of the IEEE Computer Society Technical Committee on
the Internet, a distinguished speaker of the IEEE, and a senior member
of the IEEE Computer Society.

John W. Byers received the PhD degree in
computer science at the University of California
at Berkeley in 1997. He is an associate
professor of computer science at Boston Uni-
versity. He is also the chief scientist and a
member of the Board of Directors at Adverplex,
Inc., a quantitative search engine marketing firm
based in Cambridge, Massachusetts. He joined
B.U. in 1999 and has had an executive role at
Adverplex since the company’s founding in

2005. Prior to his appointment at B.U., he was a postdoctoral researcher
at the International Computer Science Institute in Berkeley. His research
interests are broad and include algorithmic and economic aspects of
networking, Internet content delivery, and pay-per-click advertising. He
received the ACM SIGCOMM Test of Time Award in 2009 for his work
on erasure-encoded content delivery, the IEEE ICDE Best Paper Award
in 2004 for his work on sensor databases, and a National Science
Foundation CAREER Award in 2001. He served terms on the editorial
board of the IEEE/ACM Transactions on Networking and on the
executive committee of ACM SIGCOMM.

Mema Roussopoulos received the bachelor’s
degree in computer science from the University
of Maryland at College Park, and the master’s
and PhD degrees in computer science from
Stanford. She is an assistant professor of
computer science at the University of Athens.
She served as an assistant professor of com-
puter science at the University of Crete for two
years and an assistant professor of computer
science on the Gordon McKay Endowment at

Harvard University for four years. Prior to Harvard, she was a
postdoctoral fellow in the Computer Science Department at Stanford
University. Her interests are in the areas of distributed systems,
networking, mobile computing, and digital preservation. She is a
recipient of the US National Science Foundation (NSF) CAREER Award
and the Best Paper Award at ACM SOSP 2003.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SMARAGDAKIS ET AL.: DISTRIBUTED NETWORK FORMATION FOR n-WAY BROADCAST APPLICATIONS 1441

