
SNBENCH:
Programming and Virtualization Framework

for Distributed Multitasking Sensor Networks ∗

Michael J. Ocean Azer Bestavros Assaf J. Kfoury
Boston University

mocean@cs.bu.edu best@cs.bu.edu kfoury@cs.bu.edu

Abstract
We envision future Sensor Networks (SNs) that will be composed
of a hybrid collection of a variety of sensing devices embedded
into shared environments. In such environments it follows that the
embedded SN infrastructure would also be shared by various users,
occupants, or administrators of these shared spaces. As such a clear
need emerges to virtualize the SN, sharing the resources of the
SN across various tasks executing simultaneously. To achieve this
goal, we present the SNBENCH (SN Workbench). The SNBENCH
abstracts a collection of dissimilar and disjoint resources into a
shared virtual SN. The SNBENCH provides an accessible high-level
programming language that enables users to write “macro-level”
program for their own virtual SN (i.e., programs are written at the
scope of the SN rather than its individual components and specific
details of the components or deployment need not be specified by
the developer). To this end SNBENCH provides execution environ-
ments and a run-time support infrastructure to provide each user a
Virtual Sensor Network characterized by efficient automated pro-
gram deployment, resource management, and a truly extensible ar-
chitecture. In this paper we present an overview of the SNBENCH
detailing its salient functionalities that support the entire life-cycle
of a SN application.

Categories and Subject Descriptors C.2.4 [Computer Communi-
cation Networks]: Distributed Systems—Network Operating Sys-
tems

General Terms Management, Design, Reliability, Languages,
Verification

Keywords Sensor Networks, Distributed Resource Management,
Domain Specific Languages, Programming Environments

1. Introduction

We anticipate the emergence of embedded SNs, comprised of a
collection of heterogeneous computers, sensors and actuators that

∗ This research was supported in part by NSF awards ITR-0205294, EIA-
0202067, CyberTrust-0524477, and NeTS-050166.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-332-6/06/0006. . . $5.00.

are literally built into both public (or private, managed) physical
spaces. These resources must be pooled into a single, dynamically
tasked composite resource which may process requests from dif-
ferent users simultaneously. Indeed these users may task the SN
with complementary, orthogonal or conflicting goals for simulta-
neous execution. Each user may approach this shared SN as his or
her “private” SN, easily tasked with new programs and handling
the scheduling, deployment, and management concerns transpar-
ently (i.e., offering each user an abstract, Virtual SN). To achieve
this goal we offer the SNBENCH, (SN Workbench) an accessible,
flexible, and extensible programming platform and run-time infras-
tructure for the development of distributed sensing applications to
run on the VSNs it creates.

Although SNBENCH is conceived (by design) to be agnostic
to the specific sensing resources of a given SN (as its goal is to
abstract the SN), we admit that our current implementation has
been guided by the support of the particular SN infrastructure
deployed in our laboratories, which we call the “Sensorium”. Our
Sensorium consists of a network of video sensors and motes[1]
spanning several rooms, processing units and a terabyte database.
We view our Sensorium as prototypical of the emerging VSN
infrastructures whose use is shared amongst autonomous users with
independent and possibly conflicting missions. These resources
are managed together by the SNBENCHinfrastructure to enable
the execution ad-hoc programs (e.g., queries) specified over the
Sensorium’s monitored spaces.
The SNBENCH provides:
I. A high-level, functional-style network programming language
(SNAFU) and a compiler to produce a Sensorium Task Execution
Plans as output. SNAFU exists to ease development, provide type
safety, and allow the developer a clear shift toward programming
the network rather than the nodes.
II. The Sensorium Typed Execution Plans (or STEPs), a task- ori-
ented, cycle-safe macroprogramming language used to assign com-
putations to individual execution environments within the Senso-
rium. STEPS chain together core capabilities supported by the run-
time environment of the SN to form a logical path of execution.
Formally, a STEP is a directed acyclic graph of the computations
requested of a single computing element. Given a program’s repre-
sentation as a DAG, parallelization and other optimizations become
tractable. Notice that although a STEP is represented as a DAG we
do support a limited iteration construct that can be used to emulate
recursion.
III. Various run-time support components that monitor SN re-
sources and schedule newly submitted STEP programs to avail-
able SN resources. The Sensorium Resource Manager (SRM) is
responsible for maintaining a current snapshot of the available re-
sources in the SN, while the Sensorium Service Dispatcher (SSD)

89

is responsible for accepting new STEP programs for the SN and
scheduling the tasks of the STEP to available resources. Optimally,
the scheduler must identify tasks within the new STEP that match
currently deployed tasks and reuse them as appropriate and find a
partitioning of the STEP program that can be deployed to physical
resources.
IV. A run-time virtualization environment for heterogeneous com-
puting and sensing resources. The Sensor eXecution Environment
(SXE) is a common runtime that provides sensing or computing el-
ements of the SN the ability to interpret and execute dynamically
assigned task execution plans. In part, the execution environment
hides irrelevant differences between various physical components
and exposes a unified virtualized interface to their unique capabili-
ties. The sensor execution environment also allows the resource to
be dynamically loaded new functionalities via the network.

In this paper, we provide a bird’s eye view – as well as some
details regarding initial implementations – of the various SNBENCH
components. We frame the components with motivating examples
in the domain of networked computer vision applications. Further
motivation and high level details may be found in [2].

SNAFU
com piler

SSD/
SRM

bound
STEP

bound
STEP

bound
STEP

SXE

SXE

.

.

.

.

.

.

com pilation linking dispatch

SNAFU
program

unbound
STEP
program

Figure 1. The SN program life-cycle as enabled by the
SNBENCHṘectangles represent data, circles represent
tasks/processes, and the dashed lines represent control com-
munication (i.e., dependency).

2. The SNAFU Programming Language
The current SNBENCH programming interface is a high-level,
network-oriented language called SNAFU (Sensor Network Ap-
plications as FUnctions). SNAFU is a strongly-typed programming
language designed to specify the interdependence of sensors, com-
putational resources, and persistent state that comprise a Sensorium
application.

SNAFU programs are written in a simple functional style; all
SNAFU program terms are expressions whose evaluation produces
values. Consider the following example SNAFU program which
inspects a single video frame, and returns the number of faces
detected in the frame.

facecount(snapshot(sensor("s02","cam0"))))

A novice user will specify a SNAFU program written for the
SN (not the individual nodes), and the infrastructure will transpar-
ently handle translation, resource allocation, and dissemination of
the program to involved nodes of the SN. SNAFU is provided as a
convenient and accessible interface to the Sensorium Task Execu-
tion Plan (STEP) language. In future iterations of STEP, we plan
for STEP and SNAFU to diverge to a greater extent, as we wish to
use the SNAFU interface as a restriction on the power of STEP 1.

SNAFU’s direct benefit lies in its type-checking engine and
STEP compiler. SNAFU programs are implicitly typed and dissal-
low explicit data-type annotation The type engine statically type

1 We have a forthcomming technical report that shows STEP is Turing
complete; hence we intend to use SNAFU to restrict the programmer from
the full potential (and pitfalls) of STEP.

checks SNAFU programs to identify typing errors and inserts per-
missible type promotions. SNAFU forbids explicit recursion (in-
cluding transitive cases) instead providing an iteration construct
that enables “simulated” recursion as described in the next section.
Cycle-safe iteration: SNAFU programs do not allow traditional
recursion, but instead provide iterative execution through the “trig-
ger” construct. A trigger indicates that an expression should be
evaluated more than once, given some predicate expression. The
repetition supported in SNAFU can be divided into two larger
classes: terminating and persistent.

A terminating trigger(x,y) will repeatedly evaluate x until it
is evaluated to be true, at which point y will be evaluated and the
value of y is returned as the value of the trigger expression. The
trigger will not execute x again after it has evaluated to be true (i.e.,
it will terminate).

Alternatively, persistent triggers continue to re-evaluate their
predicate “indefinitely”. We provide two persistent triggers; the
level trigger(x,y) will continually evaluate x and every time x

evaluates to true, y is re-evaluated. The “edge-trigger” construct
edge trigger(x,y) will continually evaluate x and when x transi-
tions to become true from false (or if it initially evaluates to true),
y is evaluated. The trigger’s value is initially NIL and is updated to
the value of y every time y is evaluated. The SNAFU trigger exam-
ple below runs “indefinitely”, repeatedly counting the number of
faces found at the specified sensor.

level_trigger(true,
facecount(snapshot(sensor("s02","cam0")))

)

In fact, persistent triggers typically live for a configuration-
specific period of time (e.g., one hour). To terminate a persistent
trigger based on some run-time predication, the programmer may
wrap the persistent trigger within a terminating trigger. Alterna-
tively a persistent trigger may be wrapped in a “flow type” function
allowing the programmer to specify a particular temporal persis-
tence policy.
Simulated recursion: For some tasks, the body of a persistent trig-
ger expression may need to make use of its own prior evaluations
(i.e., utilizing prior state, similar to tail recursion). SNAFU supports
this via the LAST TRIGGER EVAL token, which acts as a non-blocking
read of the closest enclosing parent trigger’s value.

Naturally the results of persistent triggers may be used by other
expressions as data sources for some other task. As the values
of persistent triggers are transient and the temporal needs of the
dependent expression may vary, we provide three different read

functions that allow the programmer to specify a synchronization
rule for the read of the trigger with respect to the trigger’s own
evaluation.2

Specifying a “non-blocking” read to a trigger requests the read
immediately return the result of the last completed evaluation of
the trigger’s target expression, blocking if and only if the target
expression has never completed an evaluation. A “blocking” read
waits until the currently ongoing evaluation of the target expression
completes, then returns that value. Finally a “fresh” read waits
for a complete re-evaluation of the trigger’s predicate and target
expressions before returning a value.
Let assignments: SNAFU provides the ability to bind a value to
a recurring symbol to either some persistent value (constant) or
commonly occurring sub expression (macro).

2 The value of a persistent trigger should always be read using one of these
primitives. A program term containing an expression that directly accesses
the value of a persistent trigger will be rejected by the SNAFU type engine.
Terminating triggers, on the other hand, have an implicit blocking semantic
and should not be wrapped by read primitives.

90

The letconst directive assigns a constant term or expression
to a symbol, such that the value of an expression is evaluated
only once (when first encountered). All further occurrences of the
symbol are assigned the computed value and will not be evaluated.
In the following example, the resolution of the sensor cam1 will
only be performed once, at the first instance of cam1 in Z All other
instances of cam1 in Z will refer to this same sensor. resolution
request.

letconst cam1 = sensor(ANY,IMAGE) in Z

Alternatively symbols may also be used as a shorthand to repre-
sent longer (sub)expressions, each instance of which is to be inde-
pendently evaluated (i.e., macros). The leteach binding, “leteach
x = y in z”, replaces every occurrence of x in z with an indepen-
dently evaluated instance of the expression y. Notice in the example
below every instance of cam2 in Z may refer to a different sensor.

leteach cam2 = sensor(ANY,IMAGE) in Z

Finally, SNAFU allows a symbol to be assigned within the
scope of a trigger such that the symbol obtains a new value once per
each evaluation of the trigger (i.e., once per iteration). The letonce

bindings, for use with trigger contexts, have the form “letonce x =

y in z” and allows the expression y to be evaluated for the symbol
x once per iteration of the containing trigger defined in z. Consider
the use of the letonce binding in the following program fragment
that continues from the previous example, the intent of which is
to take an image sample from each camera once per iteration and
then return the image sample that has the most faces in it in a given
iteration.

letonce x = snapshot(cam1) in
letonce y = snapshot(cam2) in

level_trigger(true,
if-then-else(greater(facecount(x),facecount(y)),x,y)

)

Run-time types: SNAFU allows program terms to be wrapped by
“flow type” functions. Flow types provide explicit constraints for
program deployment and/or execution in the Sensorium, providing
type information for the control flow as well as the data flow.
As examples, the programmer may require a particular periodicity
for a trigger term’s evaluation, or may wish to ensure that some
computations are only assigned to a trusted set of resources. Other
example flow types are given through-out the paper, however an
exhaustive account of the nature (and semantic) of these flow types
is beyond the scope of this paper. We refer the reader to our work
on using strong-typing for the compositional analysis of safety
properties of networking applications [3] for some insight as to how
flowtypes could be type checked for safety.
SNAFU Compilation: SNAFU has been designed to ensure that
the abstract syntax tree (AST) of a SNAFU program maps to a task
dependency diagram in the form of a directed acyclic graph (DAG)
with a single root.3 Nodes in the DAG represent values, sensors or
tasks while edges represent data communication/dependency be-
tween nodes. The graph is evaluated by lower nodes executing
(using their children as input) and producing values to their par-
ents such that values percolate up toward the root of the graph
from the leaves. The SNAFU compiler transforms the AST of the
SNAFU program into such a representation, which we call a “Sen-
sorium Task Execution Plan” or STEP. The terms and expressions
of SNAFU have analogous constructs (nodes) in STEP or clear en-
coding in the structure of the STEP graph. For example, the single-
evaluation letconst construct is a directive to link a single subtree

3 Although the SNAFU AST is a tree, the execution semantic of SNAFU is
actually a graph. Consider the letconst binding that allows a single node
to have multiple parents.

onto several parents, and the if-then-else function refers to the
placement of a conditional (cond) STEP node.

3. Sensorium Task Execution Plan (STEP)
A Sensorium Task Execution Plan (STEP) is a specification of a
Sensorium program in terms of its fundamental sensing, comput-
ing and communication requirements. A STEP is serialized as an
XML document that encodes the directed acyclic graph (DAG) of
the explicit task dependency (evaluation strategy) of a Sensorium
program. The STEP language is used to describe (1) whole pro-
grams written in the scope of the entire Sensorium (i.e., programs
compiled from SNAFU that are either largely or entirely agnostic
as to the specific resources on which their constituent operations
are hosted) and (2) (sub)programs to be executed by specific indi-
vidual sensor execution environments to achieve some larger pro-
grammatic task (i.e., to task the individual Sensorium resources in
support of (1)).

STEP is the preferred target language for the compilation of
SNAFU (and other future languages) and as such we refer to STEP
as the Sensorium “assembly language” (i.e., STEP is our ”lowest-
level” Sensorium programming language). That said, STEP is a
relatively high-level interpreted language. 4 We note that although
STEP is the preferred target language for SNAFU compilation,
for some constrained resources, running a STEP interpreter may
not be desirable. In such situations we rely on gateway nodes to
interpret STEP and relay requests on the nodes behalf. We use this
approach within our current Sensorium to integrate Berkley Motes
for temperature sensing. In a future generation of the SNBENCH we
may consider providing a SNAFU compiler that produces targets
more suitable for constrained devices (e.g. C99, Intel asm, etc).

Individual tasks within a STEP (i.e., nodes within the STEP
graph) may be “bound” to a particular SN resource (e.g., some sen-
sor sampling operation that must be performed at a specific loca-
tion) while others are “unbound” and thus free to be placed any-
where in the SN where requisite resources are available. In general,
SNAFU compilation results in the creation of an “unbound” STEP
– a STEP graph containing one or more “unbound” nodes.

Unbound STEPs are analogous to unlinked binaries insofar as
they can not be executed until required resources are resolved.
Unbound STEPs are posted to a Sensorium Service Dispatcher
(SSD), the entity responsible for allocating resources and dispatch-
ing STEP programs. Given the state of the available system re-
sources and the resources required by the nodes comprising this
graph, the SSD fragmenting the unbound STEP graph into several
smaller bound STEP subgraphs.

In the remainder of this section we describe the “classes” of
tasks (nodes) that are supported by the STEP programming lan-
guage and convery with broad strokes the runtime semantic they
convey. The reader should note a correlation between the node
classes presented in this section and the presentation of the SNAFU
semantic. Indeed, these constructs are a direct encoding of the func-
tionalities presented in that section.

We frame this discussion within the context of the example
STEP program given in Figure 2. This STEP program is the result
of compiling the following SNAFU snippet, which returns the
maximum number of faces detected/observed from any one of two
cameras mounted on s05(.sensorium.bu.edu).

max(facecount(snapshot(sensor("s05","cam1"))),
facecount(snapshot(sensor("s05","cam2"))))

4 Although STEP programs are technically human-readable, their lack of
type checking and XML representation (including attributes which the
user may have no interest or business assigning) make direct program
composition in the STEP language inadvisable at best.

91

<step id="202219@s00.sensorium.bu.edu">
<exp opcode="max" id="abcd">

<flowtype name="persist" value="Dec 25 23:59:59 EDT 2005" />
<exp opcode="facecount" id="bcde">

<exp opcode="snapshot" id="cdef"><value id="defg">
<sensor type="snbench/image" uri=

"http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/1"/>
</value></exp></exp>

<exp opcode="facecount" id="efgh">
<exp opcode="snapshot" id="fghi"><value id="ghij">

<sensor type="snbench/image" uri=
"http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/2"/>
</value></exp></exp>

</exp>
</step>

Figure 2. An unbound STEP program for computing the maximum number of faces detected from one of two cameras mounted on s05.

step node: The step node is the root node of a STEP and
contains the entire STEP program. The node has an id attribute that
is a globally uniquely identifier (GUID) generated by the SNAFU
compiler, uniquely identifying this program (and all nodes of this
program) from other programs. The immediate child of the step

node is the true root node of the program.
exp nodes: An exp (expression) node conveys a single comput-

ing, sensing, storage, or actuator function to be performed by some
Sensor eXecution Environment (SXE). An expression node has an
opcode attribute that identifies which function should be performed,
and the immediate children of the expression node are the argu-
ments to the function. Example opcodes include addition, string
concatenation, image capture, image manipulation, detecting mo-
tion, etc. Opcodes are core library’ operations distributed with the
SXE. If an SXE does not have the opcode required, the jar attribute
may specify a URL where a Java bytecode implementation of this
opcode can be found. Similarly, the source attribute may be used
to specify the location of the Java source code for this opcode.5

cond nodes: A cond (conditional) node has three children: an
expression that evaluates to a boolean value (i.e., a condition),
an expression that will be evaluated if the condition is true, and
an expression that will be evaluated if the condition is false. The
conditional node has an evaluation semantic that ensures the first
child (sub-tree) is evaluated first and, depending on the result, only
the second or the third child will be evaluated.

sensor nodes: A sensor node conveys a specific physical
sensor within the sensor network, and is used to provide the sensor
as an argument to some expression node. In the example given (Fig.
2), the two snapshot expression nodes each have a sensor node as a
child to specify on which particular image sensor they will operate.
Sensor nodes may have a uri attribute to indicate where the sensor
can be found and will have a type attribute to indicate the type
of input device that this node provides (e.g., image, video, audio,
temperature, etc). Sensor nodes only appear as leaves in a STEP
graph. A sensor node requires additional processing on the SSD to
resolve and reserve a “wildcard” sensors (i.e., when the uri of the
sensor is omitted).

trigger, edge trigger, and level trigger nodes: All
trigger nodes specify that their descendants are subject to itera-
tion as indicated by the corresponding trigger construct (explained
in Section 2). Trigger nodes have two children: the predicate and
the body. A trigger may also have zero or more flowtype nodes
to convey the runtime/deployment QoS constraints of this trigger.
Related to trigger functions, read nodes may appear as the parent
of a trigger node to explicitly request specific temporal access

5 The dynamic migration of opcode implementations raises clear secu-
rity/trust concerns. We expect the SXE owner will maintain a white-list of
trusted hosts from which opcodes can be safely retrieved.

to the values produced by that trigger. The read node’s opcode at-
tribute determines whether the trigger will be read via a “blocking”,
“non-blocking”, or “fresh” semantic (also described in Section 2).

flowtype nodes: The flowtype nodes are used to encode
run-time security, performance, and persistence constraints. These
nodes appear as children of the nodes that they constrain.

socket nodes: socket nodes may be inserted into unbound
STEP DAGs by the SSD during the binding (scheduling) process
to allow distribution of a program’s evaluation across SXEs. The
socket node connects the computation graph from one SXE to an-
other SXE across the network. A socket node has a role attribute
which is set to either sender or receiver. A sender node takes the
value passed up by a child node and sends it across the network
to another SXE specified by the node’s peeruri attribute. Assum-
ing the peer SXE is hosting a corresponding receiver node, that
receiver node sends this value along to its parent node allowing a
STEP “edge” to span SXEs. A protocol attribute specifices which
specific communication protocol should be used for data transfer
(e.g., HTTP/1.1 pull, HTTP/1.1 push).

splice nodes: A splice node is used as a pointer to another
node, allowing the encoding of graphs within the tree-centric XML.
The splice node indicates that the parent of the splice node should
have an edge that is connected to the “target” of the splice node (the
splice node has a target attribute specifies an id of another existing
node). The splice node only exists when a STEP is serialized as
XML, when deserialized, the edge is connected to the target node.
Splice nodes may occur within a compiled STEP graph if some
node/subgraph has multiple parents (e.g., the “let” binding provided
in SNAFU) or a splice may occur as a result of computational reuse
allowing one STEP program to be grafted on to another. Splice
nodes allow the SSD to reuse components of previously deployed
STEP graph within newly deployed STEP graphs by replacing a
common sub-graphs in the new STEP program with a splice node.

const nodes: The const node class is use to block the propa-
gation of “clear” events during evaluation, in effect preventing the
re-evaluation of its descendants (e.g., to support a letonce binding).
A const node will have exactly one child, namely the subgraph that
we wish to limit to a single evaluation.

4. The Sensorium Service Dispatcher (SSD)
The Sensorium Service Dispatcher (SSD) is the administrative au-
thority of and single interface to each “local-area” Sensorium. The
SSD is responsible for allocating available concrete Sensorium re-
sources to process STEP (sub)programs (i.e., scheduling) and dis-
patching STEP (sub)programs to those resources. Each SSD is
tightly coupled with a Sensorium Resource Manager (SRM) that
maintains the state and availability of the resources within the Sen-
sorium.

92

The current SSD/SRM implementation is Java based and uti-
lizes HTTP as its primary communication model; an HTTP server
provides an interface to managed resources and end users alike.
Communications are XML formatted and, for end users, responses
are transformed into viewable interactive web page by XSLT. The
HTTP namespace is leveraged to provide a natural interface to the
hierarchal data and functionality offered by the SSD.

The SSD/SRM has two primary directives: Resource Manage-
ment and STEP Scheduling and Dispatch. Both are described be-
low.

4.1 Resource Management

The Sensorium Resource Manager monitors the state of the re-
sources of its local Sensorium and reports changes to the SSD. Each
computing or sensing component in the managed domain that hosts
an SXE sends a heartbeat to its SRM, the result of which is used
to populate a directory (hashtable) of all known SXEs and their
attached sensoring resources. The heartbeat includes the SXE’s up-
time, sensing capabilities, and a scaled score indicating available
computing capacity. Should an SXE miss a configurable number
of heartbeats, or the SXE report an unexpected computing capacity
change without notification of a “STEP complete” the SRM as-
sumes the SXE has failed or restarted and informs the SSD of the
change. The SRM’s knowledge of the state of the managed Senso-
rium is essential to the SSD’s correct operation in deploying and
maintaining STEP programs.

When an SXE leaves the Sensorium (e.g., SXE shutdown, re-
boot, or graceful exit) there may be impact to one or more running
STEP programs as multiple STEP applications may be dependent
on a single STEP node or resource. When the SRM detects that
an SXE has left the Sensorium, the SSD will treat all STEP tasks
deployed on that SXE resource as a new STEP program submis-
sion and try to reassign it (in part or in whole) to other available
resources.6 Updated socket nodes are sent to redirect those SXEs
hosting sockets connected to the exitting SXE.7 If no sufficient re-
sources can be found to consume the STEP nodes that had been
hosted by the old resource, we must traverse the dependency graph
and remove all impacted STEP nodes (i.e., programs).

4.2 Scheduling and Dispatch of STEP Programs

The SSD maintains a master, non-executable STEP graph consist-
ing of all STEP programs currently being executed by the local
Sensorium. Each STEP node in this graph is tagged with the GUID
of the SXE on which that STEP node is deployed, such that this
master STEP graph indicates what tasks are deployed in the local
Sensorium and on to what resources.

When a STEP program is submitted to the SSD, the SSD must
locate available resources for the newly submitted STEP graph,
fragmenting the newly submitted STEP into several smaller STEPs
that can be accommodated by available resources. We approach this
task as a series of modules that process the unbound STEP program
(figure 3). We present our approach for each of these modules, yet
emphasize the benefit of this modular approach is that any module
may be replaced with a different or improved algorithm to achieve
the same goal.

Code Reuse: In this generation of the SNBENCH we assume
that the reuse of computation is paramount. When a new STEP
graph is posted, the SSD first tries to ensure that the scheduling of
unbound expression nodes does not result in unnecessary instances

6 STEP nodes that are submitted to the SSD pre-bound to some specific
resource can not be migrated to another SXE and therefore must be termi-
nated
7 Synchronization issues abound when this occurs so a “reset” is sent to all
nodes involved to restart communication in this event

STEP
task
reuse

resource
locator

STEP
graph

partitioner

dispatch
to

SXEs

optimizer linker/scheduler dispatcher

Figure 3. The SSD Scheduling and Dispatch process for STEP
submission. Circles represent modules, while downward arrows in-
dicate these modules may reject a STEP program due to insufficient
resources.

of new tasks. Unfortunately checking for all instances of “func-
tionally equivalent” tasks in a language as expressive as STEP is
NP-hard.

Indeed, as many sensing functionalities will be dependent on the
use of fresh data, our current code reuse algorithm is intentionally
conservative to avoid the reuse of stale data. Unless explicitly
specified with flowtypes, the SSD will only reuse nodes that are
“temporally compatible”. 8 Thus all new nodes that match already
deployed nodes are replaced with splices (i.e., pointers) to the
previously dispatched nodes.9 Regardless of how the code-reuse
module is implemented, after it is complete the “new” computation
cost of the submitted STEP graph should be reduced.

Admission Control: The SSD must deny admission if any
bound STEP node refers an unavailable resource or if the remain-
ing resource cost exceeds total available resources. The SSD first
iterates over all bound nodes of the STEP graph to ensure that re-
quested SXEs are known by the SRM and have available comput-
ing resources to consume these computations (including available
sensors where sensors are prerequisites for a computation). Once
complete, the SSD ensures that the total free resources in the Sen-
sorium are sufficient to accommodate the total cost of the remaining
unbound nodes.

Graph Partitioning: The SSD must bind all unbound nodes in
the STEP graph to specific resources, a task analogous to a graph
partitioning where each partition represents deployment on some
SXE (i.e., physical resource) the the goal of minimizing the total
cost of edges between partitions (i.e., minimize induced commu-
nication cost between SXEs). Fortunately, the computations repre-
sented at each node have associated datatypes and that type infor-
mation yields a bound on the “cost” of each edge. For example, if a
STEP node returns an Image, the communication cost of spanning
this edge across two different physical resources (i.e., adding this
edge to the cut) will be greater than cutting and edge of a node that
produces an Integer value (figure 5).

Our initial graph partitioning algorithm makes only a nominal
attempt to reduce communication cost. The procedure tries to as-
sign the entire unbound region of the graph to any single available
resource. Failing that, the unbound region of the graph is split into
smaller subgraphs and we recurse, trying to find a resource large
enough to consume the “whole” parts.

Our next generation partitioning algorithm uses a relaxed form
of spreading metrics [4] to produce partitions. A spreading metric
defines a geometric embedding of a graph where a length is as-
signed to every edge in the graph such that nodes connected via
inexpensive edges are mapped to be geometrically close, while

8 At present, temporal compatibility is ensured by reusing only identical,
trigger- rooted subexpressions in the local Sensorium (giving us a tractable
problem).
9 There are certainly instances in which such blind bias toward computa-
tional reuse will result in a communication penalty that outweighs the ben-
efit of code reuse, however have not accounted for this in our current SSD
iteration.

93

<step id="202219@s00.sensorium.bu.edu">
<exp opcode="max" id="abcd" bindto="http://c02.sensorium.bu.edu:8080">

<flowtype name="persist" value="Dec 25 23:59:59 EDT 2005" />
<exp opcode="facecount" id="bcde" bindto="http://c02.sensorium.bu.edu:8080">

<socket id="face1:in" protocol="POST" role="receiver" peerid="face1:out"
peeruri="http://s05.sensorium.bu.edu:8080/snbench/sxe/node/face1:out/"/></exp>

<exp opcode="facecount" id="efgh" bindto="http://c02.sensorium.bu.edu:8080">
<socket id="face2:in" protocol="POST" role="receiver" peerid="face1:out"
peeruri="http://s05.sensorium.bu.edu:8080/snbench/sxe/node/face2:out/"/></exp></exp>

</step>

<step id="200507230943:a">
<socket id="face1:out" protocol="POST" role="sender" peerid="face1:in"
peeruri="http://c02.sensorium.bu.edu:8080/snbench/sxe/node/face1:in/">

<exp opcode="snapshot" id="cdef"><value id="defg">
<sensor type="snbench/image" uri=
"http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/1"/></value></exp>

</socket>
</step>

<step id="200507230943:b">
<socket id="face2:out" protocol="POST" role="sender" peerid="face2:in"
peeruri="http://c02.sensorium.bu.edu:8080/snbench/sxe/node/face2:in/">

<exp opcode="snapshot" id="fghi"><value id="ghij">
<sensor type="snbench/image" uri=
"http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/2"/></value></exp>\\

</socket>
</step>

Figure 4. Our previous STEP program for computing the maximum number of faces detected from either of two cameras mounted on s05.
In this instance, the SSD has split the STEP graph into three STEP subgraphs for deployment on two separate SXEs, c02 and s05.

d

f

a

e

b

c

1

1

3

1
2

d

f

a

e

b c

boolean

image

image

imagestring

Figure 5. Generating colored partitions in a STEP graph. Coloring nodes is analogous to assigning a task to a particular SXE. Uncolored
nodes should be colored to minimize communication between SXEs (colors) – there is no communication cost when adjacent nodes are the
same color.

nodes across expensive edges are physically “spread apart” from
each other.

The optimization detailed in [4] relies on a linear program to
assign lengths to edges. Instead, we will use a “quick-and-dirty”
approximation of the spreading metric, in which weights and dis-
tances for edges are derived entirely from the type information of
the nodes (figure 5). Although this approximation will not yield
partitions with the same bounds on minimizing the cut, our ap-
proach is favorable in running time and we can compute, off-line,
the the minimum cut of the spreading metric to use as benchmark
for comparison against our approximation algorithm. Again we
point out that any graph partitioning solution may replace our ex-
isting partitioning logic, and are investigating some “off the shelf”
solutions.

Dispatch: Once all STEP nodes are annotated with bindings the
SSD must generate the STEP sub-graphs to dispatch to each indi-
vidual resource. During this phase the SSD inserts socket nodes to
maintain the data flow of the original STEP graph after the parti-
tioning. As each SXE receives only a part of the larger computation

(and sockets to SXEs with which it shares an edge) each is unaware
of the larger task it helps to achieve.

To dispatch the STEP sub-graphs, the SSD performs an HTTP
post of the STEP to the SXE’s web server. If all SXEs respond to
the dispatch with success, the SSD’s dispatch is complete and the
STEP program is live. If not, all partial STEPs of the larger STEP
that had been posted to SXEs before this failed partial STEP are
deleted from those SXEs and the user must resubmit.10

5. Sensorium Execution Environments (SXEs)
The Sensor eXecution Environment (SXE) is a runtime execution
environment that provides its clients remote access to a partici-

10 We do not attempt to re-optimize the Sensorium’s global STEP graph
(i.e., all computations on the current Sensorium) when a new STEP is
submitted. It is possible that a better, globally optimal assignment may
exist by reassigning nodes across the global STEP graph however we expect
the computational cost will far outweigh the benefit. At present, we don’t
intend to move computations once they have been initially assigned unless
absolutely necessary (e.g., in the event of resource failures).

94

pating host’s processing and sensing resources. An SXE receives
XML formatted Sensor Typed Execution Plans (STEPs) and the
SXE schedules and executes the tasks described. Indeed an SXE is
a virtual machine (figure. 6) providing multiple users remote access
to virtualized resources including sensing, processing, storage, and
actuators via the STEP program abstraction.

The SXE communicates its capabilities and instantaneous
resource availability to its local Sensorium Resource Manager
(SRM), allowing the Sensorium Service Dispatcher (SSD) to best
utilize the each SXE. Each SXE maintains a local STEP graph con-
taining a composite of all the STEP graphs (and subgraphs) tasked
to this node by the SSD. In this section we describe the essen-
tial functionalities of the SXE and our current implementation of
these functionalities. As is the case with the SSD, the SXE is also
implemented with extensibility as a chief goal. We describe the
SXE in terms of its necessary actions in support of the larger Sen-
sorium via the STEP interface: STEP Program Admission, STEP
Program Interpretation, STEP Node Evaluation and STEP Program
Removal.

cpu

Sensor eXecution Environment

sensors

STEP

STEP
fragment

STEP

Host OS

CPU video
camera NICmemory

opcodes sockets

STEP

Figure 6. The SXE abstracts the devices provided by the OS,
allowing clients to task these devices through the Sensorium Task
Execution Plan (STEP) abstraction.

Implementation Overview: Our current implementation of the
SXE uses Java technologies, in particular Java 1.5 for the run-
time, Java Media Framework for sensor interaction, and Java based
NanoHTTPD for HTTP communications. The use of the Java pro-
vides natural programming benefits of a strongly-typed language
with exception handling. Java provides straightforward mecha-
nisms for runtime loading of dynamic functionality over the net-
work (via jar files or dynamically compiled source code). In addi-
tion, Java provides the protection benefits of its sand-boxed runtime
environments and a virtual machine profiling API. The GCJ suite
allows us to compile Java programs into native byte-code if perfor-
mance is an issue.

To provide access to the sensing resources of an SXE, all
physical sensors are abstracted as generic sensors (data sources)
with specific functionalities implemented via classes on top of the
generic sensor (e.g., ImageSensor, AudioSensor, etc.).

The size the jar file for the execution environment (SXE) con-
taining all basic functionality including execution plan interpreta-
tion, evaluation, web server and client is about 200k uncompressed.

We expect the SXE to it to be deployed on low-end desktop ma-
chines (Pentium Pro) and have not attempted to port to micro-
devices at present. Instead, we have implemented opcodes that act
as gateways to communicate with restricted devices. When the par-
ticipating SXE host also provides video sensing functionality, the
system requirements are increased by those of the JMF.

The SXE’s primary mode of communication is via HTTP, acting
as both a server and client, as appropriate. The SSD communicates
with constituent SXEs via their HTTP interfaces and each SXE
utilizes an HTTP client to communicate with the SSD, SRM, and
other SXEs. Each SXE may also utilize other communication pro-
tocols to communicate with non-standard SXEs or non-SXE Sen-
sorium participants (e.g., motes, IP video cameras, etc). Data trans-
fer between SNBENCH components is almost exclusively XML for-
matted, including Base64/MIME encoding of binary data. The SXE
sends an XML structured hearbeat to the the SRM via an HTTP
post from the SXE to the SSD. STEP graphs are uploaded to an
SXE via HTTP POST of an XML object.
Sensorium Task Execution Plan (STEP) Admission: When a
new STEP graph is posted to an SXE via the SSD, the new tasks
to be executed may be independent of or dependent on previously
deployed tasks. Within a newly posted STEP graph, the SSD may
embed “splice nodes” in the new STEP graph specifying edges that
are to be spliced onto previously deployed STEP nodes (i.e., for
task reuse) or nodes that should replace previously deployed STEP
nodes with new nodes (task replacement).

1. Task Reuse: A newly posted STEP graph may contain one
ore more “splice” nodes with target ids that point to previously
deployed STEP nodes, indicating some new computations will
reuse the results computed by existing tasks. Although the splice
is specified by the SSD through its seemingly omniscient view of
the local Sensorium, each SXE maintains local scheduling control
to avoid race/starvation issues.11

2. Task Replacement: If a new STEP graph includes non-splice
STEP nodes with the same (unique) IDs as nodes already deployed,
this indicates these new nodes should replace the existing nodes of
the same ID. The replacement operation may result in either re-
moval or preservation of children (dependencies) of the original
node, while parent nodes are unaffected (although those may mod-
ified through iterative replacement)12.
STEP Interpretation: Recall a STEP is a directed acyclic graph
in which data propagates up, through the edges from the leaves to-
ward the root. Tasks appearing higher in the STEP graph are not
be able to be executed until their children have been evaluated (i.e.,
their arguments are available). Likewise, the need for a node to be
executed is sent down from a root (parents need their children be-
fore they can execute however once executed they don’t necessarily
need to be executed again).

The SXE’s local STEP graph may have several roots, as its
graph may be the confluence of several independent STEP subpro-
grams, however there is not necessarily a one-to-one mapping be-
tween the number of STEP graphs posted and the number of roots
in the local STEP graph.

Each STEP node may be in one of four possible states: ready,
running, evaluated, and blocked (figure 5, left). The SXE’s role
in interpreting a STEP program consists of (1) maintaining and
updating the control flow of a STEP graph, advancing them through

11 It may also be interesting to consider admission-control algorithms for
determining when a new partial STEP DAG is eligible for splicing onto an
existing STEP DAG. At present, the SXE takes a “the customer (SSD) is
always right” policy toward admission control.
12 Notice that such node replacements may cause synchronization difficul-
ties when replacements involve nodes that communicate across multiple
SXEs. In general, we limit our use of replacement to redirect communica-
tion nodes to a replacement SXE when another SXE has left the Sensorium.

95

their state transitions (described in this section) and (2) the actual
execution of STEP nodes that are in the ”running” state to enable
the data flow of a STEP graph (described in the next section).

The SXE interprets its current STEP nodes by continually iterat-
ing over all nodes and checking if they are “ready” to be evaluated.
A generic node is determined to be ready to be evaluated if it (1)
is wanted by a parent node, (2) has fresh input from all immediate
children and (3) has not been already executed already (this can be
reset by a parent node to enable a node to run more than once as in
the case of a node with a parent trigger).

Within our present implementation, all nodes are iterated over
in a round-robin fashion to determine if they are “ready”. When
non-expression nodes are ready they are evaluated immediately
while expression nodes are placed in a separately serviced FIFO
run-queue. This approach to evaluating STEP nodes is not unique.
Indeed, the selection of which nodes to consider next amounts to
a scheduling decision which may be constrained by QoS require-
ments, or other considerations (e.g., frame rates, etc). In fact any
scheduling algorithm may be swapped in to service the run queue
without adverse effect on graph evaluation or the data flow (figure
5, right).

A ready node is evaluated by the evaluation function for its
node class. When no STEP nodes are ready, the iterator sleeps
until a new STEP graph is admitted or some other event (e.g.,
clock, network, shutdown etc) wakes the iterator. Once a node has
been evaluated it produces a value that is pushed up the graph
(possibly enabling parent nodes who are waiting for fresh input
from their children). For some node classes, the ready function may
be overridden to accommodate a non-standard execution semantic.
Persistent triggers, for example, are always wanted if they are
orphans, however if a trigger has a parent node this node is only
wanted if its parent in turn wants it. We call the reader’s attention
to the subtle detail that, although persistent triggers should run
indefinitely, they must not run asynchronously from a parent lest
nested triggers would easily result in synchronization issues and
race conditions.13

STEP Node Evaluation: Each STEP node class specifies its own
evaluation function. The evaluation function of most node types
maintains the runtime semantic of the STEP graph by updating
any needed internal (including the execution state flag) and passing
up values received from children. The exception to this trivial
evaluation model is the evaluation of STEP expression (exp) nodes.
In all cases, the expectation is that the evaluation function for the
node will produce a value to its parents.

The evaluation of trigger nodes requires updating the trigger’s
internal state, ensuring that first the predicate is evaluated and that
the post condition will be evaluated (and re-evaluated) as per the
trigger type and result of the predicate. Similarly evaluation of a
conditional (cond) node maintains state and determines whether the
second or third branch should be evaluated and returned depending
on the evaluation of the first branch. A socket node’s evaluation
sends or receives data along the socket, a value merely passes a
serialized value up the tree and similarly sensor nodes are like
value nodes in that they merely act as an argument to the immediate
parent (exp node).

The evaluation of an expression exp node may take some time
and as such the evaluation function for an expression node merely
schedules the later execution of the expression node by a separate
scheduler and execution thread (exp node evaluation should not
block the entire resource). Expression nodes are tasks, analogous

13 We are considering a flowtype synchronization annotation that would
allow a persistent trigger to run ”independently” of its parent node as in
some cases where the called function may not be able to keep up with the
rate at which data is being generated yet a greater sampling rate is desirable
(e.g., triggers shared by two different programs running at different rates).

to the opcodes of the STEP programming language. These nodes
are calls to fundamental operations supported by the SXEs (e.g.,
addition, string concatenation, image manipulation, etc), yet the
opcode implementations themselves may be dynamically migrated
to the SXE at runtime as needed.

The SXE is distributed with a core library of basic “op-
codes” implemented in the Java programming language known as
sxe.core. For example, there is a class /sxe/core/math/add.java
corresponding to the opcode “sxe.core.math.add” as there is for
each opcode known to the SXE. We implement a custom Java
ClassLoader to support the dynamic loading of new opcodes from
trusted remote sources (i.e.JAR files over HTTP)14.

Internally, all opcode methods manipulate snObjects, a first-
class Java representation of various STEP datatypes. The snObject
itself is a helper class that provides common methods that allow
data to be easily serialized as XML for transmission between SXEs
and for viewing results via a standard web browser (using standard
mime- type appropriate content). Similarly, snObjects implement a
method to parse an object from its XML representation. Specific
snObjects exist including snInteger, snString, snImage, snBoolean,
snCommand, etc. Opcode implementations are responsible for ac-
cepting snObjects, and returning snObjects such that the result may
be passed further up the STEP graph. A sample example opcode is
given below for illustrative purposes.

/* The addition Opcode */
snObject Call(snObjectArgList argv)
throws CastFailure, InvalidArgumentCount {
return (snInteger)

(argv.popInt() + argv.popInt());
}

While the implementation of an opcode handler must be in Java,
within the body of the opcode, computations are not limited to
Java calls (e.g. communication with remote hosts, execution of C++
code via the Java Native Interface, generation and transmission of
machine code to a remote host, etc).
STEP Program/Node Removal: The removal of STEP nodes from
the SXE may occur due to local or external events. When the
evaluation of a STEP graph completes (either successfully or in
error) the SXE reports the completion event with the STEP program
ID to the SSD. The SXE may mark the local nodes for deletion
if no other programs depend on these nodes (i.e., If any ancestor
node attached to these nodes has a different program ID than that
of this program the SXE knows other programs are dependent
on this computation). Externally requested node removal may be
signalled by the SSD (for operational reasons or by request of an
end user). Removal may be specified at the granularity of single
nodes, however removal of a node signals removal of any parent
nodes (dependent tasks) including those from different programs
(assuming the SSD knows best).

In either case, the SXE does not immediately delete the nodes
from its URI namespace, rather deletion is a two-phase operation,
consisting of garbage marking followed by a later physical deletion.
The garbage marking algorithm is a straightforward postfix DAG
ascent, while the cleanup algorithm simply iterates over all nodes,
removing those which have expired.

6. Putting it all together
We now illustrate the usage of SNBENCH by following a sample
sensing application through-out its lifecycle. We assume that a
Sensorium has been deployed, with SSD/SRM located at

14 We imagine that applets could be used to allow opcodes from untrusted
remote sources, and new instances of VMs created to ensure complete
protection from this untrusted code.

96

run-queue
/

evaluator

ready

blocked

evaluated

signal wait_for_children

scheduled

donewanted

running

blocked wait_
for_children

signal_
from_children

scheduled

wanted done

new

new
ready

evaluated

Figure 7. The SXE’s STEP node evaluation state transition diagram. During evaluation, STEP expression nodes move between three buffers
on the SXE

ssd(.sensorium.bu.edu) and with several participant SXEs. In
particular, an SXE deployed on lab-east(.sensorium.bu.edu) is
on-line and with an attached video sensor. lab-east advertises its
computational and sensing resources via periodic heartbeats to ssd.

An end-user, Joe, would like to see the names and faces of
people in that lab. Perhaps Joe doesn’t know everyone’s name yet,
such that an image of the people currently in the lab, with the faces
of people detected superimposed on the image would be useful
to our user. As opcodes that support these functionalities (e.g.,
grabbing frames, finding faces, etc) are available to the SXEs, this
program is easily composed in SNAFU.15 The SNAFU program to
accomplish this goal would read:

letconst x =
snapshot(sensor("lab-east","cam0")) in
imgdraw(x,identify_faces(x))

The SNAFU compiler generates an unbound STEP graph,
stored as XML. A shorthand of the STEP XML graph is shown
below (some attributes have been removed for clarity). Notice the
usage of the let binding in the SNAFU program results in the sec-
ond instance of “x” in the STEP program being stored as a splice
onto the same node.

<step id="joes-program">
<exp opcode="imgdraw" id="root1">
<exp opcode="snapshot" id="snap">

<sensor uri=
"http://lab-east/sxe/sensor/image/0"/>

</exp>
<exp opcode="identify_faces">

<splice target="snap"/>
</exp>

</exp>
</step>

To submit the STEP program to the infrastructure, Joe will
launch a web browser and navigate to the SSD that administers the
Sensorium deployed in the lab16 in this case:
http://ssd.sensorium.bu.edu:8081/snbench/ssd/. An XSLT
rendered HTML interface is presented by the SSD, one option
of which allows Joe to upload the STEP program (XML file) to the
SSD through a standard web-based POST interface.

15 Recall the SXE is extensible such that if the functionality Joe wishes to
accomplish on an SXE is not defined in the SXE core opcode library, Joe
may develop his own opcode implementations in Java and make the jar
file available via webserver. Such opcodes are accessible within SNAFU
using a stub function new opcode(“ uri”,args), however the usage cannot
be typechecked so we warn against general usage of this feature by anyone
other than opcode developers during testing.
16 We plan to implement a DNS-style “root” SSD that will allow users
looking to dispatch a STEP program to a particular resource to locate the
SSD that administers that SXE (i.e., SXE resolution that returns the location
where programs for that node should be submitted).

The SSD then parses the posted STEP graph looking for
reusable STEP components (i.e., nodes). Assuming no STEP pro-
grams are deployed elsewhere in the Sensorium, the SSD proceeds
to try and satisfy pre-bound computations. In our example, the
sensor node is “bound” to lab-east.sensorium.bu.edu and the
SSD’s scheduler requires that any opcode immediately dependant
on a sensor node should be dispatched to that same resource as the
sensor. In practice, this is a reasonable restriction, as it ensures that
the SXE hosting the sensing device will be responsible for getting
data from the sensor. This will not create a bottleneck as additional
STEP programs needing data from this sensor will share the need
for the same opcode and reuse will occur attaching new compu-
tations to that opcode. In our example, the snapshot opcode will
be bound to lab-east and the identify faces and imgdraw opcodes
are free to be scheduled to any available SXE resource (potentially
including lab-east).

To make things more intresting we assume lab-east is only
able to accommodate the snapshot opcode, so the STEP graph must
be split across multiple SXEs. Fortunately, another SXE host on
c02 has available resources for both the identify faces and imgdraw
opcodes. Notice that if we were to split across three SXEs for these
computations the Sensorium would pay the communication penalty
for transferring the image twice (despite the splice). In this case we
only transfer the image once and the socket is reused as a splice
target. This is illustrated in the short- hand STEP sub graphs given
below:

lab-east.sensorium.bu.edu:
<step id="joes-program:a">
<socket role="sender" id="a" peer="b">

<exp opcode="snapshot">
<sensor>0</sensor>

</exp>
</socket>

</step>

c02.sensorium.bu.edu:
<step id="joes-program:b">
<exp opcode="imgdraw" id="root1">

<socket role="receiver" id="b" peer="a">
<exp opcode="identify_faces">

<splice target="b"/>
</exp>

</socket>
</exp>

</step>

The SSD dispatches each STEP sub graph to the appropriate
SXE (via HTTP/1.1 POST). If the POST at either SXE fails (e.g.,
the SXE does not respond, fails to accept the STEP, etc), the SSD
deletes the graph posted at the other SXE by sending a DELETE of
the STEP graph’s program ID. If both SXEs respond with success
codes (200 OK), the SSD and SRM commit their changes and are
updated to maintain this new program. The SSD presents Joe with
a web page containing a successful POST result and an HTTP link

97

to the SXE node where he may (eventually) find the result of the
computation:
http://c02.sensorium.bu.edu/snbench/sxe/node/root1. Op-
tionally, as a security measure, the SSD may be used as a relay to
prevent end users from directly connecting to SXEs. Joe may now
navigate to that link or other presented links to node in the original
STEP program tree and will see the current value or runtime state
of each of the STEP sub computations.

As soon as the SXE has accepted the posted STEP program, its
own web namespace will be updated to include the posted nodes
and their current execution state and values. The SXE on lab-east

has the lower part of the STEP graph (and no external dependency)
such that it can immediately start executing its portion of the STEP
graph. When the socket node is encountered, lab-east tries to
contact c02 and in doing so, provides c02 with the data it needs
to begin its execution. When c02 computes a result for the orphan
node “root1” it will contact the SSD informing it that the program
”joes-program” is complete.

As a single-run (non-trigger) program, the STEP evaluators on
each SXE will only run the computation nodes through once and
after a configurable amount of time both the nodes and the result
are expunged from the SXEs.

7. Related Work
We restrict the focus of our discussion of related work to only those
efforts focused on the development of programming paradigms for
the composition of services for a general purpose sensor network,
as opposed to efforts focusing on application development frame-
works for a particular class of SNs, or for a special-purpose archi-
tecture (e.g., motes) [5, 6].

TAG [7] and Cougar [8] are examples of works wherein the
SN is abstracted as a distributed data acquisition/storage infrastruc-
ture (i.e., “SN as a database” [9]). These solutions are limited to
query style programs and thus lacking extensibility and arbitrary
programmability.

Regiment [10] provides a Macroprogramming functional lan-
guage for SNs that is compiled to a Distributed Token Machines
(DTMs) model [11] (DTMs are akin to Active Messages [12]). Al-
though Regiment abstracts away many of the low-level manage-
ment concerns of the mote platform, the DTM work is a highly-
customized solution aimed at the particular constraints of motes
[1] in which multitasking and sharing resources is not a concern.

MagnetOS [13] provides greater flexibility with respect to the
programs that can be deployed, virtualizing the resources of the
SN to a single Java virtual machine (JVM). While this approach
supports extensible dynamic programming, it lacks the ability to
share SN system resources across autonomous applications. One
may also argue that a JVM is not the best abstraction for a SN.

The work of [14] most closely resembles our vision and ap-
proach toward a shared, multitasking, high powered sensor net-
work. Microsoft’s SONGs approach differs from ours insofar as
(1) their semantic macroprogramming approach does not lend itself
toward provisioning arbitrary computation and (2) reuse of compu-
tation is seemingly not on their radar.

The network virtualization of [15] must be mentioned as they
face graph embedding challenges for their resource resolution
goals. Their goal of network emulation on dedicated hardware
is significantly different enough from our goal of a unified sen-
sor network that it should be no surprise that our solution is more
lightweight and requires less hardware infrastructure (i.e., we do
not require a dedicated system with the transfer of entire system
images); We also plan to pursue the potential benefits of simulated
annealing for our graph embedding challenges.

8. Conclusion and On-Going Research
SNBENCH provides a foundation for research that occurs both on-
top of and within the SNBENCH platform. Users of the SNBENCH
framework may develop distributed sensing applications that run on
the provided infrastructure. Researchers developing new sensing or
distributed computation methodologies (e.g., the development of
distributed vision algorithms, distributed hast tables, etc) may take
for granted the communication, scheduling, and dispatch services
provided by the SNBENCH freeing them to spend their energy in-
vestigating their area of interest and expertise. These modules can
be provided as opcode implementations and plugged into the archi-
tecture with ease. Instead, in this section, we focus on the the re-
search taking place within the components of the SNBENCH itself;
that is, the development and research that extends the SNBENCH to
improve Sensorium functionalities and meet the unique challenges
of this environment.
RunTime Type Specifications: As data-type annotations convey
the requirements and safety of a data flow, our notion of flowtypes
extends type checking and safety to the control flow. Our work on
flow types proceeds in two simultaneous directions (1) the analysis
and generation of a palette of useful deployment and run-time
constraints/types and (2) the use of the TRAFFIC [3] engine to
check and enforce control flow sanity and safety.
Run-Time Support for Flow-Types: To support flowtypes, the
SXEs must be modified to accommodate such scheduling param-
eters, including a monitoring infrastructure that ensures tasks are
receiving the performance they have requested advertising an “ac-
curate” real-time resource availability. Work is proceeding on the
development of a hierarchical scheduler within the SXE, allowing
STEP programs and even individual nodes to specify the schedul-
ing model they require.
Performance Profiling/Benchmarking: Our present performance
monitoring uses stub code to represent the free computational re-
sources an SXE has and the computational cost of each opcode.
It is clear that an accurate characterization of the computational
availability of resources and each opcodes computational require-
ments will be needed to enable the SSD to accurately allocate re-
sources and dispatch programs. We envision a solution in which
SXEs generate simple performance statistics about each opcode
as it is run, and these statistics are reported to the local SRM to
build opcode performance profiles. Such an approach allows new
opcodes to be developed with their profiles dynamically built and
probabilistically refined.
Expressive Naming and Name Resolution: At present we sup-
port naming of sensors via URI, relative to the physical SXE (host)
that the sensor is connected to, or the use of wildcards to specify
“any” sensor of a given type. The use of URIs requires the Resource
Manager to maintain knowledge of all sensors connected to each
host and perform some priority computation to resolve resources to
compute and reserve physical sensor resources. Assuming sensor
resolution processing, we wish to generalize this sensor resolution
further with more powerful functions to support naming by iden-
tity (e.g. “The webcam in Azer’s Office”), naming by property (e.g.
“Any two cameras aimed at Michael’s chair by 90 degrees apart”),
naming by performance characteristics (e.g. “Any processing el-
ement within 2msec from WebCam1 and WebCam2”), and nam-
ing by content (e.g. “Any webcam which sees Assaf right now”).
Such naming conventions will require persistent, prioritized STEP
queries to be running as the basis for these results, however it is
unknown which such persistent queries should be instantiated, the
resource cost of allocating sensors for these tasks, and how we can
express these tasks as more commonly used expressions such that
we produce the highest odds of success at the lowest exclusive com-
putation cost.

98

Graph Partitioning and Optimality: From the perspective of
communication cost, there is performance pressure to generate
STEP schedules (STEP graph partitions) in which contiguous re-
gions of the graph remain in the same partition, to minimize com-
munication between SXEs. Although we may use the data-types
as an indication of the communication cost, it may be the case
that those expressions that receive large amounts of data as input
may have computation costs which dwarf their communication cost
(e.g., pattern matching, face-finding, etc). The deployment of such
resource intensive expressions may generate graphs in which we
have many small regions and high communication cost. We antic-
ipate several iterations of algorithms that attempt to achieve the
“right” (or configurable) balance between network and computa-
tion cost, including heuristics borrowed from spreading metrics [4],
simulated annealing [16], and others.
Security and Safety: The emergence of embedded SNs in pub-
lic spaces produces a clear and urgent need for well-planned, safe
and secure infrastructure as security and safety risks are magnified.
For example, a hacker gaining access to private emails or crashing
a mail server is certainly bad, however it is clearly worse if that
same hacker can virtually case an office via stolen video feed, dis-
able the security system, remotely unlock the door, and steal both
the physical mail server and the data it contains. The Sensorium is
an ideal a testbed for dealing with the inherent security issues in
this novel domain, requiring the incorporation of mechanisms that
provide authentication support for privacy, constraints, and trust.
Currently, we are considering the implementation of some of the
more basic security functionalities – e.g., using digest authentica-
tion for SSDs and SXEs, public key authentication for SXEs and
SSL authentication for the SSD, and using SSL (https) to preserve
the privacy communication between resources.
Scalability of Networked SSDs: As mentioned in previous sec-
tions, the SSD/SRM maintains resources for a “local-area” Senso-
rium. Although this hierarchal division seems rather natural, the
number of resources to be monitored by an SSD must be “within
reason”. We do not yet have experiments to establish what “reason-
able” number of resources our local-area Sensorium can support.
Moreover, as more Sensoria come on-line, there will inevitably be
demand for computations that involve resources of disjoint Senso-
ria (e.g., nodes on the periphery between two SSD regions). Our ini-
tial approach is a tiered, DNS-like solution in which a root SSD can
resolve specific resources beyond the scope of the local SSD and
possible (when a local Sensorium is exhausted) out-source com-
putations to another Sensorium. Such algorithms must be imple-
mented, verified, and evaluated for scalability.

Acknowledgments
We would like to acknowledge Adam Bradley for his immense help
and contribution to the initial conception of this work. We would
also like to acknowledge those members of the larger iBench initia-
tive at BU, of which this work is part. http://www.cs.bu.edu/groups/ibench/

References
[1] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E.

Culler, and Kristofer S. J. Pister, “System Architecture Directions
for Networked Sensors,” in Architectural Support for Programming
Languages and Operating Systems, 2000.

[2] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Michael Ocean,
“SNBENCH: A Development and Run-Time Platform for Rapid
Deployment of Sensor Network Applications,” in IEEE International
Workshop on Broadband Advanced Sensor Networks (Basenets),
Boston, October 2005.

[3] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Ibrahim Matta,
“Typed Abstraction of Complex Network Compositions,” in

ICNP’05: The 13th IEEE International Conference on Network
Protocols, Boston, November 2005.

[4] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber, “Divide-
and-conquer approximation algorithms via spreading metrics (ex-
tended abstract),” in IEEE Symposium on Foundations of Computer
Science, 1995, pp. 62–71.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC Language: A Holistic Approach to Networked Embedded
Systems,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation (PDLI), 2003.

[6] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor
Networks,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, San Jose, CA,
2002.

[7] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong, “TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, 2002.

[8] Yong Yao and Johannes Gehrke, “The Cougar Approach to In-
Network Query Processing in Sensor Networks,” SIGMOD Rec., vol.
31, no. 3, 2002.

[9] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, and
S. Shenker, “The Sensor Network as a Database,” Tech. Rep. 02-771,
CS Department, University of Southern California, 2002.

[10] Ryan Newton and Matt Welsh, “Region streams: functional macro-
programming for sensor networks,” in DMSN ’04: Proceeedings
of the 1st international workshop on Data management for sensor
networks, New York, NY, USA, 2004, pp. 78–87, ACM Press.

[11] Ryan Newton, Arvind, and Matt Welsh, “Building up to Macro-
programming: An Intermediate Language for Sensor Networks,” in
Proceedings of the International Symposium on Information Process-
ing in Sensor Networks (IPSN), 2005.

[12] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser, “Active Messages: A Mechanism for Integrated
Communication and Computation,” in 19th International Symposium
on Computer Architecture, Gold Coast, Australia, 1992.

[13] Rimon Barr, John C. Bicket, Daniel S. Dantas, Bowei Du,
T. W. Danny Kim, Bing Zhou, and Emin Gün Sirer, “On the
Need for System-Level Support for Ad hoc and Sensor Networks,”
SIGOPS Oper. Syst. Rev., vol. 36, no. 2, pp. 1–5, 2002.

[14] Jie Liu and Feng Zhao, “Towards semantic services for sensor-
rich information systems,” in Second IEEE/CreateNet International
Workshop on Broadband Advanced Sensor Networks(Basenets 2005),
2005.

[15] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” 2003.

[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671–680, 1983.

99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

